S. E. Chadburn, An observation-based constraint on permafrost loss as a function of global warming, Nat. Clim. Change, vol.7, pp.340-344, 2017.

M. R. Turetsky, Carbon release through abrupt permafrost thaw, Nat. Geosci, vol.13, pp.138-143, 2020.

G. Hugelius, Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, vol.11, pp.6573-6593, 2014.

A. D. Mcguire, An analysis of the carbon balance of the Arctic Basin from, Tellus B, vol.62, pp.455-474, 1997.

T. W. Drake, K. P. Wickland, R. G. Spencer, D. M. Mcknight, and R. G. Striegl, Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw, Proc. Natl Acad. Sci. USA, vol.112, pp.13946-13951, 2015.

K. P. Wickland, Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska, Environ. Res. Lett, vol.13, p.65011, 2018.

B. P. Selvam, Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat, Sci. Rep, vol.7, p.45811, 2017.

C. P. Ward and R. M. Cory, Chemical composition of dissolved organic matter draining permafrost soils, Geochim. Et. Cosmochim. Acta, vol.167, pp.63-79, 2015.

D. B. Metcalfe, Patchy field sampling biases understanding of climate change impacts across the Arctic, Nat. Ecol. Evol, vol.2, pp.1443-1448, 2018.

P. J. Mann, Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun, vol.6, p.7856, 2015.

T. K. Harms, B. W. Abbott, and J. B. Jones, Thermo-erosion gullies increase nitrogen available for hydrologic export, Biogeochemistry, vol.117, pp.299-311, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01118264

F. Keuper, Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deeprooting subarctic peatland species, Glob. Change Biol, vol.23, pp.4257-4266, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02619005

L. Gough, Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP, Oecologia, vol.182, pp.653-665, 2016.

L. Chen, Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency, Nat. Commun, vol.9, p.3951, 2018.

M. C. Mack, E. A. Schuur, M. S. Bret-harte, G. R. Shaver, and F. S. Chapin, Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization, Nature, vol.431, pp.440-443, 2004.

B. Marschner and K. Kalbitz, Controls of bioavailability and biodegradability of dissolved organic matter in soils, Geoderma, vol.113, pp.211-235, 2003.

K. Kalbitz, D. Schwesig, J. Rethemeyer, and E. Matzner, Stabilization of dissolved organic matter by sorption to the mineral soil, Soil Biol. Biochem, vol.37, pp.1319-1331, 2005.

P. J. Mann, Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin, J. Geophys. Res, vol.117, p.1028, 2012.

J. E. Vonk, Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, vol.12, pp.6915-6930, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01255870

J. L. Weishaar, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol, vol.37, pp.4702-4708, 2003.

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, Fluorescence spectroscopy and multi-way techniques, PARAFAC. Anal. Methods, vol.5, pp.6557-6566, 2013.

W. F. Vincent, M. Lemay, and M. Allard, Arctic permafrost landscapes in transition: towards an integrated Earth system approach, Arct. Sci, vol.3, pp.39-64, 2017.

C. Schädel, Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data, Glob. Change Biol, vol.20, pp.641-652, 2014.

S. B. Hodgkins, Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production, Proc. Natl Acad. Sci. USA, vol.111, pp.5819-5824, 2014.

X. Zhang, Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment, J. Geophys. Res, vol.122, pp.796-810, 2017.

J. C. Neff and D. U. Hooper, Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils, Glob. Change Biol, vol.8, pp.872-884, 2002.

F. R. Reyes and V. L. Lougheed, Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems, Arct., Antarct. Alp. Res, vol.47, pp.35-48, 2015.

F. Beermann, Permafrost thaw and liberation of inorganic nitrogen in Eastern Siberia, Permafr. Periglac. Process, vol.28, pp.605-618, 2017.

F. Keuper, A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands, Glob. Change Biol, vol.18, 1998.

B. Elberling, H. H. Christiansen, and B. U. Hansen, High nitrous oxide production from thawing permafrost, Nat. Geosci, vol.3, pp.332-335, 2010.

Y. Shur, K. M. Hinkel, and F. E. Nelson, The transient layer: implications for geocryology and climate-change science, Permafr. Periglac. Process, vol.16, pp.5-17, 2005.

J. K. Jansson and K. S. Hofmockel, Soil microbiomes and climate change, Nat. Rev. Microbiol, vol.18, pp.35-46, 2020.

P. J. Mann, Pan-arctic trends in terrestrial dissolved organic matter from optical measurements, Front. Earth Sci, vol.4, p.25, 2016.

J. B. Fellman, E. Hood, and R. G. Spencer, Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review, Limnol. Oceanogr, vol.55, pp.2452-2462, 2010.

S. A. Walker, R. M. Amon, and C. A. Stedmon, Variations in high-latitude riverine fluorescent dissolved organic matter: a comparison of large Arctic rivers, J. Geophys. Res, vol.118, pp.1689-1702, 2013.

K. P. Wickland, J. C. Neff, and G. R. Aiken, Dissolved organic carbon in alaskan boreal forest: sources, chemical characteristics, and biodegradability, Ecosystems, vol.10, pp.1323-1340, 2007.

T. V. Raudina, Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, vol.14, pp.3561-3584, 2017.

J. Fouché, M. J. Lafrenière, K. Rutherford, and S. Lamoureux, Seasonal hydrology and permafrost disturbance impacts on dissolved organic matter composition in High Arctic headwater catchments, Arct. Sci, vol.3, pp.378-405, 2017.

D. Olefeldt, A. Persson, and M. R. Turetsky, Influence of the permafrost boundary on dissolved organic matter characteristics in rivers within the Boreal and Taiga plains of western Canada, Environ. Res. Lett, vol.9, p.35005, 2014.

M. Farrell, Oligopeptides represent a preferred source of organic N uptake: a global phenomenon, Ecosystems, vol.16, pp.133-145, 2013.

S. R. Textor, K. P. Wickland, D. C. Podgorski, S. E. Johnston, and R. G. Spencer, Dissolved organic carbon turnover in permafrost-influenced watersheds of interior Alaska: molecular insights and the priming effect, Front. Earth Sci, vol.7, p.275, 2019.

W. H. Mcdowell, A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources, Soil Biol. Biochem, vol.38, pp.1933-1942, 2006.

R. M. Cory and L. A. Kaplan, Biological lability of streamwater fluorescent dissolved organic matter, Limnol. Oceanogr, vol.57, pp.1347-1360, 2012.

K. L. Balcarczyk, B. J. Jeremy, R. Jaffé, and N. Maie, Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, vol.94, pp.255-270, 2009.

T. Näsholm, Boreal forest plants take up organic nitrogen, Nature, vol.392, pp.914-916, 1998.

M. R. Kendrick, Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river, Glob. Change Biol, vol.24, pp.5738-5750, 2018.

B. W. Abbott, J. R. Larouche, J. B. Jones, W. B. Bowden, and A. W. Balser, Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost, J. Geophys. Res, vol.119, pp.2049-2063, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01118298

C. Plaza, Direct observation of permafrost degradation and rapid soil carbon loss in tundra, Nat. Geosci, vol.12, pp.627-631, 2019.

. Snow and . Water, the Arctic (SWIPA) 2017|AMAP, 2017.

B. G. Pautler, Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy, Environ. Sci. Technol, vol.46, pp.3753-3761, 2012.

, Cryostratigraphy, carbon and nitrogen content and 14C dating of permafrost cores from sites across the Canadian Arctic, Nordicana D25

, Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, Soil Survey Staff, 1999.

M. C. Paré, ?. Bedard-haughn, and A. , Surface soil organic matter qualities of three distinct canadian arctic sites, Arct. Antarct. Alp. Res, vol.45, pp.88-98, 2013.

D. M. Grewer, M. J. Lafrenière, S. F. Lamoureux, and M. J. Simpson, Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic, Biogeochemistry, vol.128, pp.397-415, 2016.

G. Hugelius, P. Kuhry, C. Tarnocai, and T. Virtanen, Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic, Permafr. Periglac. Process, vol.21, pp.16-29, 2010.

C. Hu, F. E. Muller-karger, and R. G. Zepp, Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts, Limnol. Oceanogr, vol.47, pp.1261-1267, 2002.

P. J. Mann, Pan-arctic trends in terrestrial dissolved organic matter from optical measurements, Front. Earth Sci, vol.4, p.25, 2016.

J. Lehmann and M. Kleber, The contentious nature of soil organic matter, Nature, vol.528, pp.60-68, 2015.

J. R. Helms, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr, vol.53, pp.955-969, 2008.

K. E. Frey, W. V. Sobczak, P. J. Mann, and R. M. Holmes, Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, Biogeosciences, vol.13, pp.2279-2290, 2016.

D. M. Mcknight, Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogr, vol.46, pp.38-48, 2001.

R. M. Cory and D. M. Mcknight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol, vol.39, pp.8142-8149, 2005.

E. Parlanti, K. Wörz, L. Geoffroy, and M. Lamotte, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem, vol.31, pp.1765-1781, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02293400

T. Ohno, Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, Environ. Sci. Technol, vol.36, pp.742-746, 2002.

K. R. Murphy, C. A. Stedmon, T. D. Waite, and G. M. Ruiz, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Mar. Chem, vol.108, pp.40-58, 2008.

C. A. Stedmon and R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr, vol.6, pp.572-579, 2008.

C. A. Stedmon, S. Markager, and R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem, vol.82, pp.239-254, 2003.

K. R. Murphy, C. A. Stedmon, P. Wenig, and R. Bro, OpenFluor-an online spectral library of auto-fluorescence by organic compounds in the environment, Anal. Methods, vol.6, pp.658-661, 2014.

R. F. R-core-team and S. C. , R: A Language and Environment for Statistical Computing, 2012.

G. Hugelius, The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, vol.5, pp.3-13, 2013.