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Unraveling the infection process of garlic by 
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Paul L. CHRÉTIEN1, Sandrine LAURENT2, Isabelle BORNARD1, Claire 
TROULET1, Mohamed EL MAÂTAOUI2, Christel LEYRONAS1,*
1 INRAE, Pathologie Végétale, 84140 Montfavet, France
2 Avignon Université, Qualisud UMR95, 84000 Avignon, France
*Corresponding author: christel.leyronas@inrae.fr 

Summary. Since the mid-2000s, and despite demanding production rules, Fusarium 
proliferatum (Matsushima) Niremberg has been found on garlic heads during storage 
inducing root and bulbs rots. Brown spots on the surface of garlic cloves and water-
soaking of heads were noted. Histological observations of the fungus during early 
stages of infection were made from clove to the cellular levels. Fusarium proliferatum 
germinates, colonizes roots and degrades the outer root and parechchyma cell layers 
72 h post inoculation. Conidium germination and host colonization are facilitated by 
the emergence of garlic roots, creating cellular debris and natural wounds. Hyphae of 
the pathogen did not penetrate healthy host cells and appeared to degrade them before 
penetration. These results provide understanding of when and how quickly F. prolife-
ratum penetrates garlic bulbs. This is a primary step towards elucidating the life cycle 
of this pathogen during the garlic drying process, and development of an efficient and 
sustainable bulb rot management strategy.

Keywords. Histology, electron microscopy, garlic rot, host-parasite interaction.

INTRODUCTION

From Hippocratic medicine (Totelin 2015) to modern and sophisticated 
molecular cuisine (This 2006), garlic has been used throughout history and 
has a special place in human civilization. World garlic production reached a 
peak of more than 26 million tons produced in 2016, rising from 11 million 
in 2000 (FAOSTAT, 2018). Global average price is $US 2.35 kg-1 and contin-
ues to increase (Tridge, 2019). China produces and exports the most of the 
world’s garlic (80% of world production and 25 millions of tons per year).

France ranks 6th among European producers of garlic, with 21,000 tons 
produced each year in two main areas of cultivation: the South-East and the 
South-West of the country. Quality is an important objective for French pro-
ducers in that French garlic benefits from high quality standards and certifi-
cation, which ensure control of production such as the restricted geographic 
areas of production (one AOP – Appellation d’Origine Protégée – and four 
IGP – Indication Géographique Protégée – labels) (INAO, 2019). For the seed 
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certification, garlic production in each field must be 
separated by 5 years, in order to reduce propagation of 
the nematode Ditylenchus dipsaci (Robert and Matthews 
1995) and white rot caused by Sclerotium cepivorum 
(Basallote-Ureba and Melero-Vara 1993). All certified 
varieties are free from Onion yellow dwarf virus (OYDV) 
and Leek yellow stripe virus (LYSV), and have been 
obtained by meristem culture. In the field, all plants 
that show differences compared to the source mate-
rial are destroyed. During all production steps before 
and after storage, damaged garlic heads are destroyed. 
Despite these control and certification standards for seed 
and plants, Fusarium rot of garlic emerged in France in 
approx. 2006 (Ricard 2017). During storage, browning 
of cloves commences from the basal plates and extends 
to the tops of the heads. Tissues become soft and water-
soaked before complete rotting. Losses are variable: less 
than 1% in 2006 year, increasing to 25% on average in 
2015. Some plots have been more affected than the oth-
ers (from 1 to 80%), and high losses drastically reduce 
the volumes sold and therefore the income for produc-
ers. In extreme cases, farmers have ceased producing 
several varieties that were highly susceptible to root rot.

Eight Fusarium species have been found on symp-
tomatic garlic, with the majority being F. proliferatum 
followed by F. oxysporum and then F. solani (Koleva 
2004; Stankovic et al., 2007; Ochoa-Fuentes et al., 2012; 
Moharam et al., 2013; Delgado-Ortiz et al., 2016; Ign-
jatov et al., 2017). The disease caused by F. prolifera-
tum on garlic is common wherever the crop is grown, 
and was first reported in 2002 in Germany (Seefelder 
et al., 2002) and in 2003 in North America (Dugan et 
al., 2003). The number of countries affected by F. pro-
liferatum on garlic has increased to include Serbia in 
2007 (Stankovic et al., 2007), India in 2012 (Sankar and 
Babu 2012) and Egypt in 2013 (Moharam et al., 2013). In 
France, the pathogen was recently identified as F. proli-
feratum (Matsushima) Niremberg in 2018 (Leyronas et 
al., 2018). Fusarium proliferatum is within the F. fuji-
kuroi species complex native to Asia (O’Donnell et al., 
2013), and is responsible for bulb, root or fruit diseases 
on many crop plants, including onion (Toit et al., 2003), 
soybean (Diaz Arias et al., 2011), chive (Yamazaki et al., 
2013), lily (Lebiush-Mordechai et al., 2014), welsh onion 
(Alberti et al., 2017), peach (Xie et al., 2018) and straw-
berry (Borrero et al., 2019).

There is no officially accepted prophylactic or chemi-
cal control method for Fusarium spp. on garlic in 
France. One of the hurdles to developing control meth-
ods is the lack of knowledge of the pathogen infection 
processes into garlic bulbs. Mycelium starts to develop 
around the basal plates of bulbs where the roots emerge 

(Stankovic et al., 2007; Tonti et al., 2012). Fungal growth 
also occurs on the bulb apices, where the skin cracks 
as leaves emerge. Then tissues become brown, and wilt 
from the bottom to the top at a regular rate. Wilting also 
starts from wounds on the bulb surfaces. Microscope 
observations have been made of infection of sorghum 
plants, showing that hyphae of F. proliferatum quickly 
penetrate (about 2 weeks after sowing) the endodermal 
and xylem parenchyma layers of roots, colonize com-
plete root cortices (Ndambi et al., 2012).

The objectives of the present study were to investigate 
the infection processes of garlic by F. proliferatum, and 
in particular to determine when and where the pathogen 
conidia enter host tissues. Observations were focused 
on the basal parts of the garlic heads, including the 
roots and tissues around the heads and the basal plates. 
Using light and electron microscopy, interactions were 
observed at different scales, from overall aspects to his-
tological levels.

MATERIALS AND METHODS

Preparation of biological material

Biological material

A F. proliferatum strain (FA3-E01) isolated from pink 
garlic cloves cultivated in France during the summer 
2017 was used in this study. This strain was previously 
purified and added to a laboratory fungal collection, and 
this strain has been shown to be aggressive on garlic 
bulbs (Leyronas et al., 2018).

All garlic cloves used in this study were from a single 
lot of pink garlic from the south of France harvested in 
late June 2018. The cloves were all asymptomatic at the 
time of inoculation.

Preparation of conidium suspensions

Inoculum was produced on potato dextrose agar 
medium (Difco Laboratories) at 21°C under cool white 
light (12 h photoperiod, 23.8 μmol m-2 s-1). Mycelium 
plugs were taken from 1-week old cultures and were 
added on 250 mL capacity Erlenmeyer flasks contain-
ing 150 mL of potato dextrose broth (Difco Laboratories, 
Detroit). The flasks were placed on a rotary shaker at 100 
rpm at 21°C under cool white light (12 h photoperiod, 
23.8 μmol m-2 s-1). After 7 d, the medium was filtered 
through etamine filters (25–35 μm pores) to remove 
mycelium fragments and retain microconidia. The con-
centration was evaluated with a haemocytometer, and 
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adjusted to 1.0 × 106 conidia mL-1 using sterile deionized 
water. This concentration was known to recreate symp-
toms on cloves.

Inoculation of garlic cloves

Healthy peeled cloves of pink garlic (n = 6) were sur-
face-disinfected with 1% NaOCl for 1 min and rinsed 
in 3 successive baths of sterile water. Disinfected cloves 
were soaked in 200 mL of conidial suspension (or ster-
ile water for negative control) inside a beaker placed on 
a rotary shaker at 100 rpm for 24 h at 21°C. The cloves 
were then placed inside a sterile plastic box at 23°C with 
saturated humidity and constant obscurity. Samples 
were collected after 6, 12, 24, 48 and 72 h for microscop-
ic analyses.

Observations of samples at different scales

Sample preparation for light microscopy

All samples were first observed with an illuminated 
binocular magnifier. General structures of cloves, basal 
plates and tissues were described.

Control (uninoculated) and inoculated garlic cloves 
were longitudinally sliced and fixed in FAA (1/1/8, 
V/V/V, 37% formalin/glacial acetic acid/90% ethanol). 
To promote penetration of the fixative products, sam-
ples were subjected to vacuum for 20 min. After 48 h 
of fixation, the specimens were rinsed in distilled water 
and stored in 70% ethanol at 4°C until required. They 
were then dissected to collect 5 x 5 mm basal fragments 
that were processed for cytohistology. Briefly, the sam-
ples were dehydrated in a graded ethanol series (80-100 
%) and infiltrated in methacrylate resin (Kit Technovit 
7100, Heraeus-Kulzer GmbH), according to the manu-
facturer instructions). Sections (3 μm thick) were seri-
ally cut using a retraction microtome (Supercut 2065, 
Reichert-Young), and collected on microscope slides. For 
routine observations, sections were stained by toluidine 
blue, a metachromatic dye (Clark, 1981). For each treat-
ment, sections were stained to visualize major cell com-
ponents using periodic acid-Schiff’s reagent (PAS) for 
polysaccharides (starch and cellulose) (pink) and naph-
thol blue-black (NBB) for protein (blue) (El Maâtaoui 
and Pichot 1999). All microscope analyses were per-
formed using a Leica DMR photomicroscope equipped 
for bright field, dark field, phase contrast and UV illu-
minations. Images were captured using a Leica DFC 300 
FX digital camera and processed using Leica LAS soft-
ware. For each treatment, approx. 60 serial sections from 

five different garlic cloves were analyzed, and representa-
tive images were selected to illustrate the major histolog-
ical traits. Attention was paid to initiation of infection, 
mycelium progression in clove tissues, and cyto-patho-
logical effects.

Sample preparation for scanning electron microscopy

Garlic tissue samples were fixed in 2.5% (v/w) glu-
taraldehyde for 1 h and then washed three times with 
0.2M sodium cacodylate buffer (pH 7.2). The samples 
were then dehydrated with a series of ethanol baths of 
increasing concentration (30% to 100%). The ethanol 
was replaced by HMDS until it completely invaded the 
samples and evaporated. After drying, the samples were 
mounted on aluminium stubs, sputter-coated with a lay-
er of gold, and then observed with an FEI/Philips XL30 
scanning electron microscope at 10 kV.

RESULTS

Structure of healthy garlic tissues

Each peeled garlic clove usually had bulbil-like mor-
phostructure, with a basal plate supporting a f leshy 
external leaf or scale (Figure 1A) attached to a short 
stem (not shown) that bore numerous root primordia 
(Figure 1B). After clove germination, root emergence 
took place between the external scale and the abscission 
zone of the basal plate, thus enlarging the space at the 
junction between the external scale and the abscission 
zone. Microscope analyses of sections from the abscis-
sion zone showed that this area was composed of thick-
walled, dead cells (Figure 1C). Condensation and retrac-
tion of cytoplasm and degradation of chromatin inside 
nuclei indicated that the cells were dying. Inside cloves, 
roots embedded in leaf parenchyma (Figure 1D) created 
each an aperture and many dead collapsed cells while 
emerging (Figure 1E).

Progression of Fusarium proliferatum in cloves

After 72 hpi, hyphae adhered and colonized the junc-
tions between roots and parenchyma of external scale 
edges (Figure 2A). Inoculated conidia germinated on the 
surface of epidermis cells (Figure 2B). Mycelium then 
invaded the entire area composed of the parenchyma 
of the external scale and suberized tissue (Figure 2C). 
Abscission zones (AZ) were covered with white myce-
lium (not shown). Microscope analyses of these areas 
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showed dense mycelium growth in the cellular debris 
close to suberized tissue (Figure 2D). On each clove, 
a coat of white hyphae appeared all around the roots 
from the base to the top and at the edge of the external 
scale (Figure 2E). Specific infection structure were not 
observed. Fusarium proliferatum proliferated as myce-
lium in a saprophyte-like manner.

Browning of cloves progressed from the base to the 
top at 72 hpi. The boundary between healthy and dis-
eased tissues was easily discernible, and mycelium 
entirely covered roots (Figure 3A). At 48 hpi, germi-
nated conidia and mycelium were observed against de-
structured suberised regions (Fig. 3B). The pathogen 
was also observed to be growing inside collapsed dead 
cells from the external clove scales resulting from the 
root emergence (Figure 3C). At 72 hpi and beneath the 
mycelium coat, root tissues were degraded and hyphae 
penetrated only inside the first layers of dead cells (Fig-
ure 3D).

De-structuring of clove cell layers

In tissues infected by F. proliferatum, the cells died 
and shrank particularly within the parenchyma of exter-
nal scales and in the superficial layers of the roots (Figure 
4A and B). Three levels of degraded tissue could be dis-
cerned; entirely degraded tissue, collapsed cells filled with 
secondary metabolites (deep blue) and dead matrices of 
cells filled with fungal mycelium (III), a border between 
dead and healthy cells (II) and healthy parenchyma cells 
(I) (Figure 4B). The dead cells accumulated proteins, as 
indicated by the azure colour of their contents.

DISCUSSION

This study has clarified the pathway by which F. 
proliferatum enters garlic gloves. Fusarium species (e.g. 
F. oxysporum, F. solani and F. verticillioides) are well 

Figure. 1. Morphology and structure of healthy garlic cloves. A, Peeled clove after 3 d in sterile distilled water. B, Abscission zone. C, Sec-
tion of the abscission zone. D, Longitudinal section of the basal part of an ungerminated clove. E, Section from the area indicated by a 
square in D. ES: external scale, AZ: abscission zone, R: roots, P: parenchyma, S: thick-walled cells, cP: collapsed parenchymatous cells. Black 
arrowheads indicate junctions between roots and between AZ boundaries and root primordia. A, B and D, Stereomicrographs. C and E, 
Light micrographs of PAS/NBB stained samples.
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known for their capacity to infect vascular and root tis-
sues causing wilt on plants (Agrios, 2005). In the present 
study, rapid degradation of garlic root cells was observed 
after inoculation with F. proliferatum, but the pathogen 
did not invade host conductive tissues. Fusarium pro-

liferatum progressed from the points of infection in all 
directions. Proliferation of the fungus in garlic tissue 
was reduced in the presence of thick-walled cells, and 
was directed toward the parenchyma. Although this 
pathogen possesses the enzymes required to degrade 

Figure 2. Mycelium development of Fusarium proliferatum. A, SEM micrograph of a germinating garlic root. B, High magnification of the 
area indicated by the square in A. C, Section of the basal part of an infected clove. D, Detail of suberized tissue. E, Basal part of a clove 72 h 
post inoculation. R: roots, J: junction, P: parenchyma, My: mycelium, E: epidermis, S: thick-walled cells, ES: external scale. White arrow in 
B indicates a germinated conidium. Black arrowheads in E indicate junctions between roots and between the abscission zone boundary and 
root primordia. A and B, Scanning electron micrographs. D, Light micrograph after TB staining. E, Stereomicrograph.
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suberized cells, such as laccases (Regalado et al., 1999; 
Hernández Fernaud et al., 2006), chitinases, glucosidases 
and galactosidases (Keshri and Magan 2000), F. prolife-
ratum probably takes the path of least host resistance.

Fusarium proliferatum rapidly infected garlic root 
tissues before infecting clove tissues. Germination of 
roots may have triple positive indirect effects on the 
development of the root rot. First, while emerging, roots 
degrade parenchyma cells and release cellular debris that 
may be utilized for growth of the fungus.  Second, the 
physical barrier of the host epidermis breaks and allows 
penetration of the pathogen into host tissues. In some 
preliminary experiments, we have observed that F. pro-
liferatum was unable to enter through intact garlic epi-
dermis surfaces. Third, the presence of host and non-
host roots in the soil are known to induce germination 

of fungal conidia and attract hyphae of F. oxysporum 
(Nelson 1981). Further studies could assess if this is also 
the case for F. proliferatum and garlic roots.

In the present study, F. proliferatum was observed 
to colonize decayed host tissues, but not to penetrate 
healthy cells. Tissues destroyed beyond the margins 
where fungal growth occurred were seen, indicating 
that the fungus deployed strategies, such as enzymes 
and toxin production, to destroy host tissues prior to 
colonization. The limits between dead and living cells 
were clearly visible. This could indicate activity of the 
many organosulfur compounds produced and stored 
inside garlic cells. These molecules are responsible 
for the characteristic fragrance of garlic. These com-
pounds, such as allicin, have been widely studied as 
potential biocontrol agents against fungi, bacteria and 

Figure 3. Morphology and cytohistological aspects of Fusarium proliferatum infected garlic cloves 48–72 h post inoculation. A, Image of an 
infected clove. B and C, Micrographs illustrating the progression of clove infection 48 h post inoculation. D, Detail of the decayed root tis-
sue. R: roots, My: mycelium, S: thick-walled cells, cP: collapsed parenchyma cells. A, Stereomicrograph. B and C, Light micrographs after 
PAS/NBB staining. D, Light micrograph with TB staining.
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other pests (Curtis et al., 2004). Allicin is synthetized 
from a precursor molecule (alliin) through the action 
of alliinase activated when cells are damaged. The fact 
that F. proliferatum is able to grow, colonize and devel-
op on a matrix containing organosulfur compounds 
was interesting. Previous studies have found that gar-
lic extracts inhibit F. proliferatum on culture media at 
pH 3 to 7 (Chen et al., 2018). One hypothesis to explain 
pathogenicity is the production of desulfurization 
enzymes (sulfatases) by some F. proliferatum strains 
(Shvetsova et al., 2015). This overcoming of host resist-
ance could also be linked to glutathione metabolism 
(Leontiev et al., 2018). Another example of fungi being 
able to grow in the presence of organosulfur is Coriolus 
versicolor known to degrade this type of compound in 
wood (Linder 2018). One hypothesis about the emer-
gence of root rot of garlic is that some pathogen strains 
may have acquired resistance to garlic compounds. In 
further studies, we will assess the impacts of garlic 

extracts on in vitro development of several F. prolifera-
tum strains, and evaluate the ability of F. proliferatum 
strains, collected from other crops, to develop disease 
symptoms on garlic.

Like most Fusarium spp., F. proliferatum has a soil-
borne phase. The present study showed that this fungus 
can penetrate garlic cloves at the outline/contour of their 
basal plates when the roots emerge. This indicates that F. 
proliferatum remains dormant in the soil, is attracted to 
germinating garlic cloves (at early stages of their devel-
opment), and then penetrates through wounds without 
generating visible symptoms. Airborne phases cannot be 
excluded. Fusarium proliferatum is a prolifically sporu-
lating species, and in Spain, conidia collected in rainwa-
ter were shown to be aggressive on garlic (Gil-Serna et 
al., 2016). In the field, sprouting garlic leaves take fun-
nel shapes, and rainwater is directly led to germinated 
cloves where the epidermis is weakened. In further 
experiments, it could be interesting to test independent 
inoculation of shoots and of the basal plates could be 
investigated. Knowledge of the origin of inoculum that 
induces rot on garlic is crucial for development of effi-
cient, sustainable and environmentally-friendly root rot 
management strategies.

Through of French and European actions, French 
garlic producers are encouraged to reduce their use of 
phytosanitary products (European Directive 2009/128/
EC). There is a need for efficient alternative disease con-
trol methods, among which are aimed at management 
of garlic root rot. Soil solarization could be explored to 
control the soil-borne population of Fusarium spp. In 
Japan, this method was efficient for control Fusarium 
wilt of strawberry caused by F. oxysporum, in fields and 
greenhouses (Koike and Gordon 2015). Results could be 
linked to heat alone or to selection of antagonistic soil 
microorganisms. In another research, solarization with 
Medicago sativa amendment was shown to be an effi-
cient, non-chemical, method for control of Fusarium 
wilt of cucumber caused by F. oxysporum (Yao et al., 
2016). Although soil solarization has proved to be effi-
cient against species other than F. proliferatum, it would 
be worth testing this method for garlic crops. The use 
of biocontrol agents such as bacteria applied on garlic 
cloves may also be promising. Four strains of B. subtilis 
have been shown to reduce severity of disease caused by 
F. proliferatum strains on garlic (Bjelic et al., 2018).

Biocontrol and solarization need to be applied at the 
right time, in optimum conditions, to have appropri-
ate activity during or before crop planting. To this end, 
some of our current studies are focusing on the impacts 
of abiotic factors on F. proliferatum mycelium growth 
and sporulation.

Figure 4. Histopathological effects of Fusarium proliferatum on 
infected clove tissues. A and B, Detail of the first root cells layers 
72 h post inoculation. My: mycelium, dC: dead cells, P: parenchy-
ma. A, Scanning electron micrograph. B, Light micrograph after 
TB staining.
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