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Abstract: Remote sensing data play a crucial role in monitoring crop dynamics in the context of
precision agriculture by characterizing the spatial and temporal variability of crop traits. At present
there is special interest in assessing the long-term impacts of biochar in agro-ecosystems. Despite the
growing body of literature on monitoring the potential biochar effects on harvested crop yield and
aboveground productivity, studies focusing on the detailed crop performance as a consequence of
long-term biochar enrichment are still lacking. The primary objective of this research was to evaluate
crop performance based on high-resolution unmanned aerial vehicle (UAV) imagery considering
both crop growth and health through RGB and multispectral analysis, respectively. More specifically,
this approach allowed monitoring of century-old biochar impacts on winter wheat crop performance.
Seven Red-Green-Blue (RGB) and six multispectral flights were executed over 11 century-old biochar
patches of a cultivated field. UAV-based RGB imagery exhibited a significant positive impact of
century-old biochar on the evolution of winter wheat canopy cover (p-value = 0.00007). Multispectral
optimized soil adjusted vegetation index indicated a better crop development over the century-old
biochar plots at the beginning of the season (p-values < 0.01), while there was no impact towards the
end of the season. Plant height, derived from the RGB imagery, was slightly higher for century-old
biochar plots. Crop health maps were computed based on principal component analysis and k-means
clustering. To our knowledge, this is the first attempt to quantify century-old biochar effects on
crop performance during the entire growing period using remotely sensed data. Ground-based
measurements illustrated a significant positive impact of century-old biochar on crop growth stages
(p-value of 0.01265), whereas the harvested crop yield was not affected. Multispectral simplified
canopy chlorophyll content index and normalized difference red edge index were found to be good
linear estimators of harvested crop yield (p-value(Kendall) of 0.001 and 0.0008, respectively). The present
research highlights that other factors (e.g., inherent pedological variations) are of higher importance
than the presence of century-old biochar in determining crop health and yield variability.

Keywords: UAV remote sensing; crop monitoring; RGB imagery; multispectral imagery;
century-old biochar
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1. Introduction

Biochar is a carbon-rich material obtained through the pyrolysis of feedstocks to intentionally
amend soil [1,2]. In the context of climate-smart agriculture, special attention has been given to
biochar application owing to its supposed ability to improve soil fertility and long-term organic
carbon storage [3–6]. To date, short-term biochar effects have been well addressed by studying the soil
nutrient availability [7,8], soil water holding capacity [9–11], and plant available water content [12,13].
The aforementioned improvements of soil quality could consequently lead to an impact on the crop
productivity [14]. Moreover, biochar was found to increase nutrient uptake and crop yield while
being incorporated into soil matrix together with fertilizers [15]. The short-term improvement of
crop productivity can be attributed to the addition of nutrients related to the biochar application [7].
However, long-term biochar effects on soil and agro-ecosystems properties are still poorly understood.
Several authors have reported a higher nutrient availability in the century-old biochar sites originating
from earth kiln sites [16,17]. The higher nutrient availability in long-term biochar-enriched soils can be
explained by cation exchange capacity that increases over time [18]. Moreover, century-old biochar
significantly affects physico-chemical properties of soils in relic hearths of agricultural fields [16].

Across the globe, many efforts have been devoted to unravel biochar effects on aboveground
biomass productivity. In many of these studies, a short-term effect of biochar on increasing crop
productivity was reported [7,19,20], however, Güereña et al. [21] and van Zwieten et al. [22] showed a
reductive influence. Similarly, Hernandez-Soriano et al. [23] reported a long-term biochar impact on
increasing aboveground productivity, whereas Mastrolonardo et al. [24] observed a decreased tree ring
width in relic charcoal hearths of Belgium. Oak growth depression was also found in aged charcoal
hearth patches in the United States [25].

The studies listed above all explored the biochar effects on crop productivity. However, it is
highly likely that biochar could affect crop development only during the green-up phase, while the
harvested crop yield could remain unaffected [26]. More specifically, long-term biochar effects on crop
performance and its development over the entire growing season have received much less attention
than biochar effects on total crop productivity.

In recent years, remote sensing has been promoted as a means in precision agriculture for detailed
spatio-temporal monitoring of crop dynamics [27,28]. A particular focus at present is the use of satellite
imagery for precision agricultural practices due to the images’ fine spatial, spectral, and temporal
resolution [28]. Moreover, high-resolution unmanned aerial vehicle (UAV)-based imagery can be used
to address the data gap in satellite products suffering from cloud coverage [29]. Recent advances in
Red-Green-Blue (RGB) and multispectral UAV remote sensing have improved the ability to accurately
monitor crop performance and vegetation characteristics at the canopy level, such as canopy cover,
leaf area index, and chlorophyll content, allowing for site-specific decision making in the context
of precision agriculture [29–32]. In addition, due to remote UAV flights, the experimental surface
is not damaged [33], thus enabling a complete crop monitoring over the entire season. Therefore,
the spatio-temporal information provided by the UAV images can reveal variability in crop performance
due to the presence of century-old biochar.

Every year, agricultural products suffer significant economic losses caused by multiple pests and
diseases, such as yellow rust or aphid, which may lead to a shortage of food production globally [34,35]
and particularly in Europe [36]. Cameras onboard UAVs are able to illustrate changes in crop dynamics
as a function of a particular disease at early onset [37]. The pioneering work of Franke et al. [38]
reported that pathogens reduces plant chlorophyll content in the visible and red-edge spectral bands
due to necrotic and chlogotic lesions. Su et al. [37] highlighted that the red band of the spectrum has
strong potential in discriminating healthy from diseased winter wheat plants. Su et al. [37] also showed
that the multispectral optimized soil adjusted vegetation index (OSAVI) has a strong discriminating
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capability between healthy and diseased winter wheat plants. In addition, UAV imagery is able to
detect changes in crop traits linked to disease incidence [39]. Therefore, high-resolution UAV remote
sensing can be successfully applied for spatial explicit assessment of crop health as a consequence of
the presence of century-old biochar within agricultural soils.

The primary objective of this paper is to evaluate crop performance by studying crop growth and
health through the usage of high-resolution RGB and multispectral information, respectively, derived
from two UAV platforms. This approach also allowed us to investigate, as a secondary objective,
the impacts of century-old biochar on winter wheat crop performance. The available imagery sources
were RGB and multispectral data collected using two UAV platforms. UAV remote sensing data in
combination with ground-based measurements of crop traits were used to determine the influence of
century-old biochar from kiln sites of an agricultural field on winter wheat crop growth. The present
study evaluated, for the first time, the impact of century-old biochar on crop performance at the canopy
level using UAV imagery, while paving the way to quantify the long-term effects of biochar on winter
wheat crop health.

2. Materials and Methods

2.1. Site Description and Data Acquisition

The data were collected in a farm of approximately 13 hectares cultivated with winter wheat located
in Isnes, Belgium (Figure 1). Winter wheat (Triticum aestivum L.) seeds were sown on 6 December 2018.
The region is of temperate climate with dry and hot summers. The soil type is a Luvisol characterized
by a silt loam texture [40]. Homogenous agricultural treatments were applied throughout the field.
The detailed description is available in Heidarian Dehkordi et al. [26], in which the same experimental
configuration was followed by eleven 10 × 10 m century-old biochar plots (red squares in Figure 1)
together with the corresponding reference plots (blue squares in Figure 1). Ground control point (GCP)
targets, with known centroid coordinates through a real-time kinematic GPS, were deployed throughout
the farm (Figure 1) to help with accurate geo-referencing of the data (i.e., 3 cm horizontal accuracy).

Two remote sensing datasets (i.e., RGB and multispectral) were acquired during the 2019 growing
season (Table 1) using high-resolution sensors onboard two UAV platforms to monitor the crop status
over time (Figure 2). RGB images were collected using a DJI Phantom 4 Pro and the multispectral
images were obtained using a MicaSense RedEdge-M and downwelling light sensor, onboard a DJI
Matrice 100 platform specifically designed by Heidarian Dehkordi et al. [26], capturing blue (475 nm
central wavelength), green (560 nm), red (668 nm), red-edge (717 nm), and near-infrared (840 nm)
spectral channels with bandwidths of 20, 20, 10, 10, and 40 nm, respectively. The UAV platforms were
programmed to fly at 65 and 60 m above ground altitude (AGL) with an airspeed of 5 and 7 ms−1 for
RGB and multispectral sensors, respectively. The forward and sideway image overlaps were 85% and
75% for RGB, and 75% and 75% for multispectral acquisitions, reaching a ground sampling distance
(GSD) of 1.8 and 3.7 cm for RGB and multispectral images, respectively.

Table 1. An overview of the data acquisition using the unmanned aerial vehicles within the 2019
growing season. Flight times (start time–end time) are expressed in local time.

Date
UAV Imagery

RGB Multispectral

02/22/2019 10:18–11:41 -
03/20/2019 11:02–12:20 12:46–13:40
03/28/2019 11:33–12:59 13:37–14:32
04/16/2019 12:01–13:31 13:49–14:44
04/29/2019 11:00–12:26 12:44–13:54
05/13/2019 11:03–12:36 13:05–14:18
06/24/2019 11:04–12:26 13:16–14:36
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Figure 1. (a) A schematic layout of the experimental pairs (reference versus century-old biochar plots)
in the winter wheat field and distribution of the ground control points. Background image corresponds
to the Red-Green-Blue (RGB) orthomosaic captured by the unmanned aerial vehicle on the 16 April
2019. The right magnified windows present an example of a plot (reference plot 5) for visual RGB (b)
and multispectral weighted difference vegetation index (c) monitored on 16 April 2019.
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The photogrammetric processing of the acquired UAV images was conducted in Pix4Dmapper
photogrammetric software (Pix4D S.A., Lausanne, Switzerland). After the aerial triangulation of the
UAV images, the geometric processing was optimized in Pix4Dmapper using the coordinates of the
GCPs, and dense point clouds and final orthomosaic images were then created. For the multispectral
data, the radiometric calibration was applied using MicaSense calibrated reference panels with known
reflectance values (MicaSense, Seattle, WA, USA) taken immediately before and after each flight to
convert the raw image digital number (DN) to the calibrated reflectance values. In addition, sensor’s
sensitivity to light, expressed as ISO, values recorded by the downwelling light sensor were used to aid
the radiometric calibration. Both RGB and multispectral datasets were converted to GeoTIFF format
with the projected geographic coordinates system WGS 1984 UTM Zone 31N.

In addition to the aforementioned remotely-sensed datasets, ground based measurements of crop
traits were performed (Figure 2). Crop growth stages were determined on 28 May 2019 according to
the stabiologische bundesanstalt, bundessortenamt and chemical industry (BBCH) scale for winter
wheat [41]. For each plot, a regular non-destructive sampling method of 5 plants, i.e., 4 in the corners
and 1 in the middle to capture the intra-plot variability, was followed. The BBCH code of each plant
was visually determined and the median value of the five plants represented the plot growth stage.

Yield measurements were conducted on 20 July 2019. For each experimental plot, an area of
approximately 20 m2 was harvested to determine the yield.

2.2. UAV-Based Crop Monitoring

Canopy cover was estimated from the acquired high-resolution RGB images (Figure 2) based on
the classification method by Heidarian Dehkordi et al. [26]. This algorithm classifies the pixels in the
orthomosaic to vegetation and non-vegetation classes according to the spectral differences between the
green band and the blue and red bands as below:

[(Green − Blue) = α] and [(Green − Red) = β] (1)

where Blue, Green, and Red show the digital number (DN) of the corresponding spectral channel of
the visible spectrum, α and β are the classification threshold values with α representing the spectral
difference between the green and red bands and β revealing the spectral difference between the green
and red spectral channels. Similar to the finding of Heidarian Dehkordi et al. [26], a threshold value of
greater than 20 for both α and β was also reached in the present study through the visual inspection
for the best vegetation classification. Canopy cover estimates were used as a potential discriminative
parameter between the reference and century-old biochar plots in each acquisition date [26].

Plant height, as an important phenotyping crop trait, has received no attention in the previous
studies exploring the impacts of century-old biochar on crop performance. In this study, plant height
was estimated from the RGB images (Figure 3) as below:

Height (t) = DSM (t) − DTM (2)

where Height is the computed wheat height, DSM and DTM are the UAV-based digital surface model
and digital terrain model, respectively, with index t representing the acquisition date. DSMs were
generated from the RGB flights for each acquisition date. The RGB flight on 22 February 2019 (Table 1)
was executed when the field was completely bare soil and, hence, the UAV-based DSM, revealing
the pure terrain surface topography, was used as the DTM for this study. GCP_2 (Figure 1) was
used as the reference levelling point to calibrate the generated UAV-based DSMs at each acquisition
date, bringing the elevation values onto the same scale. The created RGB-based vegetation mask
(Equation (1)), with GSD of 1.8 cm, was used to retrieve the DSM from the true canopy pixels for the
height computation.
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Figure 3. Methodological workflow to derive plants height from RGB images collected by the unmanned
aerial vehicle. DTM is the digital terrain model acquired on 22 February when the field was completely
bare soil. DSM represents the digital surface model at each acquisition date. Ground control point 2
was used as a reference levelling point to calibrate the DSM images.

In addition to the RGB derivatives listed above, narrow-band vegetation indices given in
Table 2 were computed from the multispectral dataset (Figure 2) as a proxy to crop traits allowing
for demonstrating spectral changes related to crop structure [39]. Furthermore, the multispectral
information derived from the vegetation indices were analyzed to study the impacts of century-old
biochar on winter wheat crop spectral information. The normalized difference vegetation index (NDVI)
is a well-known proxy of photosynthetic activity and vegetation greenness. Canopy cover and leaf
area index (LAI) were accurately predicted based on the weighted difference vegetation index (WDVI)
in several studies [42–44]. The normalized difference red edge index (NDRE) was shown as a good
proxy of wheat nitrogen concentration [45]. The optimized soil adjusted vegetation index (OSAVI) was
found to be a robust indicator of leaf chlorophyll content [46], and the same conclusion was reached
for the chlorophyll vegetation index (CVI). The enhanced vegetation index (EVI) was shown to be
sensitive to canopy structural parameters such as LAI while adjusting soil background effects and
atmospheric resistance using the blue band of the spectrum [47]. The chlorophyll index red (CI-red)
and the simplified canopy chlorophyll content index (s-CCCI) are known alternatives of structural
indices which are often used for estimating canopy chlorophyll and nitrogen contents [48,49].

The aforementioned vegetation indices were used for identifying the crop spectral differences
between reference and century-old biochar plots throughout the growing season. First, WDVI was used
to generate a multispectral-based vegetation mask. A threshold of WDVI higher than 0.30 was used to
retrieve the so-called true canopy pixels because this threshold yielded the best results through the
visual inspection. This method was based on the approach adopted by Heidarian Dehkordi et al. [26].
Finally, the created WDVI-based mask was applied to the vegetation indices (Table 2) to remove the
soil pixels from the analysis.

Unsupervised k-means clustering [50] was applied to the multispectral OSAVI imagery in order to
generate a MSP crop health map with “good”, “moderate”, and “poor” classes (Figure 2). The k-means
algorithm identifies the k number of cluster centroids (i.e., 3 in the present study) within the image and
allocates each pixel to the nearest cluster by minimizing its Euclidean distance from the cluster centroid;
this iterative algorithm applies until a steady state with the optimized centroid positions is reached [50].
Moreover, principal component analysis [51] was performed on the red and green spectral channels
retrieved from the RGB imagery (Figure 2). The first component (PC1) of the principal component
analysis (PCA), which accounts for the maximum proportion of variance [52] from the red and green
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bands of the RGB orthomosaic (i.e. 99.06% in the present study), was used in the unsupervised k-means
clustering to create a RGB crop health map (Figure 2). More precisely, as recommended by Heidarian
Dehkordi et al. [26], the need to explore the impact of century-old biochar on crop health during the
senescence phase was addressed in this study.

Moreover, the use of multispectral vegetation indices for the remote sensing-based estimation of
crop yield at the field-scale, as suggested by [53], was evaluated in this study (Figure 2). In addition,
the impact of century-old biochar on the predicted multispectral crop yield was studied.

Table 2. List of the multispectral vegetation indices we have examined in this study.

Index Name Index
Acronym Formula Reference

normalized difference vegetation index NDVI (RNIR − Rred)/(RNIR + Rred) [54]

weighted difference vegetation index WDVI WDVI = RNIR − a.Rred
with a = (RNIR/Rred) of the soil [55]

normalized difference red edge index NDRE (RNIR − Rrededge)/(RNIR + Rrededge) [45]
optimized soil adjusted vegetation index OSAVI 1.16 (RNIR − Rred)/(RNIR + Rred + 0.16) [56]

chlorophyll vegetation index CVI (RNIR/Rgreen) × (Rred/Rgreen) [57]
enhanced vegetation index EVI 2.5 (RNIR − Rred)/(RNIR + 6 Rred − 7.5 Rblue + 1) [58]

chlorophyll index red CI-red (RNIR/Rred) − 1 Similar to [44]
simplified canopy chlorophyll content index s-CCCI NDRE/NDVI Similar to [49]

2.3. Statistical Analysis

Statistical paired and global t-tests [59] were used to determine whether the contrasts between
reference and century-old biochar plots were statistically significant. Several levels of significance
were considered to investigate the observed differences. Throughout the manuscript, asterisks *, **, ***,
and **** indicate the significance levels of p-values less than 0.05, 0.01, 0.001, and 0.0001, respectively.

Relationships between UAV-based derivatives and ground-based measurements were evaluated
using the statistical F-test. Subsequently, the significance of the obtained correlations was evaluated
through the non-parametric Kendall’s rank correlation tau (τ) test which is less sensitive to the small
statistical sample size, i.e., 11 experimental plots in the present study [60].

3. Results and Discussion

3.1. UAV-Based Crop Assessment

3.1.1. Canopy Cover

The temporal pattern of canopy cover shows vegetation development from 20 March to 29 April
(Figure 4). At the beginning of May the canopy cover was stable around the maximum until mid-May.
From this time onwards, canopy cover slightly decreased towards the end of the season since leaves
lost their greenness and began yellowing. The canopy cover clearly showed larger values in biochar
plots than the reference plots for most of the season (Figure 4). The Area under the curve (AUC) of the
canopy cover was significantly higher for the century-old biochar plots than the reference plots over
the season (p-value of 0.00007 and 0.00002 for paired and global t-tests, respectively). This finding is in
accordance with the positive impact of century-old biochar patches on the evolution of chicory canopy
cover in the same experimental farm [26]. Another study by Kerré et al. [6] also identified this positive
impact of century-old biochar from relict charcoal hearths on maize crop growth in Belgium.

The greater canopy cover development over the century-old biochar plots could be explained
by improved soil physical properties [6] such as water holding capacity (WHC), and soil porosity
and infiltration rates, leading to higher water content available to plants that, in turn, increased the
vegetation development in the biochar plots. Moreover, higher soil chemical properties (i.e., organic
carbon and nitrogen content) were observed over the same century-old biochar plots [26] characterized
by a positive relationship with the evolution of canopy cover in the 2018 growing season.
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Figure 4. (a) Temporal profiles of the canopy cover, derived from the RGB imagery, comparing the 11
century-old biochar plots with the corresponding reference plots throughout the season. (b) Box plot
visualization of the area under the curve of canopy cover between the century-old biochar and reference
plots (i.e., obtained from graphs displayed in sub-plot a for each site). The horizontal black line displays
the median value, surrounded by box edges representing the 25th and 75th percentiles. The black
circles show all of the experimental plots and the grey dark green line indicates the corresponding pairs
of a reference and century-old biochar plot.

In addition, the earlier germination of winter wheat plants over the century-old biochar plots
on the first acquisition (Figure 4) could be attributed to the dark background soils increasing the
soil temperature and subsequently also plant temperature, leading to a faster crop phenological
development. Hence, future research using high-resolution thermal imagery should investigate
the impact of century-old biochar on soil–plant water exchanges and their relationship with
crop development.

3.1.2. Plant Height

Figure 5 illustrates the outcome of the height analysis. Winter wheat height increased from
20 March to 29 April (Figure 5) which is in accordance with our earlier finding of canopy cover evolution
(Figure 4). The height estimates were stable in May and June around the maximum. Wheat height was
rather accurately derived with an accuracy (SD/mean) of 4.92 cm counting the entire dataset (Figure 5),
while the previous work by ten Harkel et al. [61] reached a higher accuracy of 3.4 cm for wheat height
estimates using UAV-based light detection and ranging (LiDAR) data. The usage of UAV-based LiDAR
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enables a proper selection of the top of the canopy pixels to be used in height computations [61]
increasing the modeling accuracy, which was not possible in the present study. The highest variation
in height estimates (Figure 5) was observed on 28 March (SD of 10.73 and 11.25 cm for the century-old
biochar and reference plots, respectively), which could be attributed to the erectophile and open
structure of winter wheat at the beginning of the season, lowering the number of true canopy pixels
used for height estimates. However, the observed variations were much lower during the maturity
phase (with a maximum SD of 5.45 cm on 13 May) because wheat canopies are rather dense, increasing
the number of true canopy pixels in height computations.
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Figure 5. Comparison of the plant height of all the 11 century-old biochar plots (red) versus the 11
reference plots for each acquisition date. The black circle and cross represent the mean and median
height, respectively. The error-bar presents the corresponding standard deviation. The bottom and top
black pluses (+) indicate the minimum and maximum height, respectively. Outside of the plot, asterisks
*, **, ***, and **** reveal the statistical levels of significance; the acronym NS stands for non-significant.

The impact of century-old biochar on winter wheat height considering all of the 11 biochar plots
versus the reference plots is shown in Figure 5 for each acquisition date. The mean height (mean
value of the 11 plots) was higher in the century-old biochar plots than in the reference plots for each
acquisition date except 28 March (Figure 5). It is worth noting that the observed mean height differences
between reference and century-old biochar plots were statistically non-significant for all the monitoring
dates (Figure 5). This slight promotion of wheat height as a consequence of biochar presence was
previously reported for lettuce–cabbage–lettuce [62] and oat [63] fields. The greater plant height over
the century-old biochar patches could be attributed to the higher soil organic carbon and nitrogen
contents as previously found by Schulz et al. [63].

Figure 6 shows the outcome of the height analysis for each experimental plot. Most of the
experimental plots showed greater height values in century-old biochar plots compared to their
corresponding reference plots throughout the season, except for plots 8 and 11 where an inverse trend
was observed (Figure 6). This can be explained by the location of the experimental plots 8 and 11 which
were situated in a part of the field with a high soil moisture content (images not shown). The observed
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difference of plant height between the century-old biochar plots and the corresponding reference plots
at each acquisition date was significant for all of the experimental plots (Figure 6) except for plots 5, 8,
and 10 on 28 March and plot 10 on 16 April. The observed height differences between reference and
century-old biochar plots were significant for most of the experimental pairs separately (as shown
in Figure 6), whereas the differences were not of particular concern when counting the entire dataset
(Figure 5). The latter could be explained by the within-field spatial variability of plant height that
accounts for the spatial variation in field topographic derivatives such as elevation, groundwater
flow, or surface wetness. Validation with the ground-based measurements of plant height should be
performed in future studies to explore the robustness of the proposed plant height derivation method
in this research.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 24 
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Figure 6. Box plot visualization of winter wheat height development for the 11 experimental pairs
of century-old biochar versus reference plots. The horizontal black line displays the median value,
surrounded by box edges representing the 25th and 75th percentiles. Outside of the plot, asterisks *, **,
***, and **** reveal the statistical levels of significance and the acronym NS stands for non-significant.
The bottom magnified window displays an example of a height comparison between century-old
biochar and reference plot 5 (i.e., on 16 April 2019).
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3.1.3. Vegetation Indices

Figure 7 illustrates the temporal profiles for OSAVI. There is a slight vegetation development
from 20 March until the end of that month. The OSAVI then increased gradually until the end of
April and remained constant at the maximum towards mid-May. From this time onwards, the OSAVI
started to decrease as the leaves started to lose their greenness. The overall OSAVI pattern (Figure 7) is
completely in line with the trend observed from the canopy cover evolution in Figure 4.
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Figure 7. Comparison of the optimized soil adjusted vegetation index (OSAVI) of all of the 11
century-old biochar plots (red) versus the 11 reference plots for each acquisition date. The black
circle and cross represent the mean and median OSAVI, respectively. The error-bar represents the
corresponding standard deviation. The bottom and top black pluses (+) indicate the minimum and
maximum OSAVI, respectively. Outside of the plot, asterisks *, **, ***, and **** reveal the statistical
levels of significance and the acronym NS stands for non-significant.

The impact of century-old biochar on OSAVI considering all of the 11 century-old biochar plots
versus the reference plots for each acquisition date is shown in Figure 7. The mean OSAVI (mean value
of the 11 plots) was higher in the century-old biochar plots than the reference plots at each acquisition
date except on 24 June when the mean OSAVI was 0.73 for both reference and century-old biochar
plots (Figure 7). This finding is in accordance with the decreased plant greenness at the end of growing
season for chicory in century-old biochar patches of the same experimental farm [26]. The observed
OSAVI difference was non-significant between the reference and century-old biochar plots towards the
end of the season, while it was highly significant from the beginning of the season until mid-April
(Figure 7). This could be partially explained by the sparseness of the wheat canopies at the beginning
of the season, increasing the interactions between plants and dark background soils in the century-old
biochar plots.

Contrast between reference and century-old biochar plots for each vegetation index is presented
in Table 3 for all the acquisition dates. Century-old biochar significantly affected the crop spectral
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information derived from NDVI, NDRE, OSAVI, CI-red, and s-CCCI on 20 and 28 March. However,
WDVI, CVI, and EVI did not exhibit significant differences in crop spectral status between reference and
century-old biochar plots during March. All of the examined vegetation indices showed a significant
impact of century-old biochar on crop spectral status on 16 April except WDVI, EVI, and s-CCCI
(Table 3). On 29 April only NDVI, NDRE, and CI-red, and on 13 May only NDVI and CI-red, exhibited
a significant impact of century-old biochar on crop spectral status. All of the examined vegetation
indices exhibited non-significant differences between reference and century-old biochar plots on
24 June (Table 3). This finding is in accordance with [26] who reported no significant difference of the
multispectral vegetation indices between the century-old biochar and reference plots for chicory crop
at the beginning of July.

Table 3. Mean vegetation index values over the study area comparing the century-old biochar and
reference plots during the growing season of 2019. The statistical significance of the difference is
expressed as the p-value of the paired t-test. Next to the p-values asterisks, *, **, ***, and **** reveal the
statistical levels of significance and acronym NS stands for non-significant.

Index

Date

03/20 03/28 04/16 04/29 05/13 06/24

NDVI

Biochar 0.43 ± 0.02 0.72 ± 0.02 0.88 ± 0.02 0.93 ± 0.01 0.95 ± 0.01 0.86 ± 0.01

Reference 0.64 ± 0.01 0.67 ± 0.01 0.85 ± 0.02 0.92 ± 0.01 0.95 ± 0.01 0.86 ± 0.01

p-value 0.0000 **** 0.0000 **** 0.0000 **** 0.0175 * 0.0126 * 0.3863 NS

WDVI

Biochar 0.16 ± 0.00 0.18 ± 0.01 0.34 ± 0.02 0.44 ± 0.03 0.43 ± 0.04 0.35 ± 0.02

Reference 0.16 ± 0.00 0.18 ± 0.01 0.35 ± 0.02 0.43 ± 0.02 0.42 ± 0.02 0.35 ± 0.01

p-value 0.5290 NS 0.9388 NS 0.6326 NS 0.8048 NS 0.1820 NS 0.5469 NS

NDRE

Biochar 0.30 ± 0.02 0.30 ± 0.02 0.43 ± 0.03 0.55 ± 0.04 0.63 ± 0.03 0.55 ± 0.02

Reference 0.27 ± 0.01 0.27 ± 0.01 0.42 ± 0.02 0.53 ± 0.02 0.62 ± 0.02 0.54 ± 0.01

p-value 0.0002 *** 0.0000 **** 0.0050 ** 0.0496 * 0.0563 NS 0.3518 NS

OSAVI

Biochar 0.51 ± 0.01 0.54 ± 0.01 0.74 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.73 ± 0.02

Reference 0.50 ± 0.01 0.53 ± 0.01 0.73 ± 0.01 0.81 ± 0.01 0.81 ± 0.01 0.73 ± 0.01

p-value 0.0000 **** 0.0000 **** 0.0046 ** 0.2313 NS 0.0948 NS 1.0000 NS

CVI

Biochar 2.27 ± 0.21 2.03 ± 0.14 2.47 ± 0.11 2.74 ± 0.29 4.47 ± 0.34 5.40 ± 0.28

Reference 2.39 ± 0.11 2.20 ± 0.06 2.77 ± 0.11 2.84 ± 0.16 4.61 ± 0.14 5.33 ± 0.12

p-value 0.0520 NS 0.0042 ** 0.0000 **** 0.0755 NS 0.4628 NS 0.2260 NS

EVI

Biochar 0.38 ± 0.01 0.42 ± 0.01 0.65 ± 0.03 0.79 ± 0.04 0.79 ± 0.04 0.65 ± 0.03

Reference 0.38 ± 0.01 0.42 ± 0.01 0.65 ± 0.03 0.78 ± 0.03 0.78 ± 0.02 0.66 ± 0.02

p-value 0.66374 NS 0.89354 NS 0.75669 NS 0.68177 NS 0.25339 NS 0.59717 NS

CI-red

Biochar 4.55 ± 0.60 5.15 ± 0.48 14.47 ± 3.20 28.13 ± 5.66 39.79 ± 7.11 12.76 ± 1.14

Reference 3.53 ± 0.20 4.05 ± 0.19 11.11 ± 1.66 23.03 ± 2.36 36.65 ± 4.08 12.14 ± 0.97

p-value 0.00022 *** 0.0000 **** 0.00040 *** 0.01113 * 0.00726 ** 0.39363 NS

s-CCCI

Biochar 0.43 ± 0.02 0.42 ± 0.01 0.49 ± 0.02 0.59 ± 0.03 0.67 ± 0.03 0.63 ± 0.01

Reference 0.41 ± 0.01 0.40 ± 0.01 0.48 ± 0.01 0.58 ± 0.01 0.66 ± 0.01 0.63 ± 0.01

p-value 0.01007 * 0.00324 ** 0.17634 NS 0.08249 NS 0.08488 NS 0.32757 NS

It is worth mentioning that the WDVI and the EVI performed the worst in discriminating spectral
difference between century-old biochar and reference plots throughout the season. The latter could be
attributed to the use of the blue band in EVI’s computation which is not of particular importance in the
vegetation spectral signature [64].
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Figure 8 shows the outcome of the OSAVI analysis for each experimental plot. Most of the
experimental plots exhibited higher OSAVI values in century-old biochar plots compared to their
adjacent reference plots for most of the season (Figure 8). Graphs of the other examined multispectral
vegetation indices (Table 2) are not presented here. No clear trend was observed in terms of the OSAVI
difference between reference and century-old biochar plots (Figure 8). The contrast between reference
and century-old biochar plots was highly significant at several acquisitions (e.g., for plot 1 on 29 April),
whereas some acquisitions exhibited a non-significant difference (e.g., plot 1 on 28 March).
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Figure 8. Box plot visualization of optimized soil adjusted vegetation index for the 11 experimental
pairs of century-old biochar versus reference plots over the growing season of 2019. The horizontal black
line displays the median value, surrounded by box edges representing the 25th and 75th percentiles.
Outside of the plot, asterisks *, **, ***, and **** reveal the statistical levels of significance and the acronym
NS stands for non-significant. No spectral information is available for reference plot 1 on 20 March
because of a flight planning constraint.

3.1.4. Crop Health

Both canopy cover and OSAVI were characterized by a decreasing trend on 24 June (Figures 4
and 7, respectively). The impact of century-old biochar on crop health during the senescence phase is
presented in Figure 9. In addition, Figure 9 presents the two different crop health maps, obtained from
the two different sensors, including the associated general methodological workflows as represented in
Figure 9a,b for the multispectral sensor and Figure 9c,d for the RGB sensor. An unsupervised k-means
clustered crop health map of OSAVI including “good”, “moderate”, and “poor” classes, corresponding
to 24 June, is presented in Figure 9b. In addition, an unsupervised k-means clustered crop health
map derived from the first component (PC1) from the principal component analysis of the red and
green bands of the RGB orthomosaic image corresponding to 24 June is shown in Figure 9d, clustering
the study area into “good”, “moderate”, and “poor” classes. It is worth mentioning that 99.06% of
the observed variance was explained by the first component (PC1) and only 0.94% of the variance
retained by the second component (PC2) (Figure 9c). Moreover, there was a positive significant
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correlation between the red and green bands (Kendall’s τ coefficient = 0.89 and p-value(Kendall) < 0.0001).
The experimental field was completely covered by vegetation on 24 June enabling a proper PCA
analysis over the vegetation pixels, without any soil background effects, to retrieve an accurate crop
health map.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 24 
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Figure 9. Data from 24 June 2019: (a) Map of optimized soil adjusted vegetation index (OSAVI).
(b) Crop health map derived from the k-means clustering of OSAVI; the magnified window represents
an example of an area characterized by poor crop health in the study field. (c) RGB orthomosaic image
(left), the green and red spectral responses of the visible RGB orthomosaic image (middle), and the first
component (PC1) raster of the principal component analysis (PCA) of the green and red bands (right).
(d) Crop health map derived based on the k-means clustering of the PC1 raster of the PCA of green and
red spectral channels.

Categorical classification of the experimental plots into the crop health clusters is presented in
Table 4 for both of the multispectral and RGB crop health maps (Figure 9). Based on the multispectral
crop health map, the average health was 42.5% for the century-old biochar plots compared to 39.4% in
the reference plots. Similarly, the average health based on the RGB crop health map was higher for the
century-old biochar plots (54.6%) than the reference plots (51.6%). This finding shows that there is
only a small positive impact of century-old biochar on crop health status during the senescence phase.
The present study paves the way for further research focusing on the effects of biochar on crop health
during the senescence phase.
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Table 4. Categorical classification of the crop health into good, moderate, and poor classes comparing
the century-old biochar versus reference plots. The classification is based on the multispectral (MSP)
crop health (left) and the first component (PC1) of the principal component analysis (PCA) of the green
and red spectral channels of the RGB orthomosaic image (right).

Plot ID
MSP Crop Health RGB Crop Health

Biochar Reference Biochar Reference

1 Good Good Moderate Moderate
2 Moderate Moderate Good Good
3 Moderate Good Good Good
4 Moderate Moderate Good Moderate
5 Moderate Moderate Good Moderate
6 Good Poor Good Good
7 Moderate Moderate Good Good
8 Poor Moderate Poor Moderate
9 Good Good Good Good

10 Moderate Poor Good Good
11 Good Good Moderate Moderate

Average health 42.5% 39.4% 54.6% 51.6%

The cross-tabulation analysis of the computed crop health maps is presented in Table 5 comparing
the number of all of the pixels within the study area classified into good, moderate, and poor health
classes. The result yielded a clustering agreement of 74.82% (Table 5). Out of a total of 564,760 pixels
across the entire study area, 36.06% were classified as good, 31.54% as moderate, and 7.21% as poor by
both methods (Table 5). Ground-based optical imagery, such as from the Fabry-Perot interferometer
(FPI) camera system [39], is an essential step for future research focusing on the evaluation of crop
health because of its improved spatial and spectral resolutions, enabling an accurate monitoring of the
development of various plant diseases at the leaf level.

Table 5. Cross-tabulation table of the computed MSP and RGB crop health maps comparing the
clustering accuracy of all of the pixels within the study area into good, moderate, and poor classes.

Clusters
Pixel Class Types Determined from MSP Crop Health

Good Moderate Poor Total

Pixel class types determined
from RGB crop health

Good 203,674 39,326 15,756 258,756
Moderate 38,757 178,178 11,568 228,503

Poor 18,997 17,784 40,720 77,501
Total 261,428 235,288 68,044 564,760

Clustering agreement 74.82%

3.2. Ground-Based Crop Evaluation and Harvested Crop Yield

Ground-based measurements of crop traits are shown in Figure 10. Estimates of the general
crop growth stages taken on 28 May 2019, scaled according to the BBCH, reported a more advanced
crop stage for the century-old biochar plots (median BBCH = 43) compared to the reference plots
(median BBCH of 40.5) as shown in Figure 10a. The observed difference in crop growth stages (BBCH)
was statistically significant (p-value = 0.01265) between the reference and century-old biochar plots.
This could be explained by the dark color of the century-old biochar plots, resulting in higher soil and
plant temperatures stimulating plant development.
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Figure 10. Impact of century-old biochar on ground-based crop traits including crop growth stages,
expressed as the biologische bundesanstalt, bundessortenamt and chemical industry (BBCH) scale,
on 28 May 2019 (a), and yield on 20 July 2019 (b). The horizontal black line displays the median
value, surrounded by box edges representing the 25th and 75th percentiles. The black circles show
the experimental plots of each pair and the dark green lines relate the corresponding reference and
century-old biochar plots of each pair.

The mean harvested crop yield (taken on 20 July 2019) value was 8.69 ± 0.69 t.ha−1 for the
century-old biochar plots compared to 8.84 ± 0.66 t.ha−1 in the reference plots; the observed contrast
was not significant with a p-value of 0.42489 (Figure 10b). This finding contrasts with the positive
promotion of the aboveground productivity for long-term biochar enriched soils [6,23]. This can be
explained by the fact that our study area is situated in a quite rich soil type and hence the influence of
century-old biochar on the harvested crop yield is limited. However, other studies considering poorer
soil types have shown that the difference in yield due to the long-term biochar enrichment is more
substantial [6].

3.3. UAV-Based Yield Map Generation

Relationships between harvested crop yields on 20 July (Section 3.2) and the UAV-based
multispectral vegetation indices on the last acquisition date (i.e., 24 June which was the closest
to the harvest date) are presented in Table 6. The s-CCCI, NDRE, NDVI, and CI-red exhibited a
good relationship with the harvested crop yield as shown in Table 6. The obtained relationships
were statistically significant with p-value(F-test) of 0.002, 0.002, 0.008, and 0.008 for s-CCCI, NDRE,
NDVI, and CI-red, respectively. The aforementioned indices showed a strong correlation with the
harvested crop yield with Kendall’s τ coefficient of 0.60, 0.61, 0.54, and 0.54 for the s-CCCI, NDRE,
NDVI, and CI-red, respectively (Table 6). The obtained correlations were statistically significant with
p-value(Kendall) of 0.001, 0.0008, 0.004, and 0.004 for the s-CCCI, NDRE, NDVI, and CI-red, respectively
(Table 6) which is in line with the previous finding of Das and Singh (2012).
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Table 6. Results of correlation analysis of the multispectral vegetation indices, contained in Table 2,
on 24 June and their relationships to the harvested crop yield on 20 July. The coefficient of determination,
p-value of the statistical F-test, non-parametric Kendall’s rank correlation tau, and its significance are
expressed as R2, p-value(F-test), τ, p-value(Kendall), respectively.

Index R2 p-Value(F-test) τ p-Value(Kendall)

NDVI 0.42 0.008 0.54 0.004
WDVI 0.04 0.424 0.33 0.092
NDRE 0.50 0.002 0.61 0.0008
OSAVI 0.13 0.172 0.44 0.020

CVI 0.007 0.763 0.16 0.435
EVI 0.08 0.289 0.39 0.460

CI-red 0.40 0.008 0.54 0.004
s-CCCI 0.52 0.002 0.60 0.001

The predicted UAV-based multispectral crop yield map based on the identified linear regression
fit between the s-CCCI and crop harvested yield, which reported the strongest relationship (Table 6),
is shown in Figure 11a. The result of the predicted UAV-based MSP crop yield is shown in Figure 11b.
The western part of the experimental field clearly shows lower yield values. However, the eastern part
of the field exhibited rather high yield values (Figure 11b). The impact of century-old biochar on the
predicted UAV-based MSP crop yield is shown in Figure 11c. The mean predicted MSP crop yield (mean
value of the 11 plots) was not statistically different (p-value of 0.437) between the century-old biochar
plots (8.82 ± 0.39 t.ha−1) and the reference plots (8.74 ± 0.42 t.ha−1) as shown in Figure 11c. This finding
balances the previous works reporting a higher aboveground productivity as a consequence of biochar
presence [6,23]. However, our results showed a highly significant difference (p < 0.0001) of the predicted
MSP crop yield between the good and moderate classes derived from the MSP sensor (Figure 11d).
Similarly, the observed difference of the predicted MSP crop yield was highly significant (p < 0.0001)
between the moderate and poor classes based on the MSP sensor (Figure 9d). The mean predicted MSP
crop yields were 8.96 ± 0.85, 8.50 ± 0.79, and 7.84 ± 0.83 t.ha−1 for the good, moderate, and poor classes
derived from the MSP sensor (Figure 11d). In addition, the observed difference of the predicted MSP
crop yield was highly significant (p < 0.0001) between the good and moderate classes, and between the
moderate and poor classes, derived from the RGB sensor (Figure 11e). The mean predicted MSP crop
yields were 8.76 ± 0.91, 8.40 ± 0.86, and 7.54 ± 0.89 t.ha−1 for the good, moderate, and poor classes
based on the RGB sensor (Figure 11e). This result indicates that other factors (such as fertilization
inputs, agricultural practices, and inherent possible pedological variations) are of higher importance
than the presence of century-old biochar in determining the crop health and yield variability at the
within-field scale.

This paper provides a proof of concept of using high-resolution UAV images in assessing the
impacts of century-old biochar on crop performance at the canopy scale. As such, the results of this
study reveal important findings regarding the impact of century-old biochar on crop health and yield
(in particular over the senescence period). However, since the approach described in this paper is only
suitable for small-sized fields of a few hectares, further research should consider extending this analysis
across a wider area, including a range of crops under contrasting weather conditions, using available
fine resolution optical (e.g., Sentinel-2) and radar (e.g., Sentinel-1 Synthetic-aperture radar (SAR))
satellite images.
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Figure 11. (a) Relationship between the multispectral (MSP) simplified canopy chlorophyll content
index (s-CCCI) on 24 June and the harvested crop yield on 20 July. The black circles represent the
harvested samples and the brown line indicates the linear regression fit. (b) Map of the predicted MSP
crop yield computed from the relationship between the MSP s-CCCI and the harvested crop yield. (c) A
comparison of the predicted MSP crop yield of all of the 11 century-old biochar plots (red) versus the 11
reference plots. The black circle and cross represent the mean and median MSP crop yield, respectively.
The error-bar represents the corresponding standard deviation. The bottom and top black pluses (+)
indicate the minimum and maximum MSP crop yield, respectively. A comparison of the predicted MSP
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crop yield of the good (green), moderate (yellow), and poor (red) crop health classes derived from the
MSP (d) and RGB (e) sensors. The black circle and cross represent the mean and median MSP crop
yield, respectively. The error-bar represents the corresponding standard deviation. The bottom and top
black pluses (+) indicate the minimum and maximum MSP crop yield, respectively. Outside of the
plot, asterisks *, **, ***, and **** reveal the statistical levels of significance and the acronym NS stands
for non-significant.

4. Conclusions

This paper explored the potential of using high-resolution UAV-based imagery to assess the
impacts of century-old biochar on winter wheat crop performance. The combination of crop growth and
health monitoring, through RGB and multispectral images, provided new insights into the alteration
in crop dynamics at the canopy level associated with century-old biochar presence. Based on the
RGB data, a significant positive impact (p-value = 0.00007) of century-old biochar on the evolution
of winter wheat canopy cover was highlighted. Moreover, century-old biochar was found to slightly
increase wheat height throughout the growing season. Multispectral OSAVI imagery underlined a
significant positive effect on crop performance as a consequence of century-old biochar only at the
beginning of the season (p-values < 0.01), although the impact was not remarkable at the end of the
monitoring period.

Century-old biochar showed a significant positive impact on winter wheat crop growth stages
(p-value of 0.01265). However, the effect of century-old biochar on harvested crop yield was not
significant. Harvested crop yield exhibited a significant correlation with the multispectral vegetation
indices, particularly s-CCCI and NDRE (p-value(Kendall) of 0.001 and 0.0008, respectively). The predicted
UAV-based multispectral crop yield was not significantly different between the century-old biochar
plots compared to the reference plots. Hence, other factors, such as inherent pedological variations
and agricultural practices, appear to be of higher importance than the presence of century-old biochar
in determining the crop health and crop yield variability at the within-field scale.
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