Active packaging: Incorporation of polyphenols in polyhydroxyalkanoate (PHA): Thermal stabilization and antioxidant properties
Chloë Bonnenfant, Nathalie Gontard, Chahinez Aouf

To cite this version:
Chloë Bonnenfant, Nathalie Gontard, Chahinez Aouf. Active packaging: Incorporation of polyphenols in polyhydroxyalkanoate (PHA): Thermal stabilization and antioxidant properties. Biopolymers and sustainable composites, Mar 2020, Valencia, Spain. hal-02943213

HAL Id: hal-02943213
https://hal.inrae.fr/hal-02943213
Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Active packaging: Incorporation of polyphenols in polyhydroxyalkanoate (PHA): Thermal stabilization and antioxidant properties

Chloé Bonnenfant¹, Nathalie Gontard¹, Chahinez Aouf¹

¹UMR IATE, INRAe Supagro, 2 place Pierre Viala 34000 Montpellier, France

chloe.bonnenfant@supagro.fr

Introduction: Pollution of the environment by plastic is a worldwide issue. Today, packaging is mainly produced from conventional petroleum-based plastics especially in the food industry. Plastic is everywhere, that is why ongoing research are attempting to develop biobased and biodegradable polymers. Polyhydroxyalkanoates (PHA) seem to be good candidates. The aim of this study is to enhance their thermal properties and confer antioxidant properties to PHA by adding polyphenols.

Polyhydroxyalkanoate (PHA)

Polymer under study: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) = PHBV

Biobased polymer produced by bacterial fermentation

Biodegradable [1]

Processability window very tight (175°C < Tprocess < 210°C)

Polyphenols

Family of organic molecules mainly coming from plants

Interesting properties:

- Antioxidant properties
- Improvement of thermal stability of materials

Properties expected:

- Better thermal stability → Possibility to consider mechanical recycling
- Wider processability window
- Antioxidant effect in contact with food

Underlying issues:

- Effect of the polyphenols on the biodegradability of the polymers
- Ability to food contact?

Conclusion: We expect that this PhD research will lead to a new formulation of PHA derivatives with enhanced thermal stability. Polyphenols could be the answer to these issues and furthermore, they could confer interesting properties as antioxidant ones to polymers dedicated for food industry’s applications.

References:
