Thermophilic starters, milk composition and technological parameters affect the volatile compounds of hard cooked cheeses

Buchin S.*, Salmon J.C., Duboz G., Palme R., Duployer M.H.

Introduction
The composition of thermophilic starters influences the composition of volatile compounds of hard cooked cheeses, maybe through their effect on the chemical composition and bacterial dynamics in cheese from the early stages of cheesemaking (Buchin et al., 2017, Eur. Food Res. Technol., 243:1943–1955). A modulation of this effect by milk composition or technological parameters was investigated.

Material and methods
Cheese-making: 24 model Swiss-type cheeses (10 kg) by crossing 3 factors, all the other processing conditions similar, the same mesophilic strains added, 150 days of ripening

<table>
<thead>
<tr>
<th>Starter combination (S)</th>
<th>Milk composition (M)</th>
<th>Process (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 levels</td>
<td>3 levels</td>
<td>3 levels</td>
</tr>
<tr>
<td>(1) S1H1D1</td>
<td>(29) 29 g/l</td>
<td>(53) 53°C</td>
</tr>
<tr>
<td>(2) S1H2D2</td>
<td>(32) 32 g/l</td>
<td>(55) 55°C</td>
</tr>
<tr>
<td></td>
<td>(35) 35 g/l</td>
<td>(57) 57°C</td>
</tr>
</tbody>
</table>

Analyses:
- Gross composition of cheeses at 1 and 150 days,
- Microbiological composition, proteolysis patterns and volatile compounds of cheeses at 1, 30, 75 and 150 days
- Statistics: ANOVA (effect of factors and interactions) and PCA

Chemical and microbiological variables at all stages

Conclusions

Results

Principal Component Analysis (PCA) made from data significantly affected by the factors under study

Chemical and microbiological composition: MTH: thermophilus, LHL: heterolactic, (29, delbrueckii), PHH: facultatively heterofermentative lactobacillus, PAB: propionic acid bacteria, DWD: dry matter, F2M: fat/M, TAN: free amino acids, NH3-NH2 residue, pH0, pHF, pHM, ppt in initial milk, at renneting, at moulding, pHmilk, pHmilk+ at 6th and 9th pressing, 1-30-75-150 days of ripening

Analysis of variance (ANOVA): Number of volatile compounds affected at each ripening stage

Chemical and microbiological composition: Milk effect on gross composition and growth of FHL, PAB and LD; Starters effect on growth of all microbiota, mostly LD and LH, acidification and proteolysis; High temperature beneficial for ST and LH but detrimental for other microbiota.

At unmooulding: Major milk effect for volatile composition; M29 favorable for aldehydes, alcohols and ketones (markers of fat oxidation) and esters (markers of lipolysis); Starters S1 favorable for the same alcohols and ketones; High temperature favorable for 2,3-butanedione and 2,5-pentanedione (produced by ST).

At 30 days: Milk M29 favorable for sulfur compounds and branched aldehydes (degradation of AA) and again the same esters; Starters effect again on ketones and alcohols; Temperature effect negligible.

At 75 days: Increasing effect of temperature. Low temperature favorable for volatile fatty acids and sulfur compounds (enhanced PAB and FHL growth); Milk effect more or less the same; Starter S2 higher than S1 for secondary alcohols and methyl ketones (fatty origin) and branched alcohols and esters and sulfur compounds (AA origin).

At the end of ripening: Low temperature favorable for many ketones (from fat), branched or sulfur compounds (from AA), esters; Starters S2 favorable for mainly aldehydes, primary alcohols and methylketones (from fat); Milk effect the same as previously.

Conclusion
During ripening, milk effect remained major whereas starter and temperature effects increased until the same level for the 3 factors.