S. Malghani, G. Gleixner, and S. E. Trumbore, Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions, Soil Biology and Biochemistry, vol.62, pp.137-146, 2013.

D. Trupiano, C. Cocozza, S. Baronti, C. Amendola, F. P. Vaccari et al., The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativaL.) Growth, Soil Properties, and Soil Microbial Activity and Abundance, International Journal of Agronomy, vol.2017, pp.1-12, 2017.

M. Yamato, Y. Okimori, I. F. Wibowo, S. Anshori, and M. Ogawa, Effects of the application of charred bark ofAcacia mangiumon the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia, Soil Science and Plant Nutrition, vol.52, issue.4, pp.489-495, 2006.

R. C. Estoque, Erratum: Estoque, R. C. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020, 12, 1770, Remote Sensing, vol.12, issue.16, p.2512, 2020.

L. Montanarella and E. Lugato, The Application of Biochar in the EU: Challenges and Opportunities, Agronomy, vol.3, issue.2, pp.462-473, 2013.

C. E. Stewart, J. Zheng, J. Botte, and M. F. Cotrufo, Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils, GCB Bioenergy, vol.5, issue.2, pp.153-164, 2012.

B. Kerré, B. Willaert, Y. Cornelis, and E. Smolders, Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability, European Journal of Agronomy, vol.91, pp.10-15, 2017.

J. Lehmann, J. Pereira-da-silva-jr., C. Steiner, T. Nehls, W. Zech et al., Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments, Plant and Soil, vol.249, issue.2, pp.343-357, 2003.

L. A. Biederman and W. S. Harpole, Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis, GCB Bioenergy, vol.5, issue.2, pp.202-214, 2012.

B. Glaser, J. Lehmann, and W. Zech, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review, Biology and Fertility of Soils, vol.35, issue.4, pp.219-230, 2002.

S. Jeffery, M. B. Meinders, C. R. Stoof, T. M. Bezemer, T. F. Van-de-voorde et al., Biochar application does not improve the soil hydrological function of a sandy soil, Geoderma, vol.251-252, pp.47-54, 2015.

J. M. De-la-rosa, M. Paneque, A. Z. Miller, and H. Knicker, Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79days, Science of The Total Environment, vol.499, pp.175-184, 2014.

M. Gray, M. G. Johnson, M. I. Dragila, and M. Kleber, Water uptake in biochars: The roles of porosity and hydrophobicity, Biomass and Bioenergy, vol.61, pp.196-205, 2014.

M. Hardie, B. Clothier, S. Bound, G. Oliver, and D. Close, Does biochar influence soil physical properties and soil water availability?, Plant and Soil, vol.376, issue.1-2, pp.347-361, 2013.

X. Liu, A. Zhang, C. Ji, S. Joseph, R. Bian et al., Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data, Plant Soil, vol.373, pp.583-594, 2013.

B. Glaser, K. Wiedner, S. Seelig, H. P. Schmidt, and H. Gerber, Biochar organic fertilizers from natural resources as substitute for mineral fertilizers, Agronomy for Sustainable Development, vol.35, issue.2, pp.667-678, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01284285

J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday et al., Biochar effects on soil biota ? A review, Soil Biology and Biochemistry, vol.43, issue.9, pp.1812-1836, 2011.

J. Major, M. Rondon, D. Molina, S. J. Riha, and J. Lehmann, Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol, Plant and Soil, vol.333, issue.1-2, pp.117-128, 2010.

B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman et al., Black Carbon Increases Cation Exchange Capacity in Soils, Soil Science Society of America Journal, vol.70, issue.5, pp.1719-1730, 2006.

A. Crane-droesch, S. Abiven, S. Jeffery, and M. S. Torn, Heterogeneous global crop yield response to biochar: a meta-regression analysis, Environmental Research Letters, vol.8, issue.4, p.044049, 2013.

S. Jeffery, D. Abalos, M. Prodana, A. C. Bastos, J. W. Van-groenigen et al., Biochar boosts tropical but not temperate crop yields, Environmental Research Letters, vol.12, issue.5, p.053001, 2017.

D. Güereña, J. Lehmann, K. Hanley, A. Enders, C. Hyland et al., Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system, Plant and Soil, vol.365, issue.1-2, pp.239-254, 2012.

L. Van-zwieten, S. Kimber, S. Morris, K. Y. Chan, A. Downie et al., Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility, Plant and Soil, vol.327, issue.1-2, pp.235-246, 2009.

M. C. Hernandez-soriano, B. Kerré, P. Goos, B. Hardy, J. Dufey et al., Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal, GCB Bioenergy, vol.8, issue.2, pp.371-381, 2015.

G. Mastrolonardo, C. Calderaro, C. Cocozza, B. Hardy, J. Dufey et al., Long-Term Effect of Charcoal Accumulation in Hearth Soils on Tree Growth and Nutrient Cycling, Frontiers in Environmental Science, vol.7, pp.1-15, 2019.

C. J. Mikan and M. D. Abrams, Mechanisms inhibiting the forest development of historic charcoal hearths in southeastern Pennsylvania, Canadian Journal of Forest Research, vol.26, issue.11, pp.1893-1898, 1996.

R. C. Estoque, Erratum: Estoque, R. C. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020, 12, 1770, Remote Sensing, vol.12, issue.16, p.2512, 2020.

R. Heidarian-dehkordi, A. Denis, J. Fouche, V. Burgeon, J. T. Cornelis et al., Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery, International Journal of Applied Earth Observation and Geoinformation, vol.91, p.102147, 2020.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. Mccabe, CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture, Remote Sensing, vol.10, issue.12, p.1867, 2018.

J. Segarra, M. L. Buchaillot, J. L. Araus, and S. C. Kefauver, Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications, Agronomy, vol.10, issue.5, p.641, 2020.

A. Matese, P. Toscano, S. F. Di-gennaro, L. Genesio, F. P. Vaccari et al., Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture, Remote Sensing, vol.7, issue.3, pp.2971-2990, 2015.

J. A. Berni, P. J. Zarco-tejada, G. Sepulcre-cantó, E. Fereres, and F. Villalobos, Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery, Remote Sensing of Environment, vol.113, issue.11, pp.2380-2388, 2009.

J. Gago, C. Douthe, R. E. Coopman, P. P. Gallego, M. Ribas-carbo et al., UAVs challenge to assess water stress for sustainable agriculture, Agricultural Water Management, vol.153, pp.9-19, 2015.

T. Xia, W. P. Kustas, M. C. Anderson, J. G. Alfieri, F. Gao et al., Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes, Hydrology and Earth System Sciences, vol.20, issue.4, pp.1523-1545, 2016.

P. P. Roosjen, J. M. Suomalainen, H. M. Bartholomeus, L. Kooistra, and J. G. Clevers, Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle, Remote Sensing, vol.9, issue.5, p.417, 2017.

C. Zhang and J. M. Kovacs, The application of small unmanned aerial systems for precision agriculture: a review, Precision Agriculture, vol.13, issue.6, pp.693-712, 2012.

L. Yuan, Y. Huang, R. W. Loraamm, C. Nie, J. Wang et al., Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects, Field Crops Research, vol.156, pp.199-207, 2014.

R. Schils, J. E. Olesen, K. C. Kersebaum, B. Rijk, M. Oberforster et al., Cereal yield gaps across Europe, European Journal of Agronomy, vol.101, pp.109-120, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625301

J. Su, C. Liu, M. Coombes, X. Hu, C. Wang et al., Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery, Computers and Electronics in Agriculture, vol.155, pp.157-166, 2018.

J. Franke, G. Menz, E. Oerke, and U. Rascher, Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants, Remote Sensing for Agriculture, Ecosystems, and Hydrology VII, vol.SPIE, p.59761, 2005.

M. H. Franceschini, H. Bartholomeus, D. F. Van-apeldoorn, J. Suomalainen, and L. Kooistra, Feasibility of Unmanned Aerial Vehicle Optical Imagery for Early Detection and Severity Assessment of Late Blight in Potato, Remote Sensing, vol.11, issue.3, p.224, 2019.

S. Baxter, World Reference Base for Soil Resources. World Soil Resources Report 103. Rome: Food and Agriculture Organization of the United Nations (2006), pp. 132, US$22.00 (paperback). ISBN 92-5-10511-4, Experimental Agriculture, vol.43, issue.2, pp.264-264, 2007.

A. Witzenberger and P. Lancashire, Phenological growth stages and BBCH-identification keys of cereals. In Growth Stages Mono-and Dicotyledonous Plants BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry, pp.14-18, 2001.

J. G. Clevers, H. J. Van-leeuwen, R. Sensing, and W. Verhoef, Commission VII: Interpretation of photographic and remote sensed data, ISPRS Journal of Photogrammetry and Remote Sensing, vol.48, issue.2, pp.45-48, 1993.

B. A. Bouman, H. W. Van-kasteren, and D. Uenk, Standard relations to estimate ground cover and LAI of agricultural crops from reflectance measurements, European Journal of Agronomy, vol.1, issue.4, pp.249-262, 1992.

J. G. Clevers, L. Kooistra, and M. M. Van-den-brande, Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop, Remote Sensing, vol.9, issue.5, p.405, 2017.

B. Siegmann, T. Jarmer, T. Selige, H. Lilienthal, N. Richter et al., Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, pp.1-2, 2012.

L. Kooistra and J. G. Clevers, Estimating potato leaf chlorophyll content using ratio vegetation indices, Remote Sensing Letters, vol.7, issue.6, pp.611-620, 2016.

X. Gao, A. R. Huete, W. Ni, and T. Miura, Optical?Biophysical Relationships of Vegetation Spectra without Background Contamination, Remote Sensing of Environment, vol.74, issue.3, pp.609-620, 2000.

A. A. Gitelson, Y. Gritz-?, and M. N. Merzlyak, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, Journal of Plant Physiology, vol.160, issue.3, pp.271-282, 2003.

G. J. Fitzgerald, D. Rodriguez, L. K. Christensen, R. Belford, V. O. Sadras et al., Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments, Precis. Agric, vol.7, pp.233-248, 2006.

K. Venkateswaran, N. Kasthuri, K. Balakrishnan, and K. Prakash, Performance Analysis of K-Means Clustering For Remotely Sensed Images, International Journal of Computer Applications, vol.84, issue.12, pp.23-27, 2013.

K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.2, issue.11, pp.559-572, 1901.

M. Zhang, X. Liu, and M. O'neill, Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses, International Journal of Remote Sensing, vol.23, issue.6, pp.1095-1107, 2002.

S. Das and T. P. Singh, Correlation analysis between biomass and spectral vegetation indices of forest ecosystem, Int. J. Eng. Res. Technol, vol.1, pp.1-13, 2012.

J. W. Rouse, . Jr, R. H. Hass, J. A. Schell, D. W. Deering et al., Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, 1974.

J. G. Clevers, Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture, Remote Sensing of Environment, vol.29, issue.1, pp.25-37, 1989.

G. Rondeaux, M. Steven, and F. Baret, Optimization of soil-adjusted vegetation indices, Remote Sensing of Environment, vol.55, issue.2, pp.95-107, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02696895

M. Vincini, E. Frazzi, and P. D?alessio, A broad-band leaf chlorophyll vegetation index at the canopy scale, Precision Agriculture, vol.9, issue.5, pp.303-319, 2008.

A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao et al., Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, vol.83, issue.1-2, pp.195-213, 2002.

T. K. Kim, T test as a parametric statistic, Korean Journal of Anesthesiology, vol.68, issue.6, p.540, 2015.

A. M. Kendall, A NEW MEASURE OF RANK CORRELATION, Biometrika, vol.30, issue.1-2, pp.81-93, 1938.

J. Ten-harkel, H. Bartholomeus, and L. Kooistra, Biomass and Crop Height Estimation of Different Crops Using UAV-Based Lidar, Remote Sensing, vol.12, issue.1, p.17, 2019.

S. Carter, S. Shackley, S. Sohi, T. Suy, and S. Haefele, The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis), Agronomy, vol.3, issue.2, pp.404-418, 2013.

H. Schulz, G. Dunst, and B. Glaser, Positive effects of composted biochar on plant growth and soil fertility, Agronomy for Sustainable Development, vol.33, issue.4, pp.817-827, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01201399

T. E. Parece and J. B. Campbell, Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview, The Handbook of Environmental Chemistry, vol.33, pp.1-32, 2015.