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The discovery and deployment of new broad-spectrum resistance (R) genes from
cultivated rice and its wild relatives is a strategy to broaden the genetic basis of modern
rice cultivars to combat rice blast disease. Oryza glaberrima possessing many valuable
traits for tolerance to biotic and abiotic stresses, is an elite gene pool for improvement of
Asian cultivated rice. An introgression line IL106 derived from O. glaberrima (Acc.
IRGC100137) confers complete resistance to Magnaporthe oryzae in blast nursery.
Genetic analysis using 2185 BC6F2 progenies derived from a cross between IL106 and
the recurrent parent Dianjingyou 1 showed that IL106 harbors a single dominant
resistance gene against M. oryzae strain 09BSH-10-5A. This gene was preliminarily
mapped on the long arm of chromosome 6 of rice in a region of ca. 0.9 cM delimited by
two SSR markers (RM20650 and RM20701). In order to finely map this gene, 17,100
additional progenies were further analyzed. As a result, this gene was further narrowed
down to a region flanked by two molecular markers STS69-15 and STS69-7, and co-
segregated with 3 molecular markers, RM20676, STS69-21 and STS69-22 on the long
arm of chromosome 6. Based on reference genome sequences, this R gene was mapped
in silico in 76.1-Kb and 67.7-Kb physical intervals, and containing 4 and 3 NBS-LRR
candidate genes in O. sativa cultivar Nipponbare and O. glaberrima cultivar CG14,
respectively. Because no blast resistance gene was finely mapped in this physical
interval before, this R gene was considered as not described yet and designated as
Pi69(t), which is the first identified and finely mapped blast R gene from O. glaberrima, as
far as we know. Evaluation of IL106 with 151 blast strains collected from 6 countries in
Asia showed that 148 strains are avirulent on IL106, suggesting that Pi69(t) is a broad-
.org August 2020 | Volume 11 | Article 11901
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spectrum blast R gene, and a promising resistant resource for improvement of Asian
cultivated rice.
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fine mapping
INTRODUCTION

The African cultivated rice, Oryza glaberrima Steud., is well
adapted for cultivation in West Africa (Linares, 2002; Sarla and
Swamy, 2005), and possesses many valuable traits for tolerance
to abiotic stresses, such as salinity, drought and strong weed
competitiveness (Sarla and Swamy, 2005). O. glaberrima is also
reported to have high level of resistance against several diseases
and insect pests, such as Rice yellow mottle virus (Ndjiondjop
et al., 1999; Pidon et al., 2017), bacterial leaf blight (Djedatin
et al., 2011), blast (Silué and Notteghem, 1991; Rama Devi et al.,
2015), green rice leafhopper (Fujita et al., 2010), as well as rice
gall midge (Ukwungwu et al., 1998). Although it contains a
narrow genetic base compared with other Oryza species (Wang
et al., 2014; Meyer et al., 2016; Ndjiondjop et al., 2017),
O. glaberrima is considered as an excellent gene reservoir
for improvement of Asian cultivated rice, due to its useful
traits of agronomic importance (Linares, 2002; Sarla and
Swamy, 2005).

Rice blast, caused by the ascomycete fungus Magnaporthe
oryzae (syn., Pyricularia oryzae) (Couch and Kohn, 2002), is one
of the most destructive diseases for rice, and is responsible for
significant yield losses under favorable environmental conditions
worldwide (Ou, 1980; Savary et al., 2019). Rice-M. oryzae
interactions follow the gene-for-gene relationship (Silué et al.,
1992; Jia et al., 2000). Utilization of resistance (R) genes is one of
the most economical, effective and environment-friendly
approaches for blast control. However, the R genes of rice
cultivars are often overcome shortly after their release, due to
the emergence of strains of the pathogen virulent on certain R
genes (Zeigler et al., 1994). Thus, it is necessary to mine new
genes with broad spectrum of resistance against M. oryzae from
diversities of rice species and use them in appropriate
management strategies for durable control of blast in rice
production (Zhu et al., 2000; Raboin et al., 2012; Sester et al.,
2014). To date, over 100 blast R genes have been identified and
mapped on different chromosomal regions of rice, through broad
genetic and linkage analysis in the past decades (Ballini et al.,
2008; Ashkani et al., 2016). These R genes have mainly been
identified from O. sativa, and only 5 R genes originated from
wild species of genus Oryza, including Pi40 (O. australiensis),
Pi54rh (O. rhizomatis), Pi54 (O. officinalis), Pi57(t) (O.
longistaminata), and Pid3-A4 (O. rufipogon) (Jeung et al., 2007;
Das et al., 2012; Lv et al., 2013; Devanna et al., 2014; Dong et al.,
2017). O. glaberrima was domesticated from its wild progenitor
O. barthii independently from O. sativa (Sweeney and McCouch,
2007). Although several studies previously reported that O.
glaberrima expressed high level of resistance against rice blast
(Silué and Notteghem, 1991; Rama Devi et al., 2015), no blast
.org
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R gene locus was further identified and mapped yet. Whether
blast R genes in O. glaberrima are different from R genes
identified from other Oryza species so far remains unknown.

In order to discover useful genes of agronomic importance
from O. glaberrima, a set of BC5F4 introgression lines (ILs) was
constructed through successive backcross strategy between
IRGC100137, an accession of O. glaberrima and O. sativa
cultivar Dianjingyou 1 (DJY1), an O. sativa subsp. japonica
cultivar, used as male recurrent parent (Xu et al., 2014). The
ILs were evaluated for blast resistance in blast nursery in the field
and by artificial inoculation with M. oryzae isolates in the
greenhouse. Twelve ILs showing complete resistance to M.
oryzae compared with the susceptible recurrent parent DJY1
were obtained. In this study, we describe the identification and
fine mapping of a new blast resistance locus Pi69(t) from
O. glaberrima.
MATERIALS AND METHODS

Rice Materials and Mapping
Population Construction
Resistant introgression line IL106 derived from O. glaberrima
(accession No. IRGC100137) was crossed with a susceptible
recurrent parent Dianjingyou 1 (DJY1) to generate BC6F1
seeds, the BC6F1 seeds were further sown and grown in a
greenhouse to generate BC6F2 population for linkage and
genetic analysis for resistance to rice blast. Resistant donor
IL106, 10 monogenic lines (IRBLZ-Fu (Piz), IRBLZ5-CA (Pi2),
IRBLzt-T (Piz-t), IRBL9-W (Pi9), IRBL5-M (Pi5), IRBLKH-K3
(Pikh), IRBL1-CL (Pi1), IRBL7-M (Pi7), IRBL20-IR24 (Pi20),
and IRBLTA2-PI (Pita2)), as well as susceptible control cultivar
Lijiangxintuanheigu (LTH) were used to test resistant/
susceptible phenotypes to 151 M. oryzae strains.

M. oryzae Cultivation and
Spore Production
The M. oryzae isolate 09BSH-10-5A that is avirulent to IL106
and virulent to DJY1 was cultured on oatmeal medium (20 g of
oatmeal, 15 g of agar, 10 g of sucrose, and 1 L of distilled water)
for 7 days in the dark at 25°C. Then aerial mycelia were washed
off by gentle rubbing with distilled water and paintbrush. The
colony was then successively exposed to fluorescent light for 3
days to induce sporulation at 25°C. Conidia were harvested by
softly scraping and flooding the medium surface with distilled
water containing 0.01% Tween 20 detergent. The concentration
of conidial suspension was adjusted to 50,000 conidia/ml for
inoculation (Dong et al., 2017).
August 2020 | Volume 11 | Article 1190
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Plant Planting and Pathotesting
The BC6F2 population seeds derived from the cross between
IL106 and DJY1 were sown in plastic trays of 20×12×5 cm filled
with paddy soil, and each tray was sowed with 95 germinated
seeds. Seedlings were inoculated with M. oryzae strain 09BSH-
10-5A by spraying at 4-leaf stage with 20 ml conidial suspension
per tray. The inoculated rice plants were incubated overnight in a
dark chamber at 25°C for 24 h with over 95% relative humidity,
and then transferred back to the greenhouse. Lesion types on rice
leaves were observed 6–7 days after inoculation and scored
according to a standard reference scale (Silué et al., 1992).
Plants scored from 1 to 3 were considered to be resistant and
plants scored from 4 to 6 were considered to be susceptible.
Furthermore, 151 M. oryzae isolates from 6 countries were used
to test the resistant spectrum of Pi69(t) gene carrying in IL106
and 10 known blast R genes carrying in monogenic lines.

Marker Development and Genetic
Map Construction
Genomic DNA was extracted from fresh leaves of each plant
following the method described by Edwards et al. (1991). A total
of 229 SSR markers distributed evenly across all 12 rice
chromosomes (McCouch et al., 2002) were used for identification
Frontiers in Plant Science | www.frontiersin.org 3
of introgressed regions from O. glaberrima. Sequence-tagged site
(STS) markers were developed within the critical region based on
the sequence alignment of the genomic sequences of Nipponbare
(O. sativa) and CG14 (O. glaberrima, http://plants.ensembl.org/
Oryza_glaberrima/Info/Index).

PCR amplification conditions consisted of a denaturing step of
94°C/3 min, followed by 35 cycles of 94°C/30 s, annealing
temperature 55°C/30 s, and 72°C/1 min, ending with an extension
step of 72°C/7 min. Amplicons were separated by 8%
polyacrylamide gel electrophoresis and detected by silver staining.
Information of all primers used for gene mapping in this study is
listed in Table 1. The genetic and linkage map of polymorphic
markers was constructed using MAPMAKER/EXP 3.0 (Lander
et al., 1987). The Kosambi mapping function was used to
transform recombination frequency to genetic distance (cM).

Physical Map Construction In Silico and
Candidate Gene Annotation
To construct physical map of Pi69(t) in silico based on the reference
genome sequence of O. sativa subsp. japonica cultivar Nipponbare,
all molecular markers were anchored on chromosome 6 of Os-
Nipponbare-Reference-IRGSP-1.0 pseudomolecules by BLAST
(https://blast.ncbi.nlm.nih.gov/). To annotate the candidate R
TABLE 1 | Summary of PCR primers used for linkage analysis.

Marker Forward primer (5'-3') Genomic position
(bp)

of Nipponbarea

Expected size
(bp)b

Genomic position
(bp)

of CG14c

Expected size
(bp)d

Annealing
temperature

(°C)

RM30 F: TGGGGTGGTTAGGCATCGTC 27253291-27253310 85 20426541-20426560 – 55
R: CCTCACCACACGACACGAGC 27253375-27253356 not available

RM345 F: ATGCAACCTCCTCTTCTCCA 30865862-30865881 136 23089611-23089630 143 55
R: ATTGGTAGCTCAATGCAAGC 30865997-30865978 23089753-23089734

RM20625 F: GGAGGGAGGAATGGGTACACG 28533451-28533471 182 21297908-21297928 107 55
R: TTGAGAGTGAAACGAGAACCAACC 28533632-28533609 21298014-21297991

RM20650 F: CGAGTGGATCAGCAAATCTACAGC 29161210-29161233 111 21803046-21803069 107 55
R: CAGCATCAGGCTTGTGTTAATGG 29161320-29161298 21803152-21803130

RM20676 F: GATCTCCACCACCTCCATCTCC 29885931-29885952 192 22383635-22383656 129 55
R: CCTACATCAAGGCTCGCTACTGC 29886122-29886100 22383763-22383785

RM20701 F: GAGAAGAAATTCAGAGAGCAGAGC 30349781-30349804 164 22767158-22767181 155 55
R: CAACCACATGATCCATATGACG 30349944-30349923 22767312-22767290

RM20661 F: GAACACATGACACCACCTTTGC 29479730-29479751 152 22031105-22031126 143 55
R: GCGTTTCTCATTCTGTTCTTGC 29479881-29479860 22031247-22031226

RM20674 F: CAACCCAACCCAACATCTGC 29782053-29782072 195 22299523-22299542 184 55
R: CCTCTTGTCTTTGGAGGCCTTACC 29782247-29782224 22299706-22299683

RM20678 F: CCGACCCATCAAACACAAATAGG 29976869-29976891 142 22466394-22466416 136 55
R: CTTCTTCGGCTTCGCCTTCC 29977010-29976991 22466529-22466510

STS69-21 F: GGTAGACAAGTTAACACCCAACCATGA 29899071-29899097 158 22395527-22395553 195 55
R: GCACAGACAGGGGAGGAAGCAAAC 29899228-29899205 22395721-22395698

STS69-7 F: ATCGGCCTGGTCTACTACGAGTAATC 29948504-29948529 136 22437870-22437895 131 55
R: CCATTGATCAAATTCTACATGAATC 29948639-29948615 22438000-22437976

STS69-15 F: CCTGTGTACGTGTGTTCTGTATGC 29872500-29872523 184 22370311-22370334 165 55
R: CATCCACAAGCAGAGCTGGTC 29872683-29872663 22370475-22370455

STS69-22 F: GCGCTGCGACGGAAAGAATA 29934780-29934799 147 22416918-22416899 150 55
R: TCCGGCCTCTATATCCACAAAG 29934926-29934905 22417067-22417046
Aug
ust 2020 | Volume 11
F, forward; R, reverse.
agenomic position of each marker along chromosome 6 of O. sativa subsp. japonica cultivar Nipponbare (IRGSP1.0).
bexpected size of PCR products in Nipponbare.
cgenomic position of each marker along chromosome 6 of O. glaberrima cultivar CG14.
dexpected size of PCR products in CG14.
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genes, both the 76.1-Kb and 67.7-Kb target regions in Nipponbare
and CG14 respectively were analyzed by using the FGENSH
platform (http://www.softberry.com/).
RESULTS

Genetic Analysis for Blast Resistance
in IL106
The resistant donor IL106, recurrent parent DJY1, BC6F1 plants
from IL106/DJY1 and BC6F2 population were inoculated with
09BSH-10-5A (Supplementary Figures S1A, B). The resistant
donor IL106 and BC6F1 plants showed complete resistance, and
recurrent parent DJY1 was susceptible to 09BSH-10-5A. The
segregation of resistant and susceptible progenies among 2185
BC6F2 individuals fitted with an expected 3:1 ratio (resistant/
susceptible: 1664/521, c2 = 1.556, P = 0.212), indicating that a
single dominant R gene from IL106 confers complete resistance
to M. oryzae strain 09BSH-10-5A.

Identification and Mapping of R Gene
Locus in IL106
To identify andmap the R locus in IL106, a total of 217 SSRmarkers
distributed evenly across all 12 rice chromosomes were used to
determine the polymorphism between resistance donor IL106 and
recurrent parent DJY1. As expected, a large majority of markers
were monomorphic between IL106 and its recurrent parent. Three
SSR markers, RM345 on chromosome 6, RM6329 on chromosome
3, and RM3702 on chromosome 8, showed polymorphism between
IL106 and DJY1, suggesting that three introgression fragments from
O. glaberrima possessed in IL106. In order to verify the linkage
relationship between these 3 SSR loci and R gene in IL106, 94
random susceptible individuals from BC6F2 population inoculated
with 09BSH-10-5A were genotyped with these 3 SSR markers. The
results showed that the severe segregating distortion (92
homozygotes of susceptible allele to 2 heterozygotes) was only
detected for RM345, implying linkage between the R gene and
this marker which located on chromosome 6.

To determine the O. glaberrima introgression length of the R
gene region in IL106, 27 SSR markers located on the long arm of
chromosome 6 were selected to survey the polymorphism between
IL106 and DJY1. The result showed that the introgression fragment
was located between SSR markers RM30 and RM345, and 4 SSR
markers (RM20625, RM20650, RM20676, and RM20701) within
this interval were also polymorphic. Subsequently, the mapping
population consisting of 2,185 BC6F2 plants was genotyped with the
two SSR markers RM30 and RM345, and the recombinants were
further genotyped with 4 SSR markers (RM20625, RM20650,
RM20676, and RM20701) to map the R gene location. Taken
together, the R locus was mapped to a 0.9 cM region flanked by
RM20650 and RM20701 on the long arm of chromosome 6, and co-
segregated with RM20676 (Figure 1A).

Fine Mapping of R Gene Locus in IL106
To further map this R gene locus, 17,100 additional BC6F2 plants
were genotyped with two flanking markers RM20650 and
Frontiers in Plant Science | www.frontiersin.org 4
RM20701. All the 312 recombinants were then phenotyped for
resistance toM. oryzae strain 09BSH-10-5A. As a result, 167 and
145 recombinants were detected between phenotypes (R or S)
and RM20650 and RM20701 genotypes, respectively (Figure
1B). Meanwhile, new SSR markers located in RM20650-
RM20701 interval were surveyed for polymorphism between
IL106 and DJY1, and 3 polymorphic SSR markers RM20661,
RM20674, and RM20678 were obtained. Then, the 312
recombinants were genotyped with these new SSR markers and
RM20676. The recombination events btweeen the R locus and
RM20661, RM20674, RM20676, and RM20678 were 121, 7, 0,
and 13, respectively (Figure 1B), The R locus was linked to
RM20661 and RM20674 by a genetic distance of ca. 0.71, and
0.041 cM, co-segregated with RM20676, and linked to RM20678
by 0.076 cM on the other side, respectively.

To further finely map the R locus, 24 STS markers were
developed based on the genome sequences of Nipponbare and
CG14. Five STS markers polymorphic between IL106 and DJY1
were used to genotype the 7 and 13 recombinants at RM20674
and RM20678 loci, respectively. As a result, 4 recombinants
were detected at STS69-15 locus on RM20674 side, and 4
recombinants were detected at STS69-7 locus on RM20678
side. No recombinants were identified at RM20676, STS69-21,
and STS69-22 loci. These results indicated that the R gene locus
was narrowed down to the region flanked by STS69-15 and
STS69-7, and co-segregated with 3 molecular markers RM20676,
STS69-21, and STS69-22 (Figure 1B). The genotypes and
phenotypes of 8 recombinants between STS69-15 and STS69-7
are shown in Figure 1C.

Differentiation Between R Gene Carrying
in IL106 and Pi-tq1 in Teqing
The blast resistant gene Pi-tq1 from indica cultivar Teqing was
previously mapped to a 4.24 Mb physical interval flanked by two
RFLP markers, RZ682 and RZ508 (Tabien et al., 2000) that
spanned over the R locus described here on the long arm of
chromosome 6. To distinguish these two genes, IL106 and
Teqing were inoculated with 3 M. oryzae strains (09BSH-10-
5A, BS139, and HN09-1C-7) that are avirulent on IL106, but
virulent on DJY1. The result showed that Teqing was resistant to
both 09BSH-10-5A and BS139, but susceptible to HN09-1C-7
(Supplementary Figure S1C), suggesting that the R gene in
IL106 could be different from Pi-tq1, because of their distinct
reactions to HN09-1C-7. To demonstrate that the resistance of
HN09-1C-7 is controlled by the same R gene in IL106, this strain
was inoculated to 191 F2 progenies from the cross between IL106
and DJY1. The numbers of resistant and susceptible individuals
were 149 and 42, respectively and fitted to a 3:1 ratio (P=0.337),
confirming that IL106 possesses a single resistance gene to the
strain HN09-1C-7. Genotyping of 42 susceptible and 4 resistant
individuals with 4 molecular markers (RM30, RM345, STS69-7, and
STS69-15) linked with Pi69(t), identified 4 and 3 recombinants at
RM30 and RM345 loci, respectively, and no recombinants at both
STS69-7 and STS69-15 loci (Supplementary Figure S2), indicating
that the gene conferring resistance to HN09-1C-7 in IL106 was
mapped to the same chromosomal region as that R gene conferring
August 2020 | Volume 11 | Article 1190
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resistance to 09BSH-10-5A, and the resistance to both 09BSH-10-
5A and HN09-1C-7 is controlled by the same R gene in IL106.
Taken together, all these data confirmed that R locus in IL106 is
different from Pi-tq1, due to their distinct reactions to M. oryzae
strain HN09-1C-7. Because no blast R gene was finely mapped in
chromosomal region flanked by STS69-15 and STS69-7 on
chromosome 6 of rice to date, this major R gene carrying in
IL106 from O. glaberrima was considered as a new gene and was
tentatively designated as Pi69(t).

Resistance Spectrum of Pi69(t)
To determine the resistance spectrum of Pi69(t), IL106, and
other 10 monogenic lines carrying broad-spectrum R genes
were inoculated and assessed with 151 M. oryzae strains from
Cambodia (16 strains), Laos (20 strains), Myanmar (4 strains),
Thailand (20 strains), Vietnam (18 strains), and China (77
strains). IL106 was resistant to all strains from Cambodia and
Laos, and susceptible to only 3 strains from China, Thailand
and Vietnam (YX162, TH451, and VN4118; Supplementary
Table S1). IL106 also showed broader resistant spectrum
compared with nine monogenic lines carrying different
known R genes, except for the line IRBL9-W carrying Pi9
that was resistant to all tested strains. These results suggest
Frontiers in Plant Science | www.frontiersin.org 5
that Pi69(t) gene could confer broad-spectrum resistance
against M. oryzae in IL106.

In Silico Physical Map Construction of
Pi69(t) Gene Locus
To construct the physical map of Pi69(t) locus in silico, all the
molecular markers closely linked to Pi69(t) were anchored to the
genome sequences of both O. sativa subsp. japonica cultivar
Nipponbare (IRGSP1.0) and O. glaberrima cultivar CG14
(AGI1.1) through BLAST analysis (http://plants.ensembl.org/). The
two flanking markers and 3 co-segregating markers were anchored
to the target region (Figures 1D, F). The physical distance between
two closest flankingmarkers STS69-15 and STS69-24 was about 76.1
Kb (genomic position: 29872500-29948639) inNipponbare, and 67.7
Kb (genomic position: 22370311- 22438000) in CG14.

Both the target genome sequences fromNipponbare and CG14
were annotated through the bioinformatics platform FGENSH
(http://www.softberry.com). The annotation showed that 8 and 10
genes (named tentatively from P1 to P11) were predicted in
Nipponbare and CG14, respectively (Figures 1E, G). Among all
these annotated genes, P4 and P8 genes were absent in CG14,
while P11 gene was absent in Nipponbare. Among these predicted
genes, both P1(LOC_Os6g49300) and P3(LOC_Os6g49320) encode
A

B

D

E

F

G

C

FIGURE 1 | Genetic and physical maps of Pi69(t) locus on rice chromosome 6. (A) A genetic map of Pi69(t) locus. Map distances are in cM. (B) An integrated fine
genetic map of Pi69(t) locus on chromosome 6, *: the numbers in parentheses under the markers present the number of recombinants between marker loci and
Pi69(t); (C) The genotyping and phenotyping of key recombinants located between two markers STS69-15 and STS69-7. (D) Physical map of the Pi69(t) locus
based on the reference genome sequence of O. savita cultivar Nipponbare. *: chromosomal position of markers on genomic sequence of chromosome 6 of
Nipponbare; (E) Predicted candidate R genes for Pi69(t) in Nipponbare (O. sativa). (F) Physical map of the Pi69(t) locus based on the reference genome sequence of
O. glaberrima accession CG14. *: chromosomal position of markers on genomic sequence of chromosome 6 of CG14; (G) Predicted candidate R genes for Pi69(t)
in CG14 (O. glaberrima).
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the putative genes homologous with glycosyltransferase; P2
(LOC_Os6g49310) encodes a gene homologous to MATE efflux
family protein; P4 (LOC_Os6g49330) annotated in Nipponbare
only is an uncharacterized protein; P5 (LOC_Os6g49340) encodes
a F-box and DUF domain containing protein; P6 (LOC_Os6g49350)
and P11 encode a retrotransposon in Nipponabre and CG14
respectively; the remaining four genes (P7 (LOC_Os6g49360), P8
(LOC_Os6g49380 ) , P9 (LOC_Os6g49390 ) , and P10
(LOC_Os6g49420)) were predicted to be typical R genes
encoding protein with the conserved structure of nucleotide-
binding site and leucine-rich repeat (NBS-LRR; Figures 1E, G).
In comparison with P7 in CG14, there are two genes (P6 and P7)
in Nipponbare caused by an insertion of retrotransposon. Amino
acids analysis among P7 in CG14, P6, and P7 in Nipponbare
showed that the amino acid sequence on the 3’ side of P6 in
Nipponbare has high similarity with those in P7 of CG14, and P7
in Nipponbare encoded only a truncated NBS-LRR protein
compared with its P7 allele in CG14.

Evidence of O. glaberrima Genome
Fragment Integration
To validate whether the fragment carrying Pi69(t) in IL106 was
integrated from O. glaberrima, the introgression line IL106, the
original O. glaberrima accession IRGC100137, the recurrent
parent japonica cultivar DJY1, as well as two indica cultivars
R498 and Teqing, were genotyped with 13 molecular markers
used for mapping Pi69(t). The results showed that the size of all
the DNA fragments amplified from IL106 were the same as those
from IRGC100137 (Figure 2). Meanwhile, these molecular
markers were polymorphic among line IL106, and all rice
cultivars (DJY1, R498 and Teqing).
DISCUSSION

The discovery and deployment of broad-spectrum R genes from a
large number of cultivated rice varieties and its wild relatives is an
effective strategy to broaden the genetic basis of resistance of
modern rice cultivars, to cope with the diversity and variability
over time of pathogen population in rice production (Jeung et al.,
2007; Su et al., 2015; Deng et al., 2017). Several incompatibility
barriers such as pre- and post-fertilization barriers, hybrid sterility
between Asian cultivated rice and its wild and cultivated relatives,
however, have been hindering the utilization of favorable genes
Frontiers in Plant Science | www.frontiersin.org 6
controlling important agronomic traits (Brar and Khush, 1997; Xu
et al., 2014; Brar and Khush, 2018). Construction of introgression
lines of these relatives with Asian cultivated rice cultivars has been
proved to be one of the effective measures for further discovery and
use of favorable genes from the wild species for rice breeding, and
several genes conferring resistance to biotic stresses from wild
species were identified in introgression lines (Brar and Khush,
1997; Gutierrez et al., 2010; Rama Devi et al., 2015; Brar and
Khush, 2018). Extensive studies on exploiting and identification of
blast resistance genes have been conducted, mainly focusing on the
O. sativa and wild relatives. Relatively few investigations have been
performed to identify new blast R genes in O. glaberrima (Silué and
Notteghem, 1991; Rama Devi et al., 2015). In this study, we have
successfully identified and finely mapped Pi69(t), the first blast R
gene from O. glaberrima by using an introgression line IL106
derived from O. glaberrima. Pi69(t) confers a broad-spectrum
resistance to M. oryzae diverse strains from 6 Asian countries,
indicating that Pi69(t) is a promising resistance resource for
improvement of Asian cultivated rice for resistance to rice blast.

Over 20 blast major R genes have been identified andmapped on
rice chromosome 6, and the majority of them were mapped
proximal to the centromere. The cloned R genes Piz-t, Pi2, Pi9,
Pi50, and Pigm are members of the multigene family Pi2/Pi9 locus
located on the short arm, while the Pid-2, Pid3/Pi25(t), and Pid3-A4
are located on the long arm (Chen et al., 2006; Shang et al., 2009;
Chen et al., 2011; Lv et al., 2013). Using recombination inbred lines
derived from a cross between Lemont and Teqing, Tabien et al.
(2000) identified and mapped 3 blast resistance genes from Teqing
(Pi-tq1, Pi-tq2, and Pi-tq3). Among them, Pi-tq1was alsomapped to
chromosome 6 of rice but located proximal to telomeric side. Two
flanking markers RZ682 and RZ508 defined a larger physical region
of Pi-tq1 locus of around 4.24 Mb covering Pi69(t) locus. Although
Pi69(t) could be differentiated from Pi-tq1 by usingM. oryzae strain
HN09-1C-7, due to their distinct reactions to this strain, whether
Pi69(t) is allelic, or closely linked to Pi-tq1 remains to be determined
through allelism test or fine mapping of Pi-tq1.

Pyramiding of R genes with different resistance specificity in the
same cultivar is one effective measure to broaden the resistance
spectrum against M. oryzae, and development of polymorphic
molecular markers is the prerequisite to stack target genes into
one cultivar with marker-assisted selection method (Hittalmani
et al., 2000). The molecular markers developed in this study,
tightly linked to Pi69(t), showed good polymorphisms among 5
tested rice lines/cultivars belonging to indica or japonica types.
These markers are good candidates for pyramiding of Pi69(t) with
FIGURE 2 | Confirmation of the origin of the introgression of the Pi69(t). Thirteen molecular markers linked with Pi69(t) were used to amplify the DNA fragments of
the O. glaberrima (IRGC100137) donor parent (1), the introgression line IL106 (2), the recurrent parent DJY1 (3), and two indica cultivars: R498 (4), and Teqing (5).
M, molecular weight marker DL2000. The PCR products were separated by 8% polyacrylamide gel.
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other R genes for improvement of Asian cultivated cultivars in
disease-resistant rice breeding program.

Most of cloned resistance genes from plants encode NBS-LRR
like proteins that directly or indirectly recognize the pathogen
effectors to trigger host defense responses (Dangl and Jones,
2001). Almost all the cloned rice R genes to blast encode NBS-
LRR like proteins, except for Pid2, pi21, and Ptr genes, which
encode a B-lectin receptor kinase, a proline-rich protein, and an
atypical protein with amardillo repeat domain, respectively (Lv
et al., 2013; Su et al., 2015; Ashkani et al., 2016; Deng et al., 2017;
Zhao et al., 2018).O. glaberrima-derived Pi69(t) gene was located
in a region containing a cluster of NBS-LRR like genes. These
genes are potential or promising candidates for Pi69(t).
DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/
Supplementary Material
AUTHOR CONTRIBUTIONS

QY, DaT, LD, SL, PX, and DiT: Conceived idea and designed
research. QY, DaT, and DiT wrote the manuscript. LD, SL, MK,
QY, WD, XL, YB, LZ, JL, and JZ: Performed experiments and
analyzed data. All authors contributed to the article and
approved the submitted version.
Frontiers in Plant Science | www.frontiersin.org 7
FUNDING

This work was supported by the National Natural Science
Foundation of China (31860524) to LD, the Applied Basic
Research Programs of Yunnan Academy of Agricultural Sciences
(YJZ201803) to LD, the National Natural Science Foundation of
China (31560493) to QY, the Applied Basic Research Programs of
Yunnan Academy of Agricultural Sciences (YJM201707) to SL, the
Key Research and Development Program of Yunnan Province
(2019IB007), the Scientific Observing and Experimental Station of
Crops Pests in Kunming, the Ministry of Agricultural, and the
Rural Affairs of China.
ACKNOWLEDGMENTS

We are grateful to Dr. Khay S, Dr. Douangboupha B, Mr. Mya
WA, Dr. Somrith A, Dr. Chung NH, and Dr. Zhang S for the
provision of blast isolates, and to Dr. Zhu XY for providing seeds
of the rice cultivar Teqing.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.01190/
full#supplementary-material
REFERENCES

Ashkani, S., Rafili, M. Y., Shabanimofrad, M., Ghasemzadeh, A., Ravanfar, S. A.,
and Latif, M. A. (2016). Molecular progress on the mapping and cloning of
functional genes for blast resistance in rice (Oryza sativa L.): current status and
future considerations. Crit. Rev. Biotechnol. 36, 353–367. doi: 10.3109/
07388551.2014.961403

Ballini, E., Morel, J. B., Droc, G., Price, A., Courtois, B., Notteghem, J. L., et al.
(2008). A genome-wide meta-analysis of rice blast resistance genes and
quantitative trait loci provides new insights into partial and complete
resistance. Mol. Plant Microbe Interact. 21, 859–868. doi: 10.1094/MPMI-21-
7-0859

Brar, D. S., and Khush, G. S. (1997). Alien introgression in rice. Plant Mol. Biol. 35,
35–47. doi: 10.1023/A:1005825519998

Brar, D. S., and Khush, G. S. (2018). “Wild relatives of rice: a valuable genetic
resource for genomics and breeding research,” in The Wild Oryza Genomes,
Compendium of Plant Genomes. Eds. T. K. Mondal and R. J. Henry (Cham:
Springer), 1–25. doi: 10.1007/978-3-319-71997-9_1

Chen, X. W., Shang, J. J., Chen, D. X., Lei, C. L., Zou, Y., Zhai, W. X., et al. (2006).
A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46,
794–804. doi: 10.1111/j.1365-313X.2006.02739.x

Chen, J., Shi, Y. F., Liu, W. Z., Chai, R. Y., Fu, Y. P., Zhuang, J. Y., et al. (2011). A
Pid3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe
oryzae. J. Genet. Genomics 38, 209–216. doi: 10.1016/j.jgg.2011.03.010

Couch, B. C., and Kohn, L. M. (2002). A multilocus gene genealogy concordant
with host preference indicates segregation of a new species, Magnaporthe
oryzae, from M. grisea. Mycologia 94, 683–693. doi: 10.1080/15572536.2003.
11833196

Dangl, J. L., and Jones, J. D. G. (2001). Plant pathogens and integrated defence
responses to infection. Nature 411, 826–833. doi: 10.1038/35081161

Das, A., Soubam, D., Singh, P., Thakur, S., Singh, N., and Sharma, T. (2012). A
novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza
rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct.
Integr. Genomic. 12, 215–228. doi: 10.1007/s10142-012-0284-1

Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., et al. (2017). Epigenetic
regulation of antagonistic receptors confers rice blast resistance with yield
balance. Science 355, 962–965. doi: 10.1126/science.aai8898

Devanna, N. B., Vijayan, J., and Sharma, T. R. (2014). The blast resistance gene
Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel
non-LRR domains. PloS One 9 (8), e104840. doi: 10.137/journal.
pone.0104840

Djedatin, G., Ndjiondjop, M. N., Mathieu, T., Vera Cruz, C. M., Sanni, A.,
Ghesquière, A., et al. (2011). Evaluation of African cultivated rice Oryza
glaberrima for resistance to bacterial blight. Plant Dis. 95, 441–447.
doi: 10.1094/PDIS-08-10-0558

Dong, L., Liu, S., Xu, P., Deng, W., Li, X., Tharreau, D., et al. (2017). Fine mapping
of Pi57(t) conferring broad spectrum resistance againstMagnaporthe oryzae in
introgression line IL-E1454 derived from Oryza longistaminata. PloS One 12
(10), e0186201. doi: 10.1371/journal.pone.0186201

Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method
for the preparation of plant genomic DNA for PCR analysis. Nucleic. Acids Res.
19, 1349. doi: 10.1093/nar/19.6.1349

Fujita, D., Doi, K., Yoshimura, A., and Yasui, H. (2010). A major QTL for
resistance to green rice leafhopper (Nephotettix cincticeps Uhler) derived from
African rice (Oryza glaberrima Steud.). Breed. Sci. 60, 336–341. doi: 10.1270/
jsbbs.60.336

Gutierrez, A., Carabali, S., Giraldo, O. X., Martinez, C. P., Correa, F., Prado, G.,
et al. (2010). Identification of a Rice stripe necrosis virus resistance locus and
yield component QTLs using Oryza sativa × O. glaberrima introgression lines.
BMC Plant Biol. 10, 6. doi: 10.1186/1471-2229-10-6

Hittalmani, S., Parco, A., Mew, T. V., Zeigler, R. S., and Huang, N. (2000). Fine
mapping and DNA marker-assisted pyramiding of the three major genes for
blast resistance in rice. Theor. Appl. Genet. 100, 1121–1128. doi: 10.1007/
s001220051395
August 2020 | Volume 11 | Article 1190

https://www.frontiersin.org/articles/10.3389/fpls.2020.01190/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2020.01190/full#supplementary-material
https://doi.org/10.3109/07388551.2014.961403
https://doi.org/10.3109/07388551.2014.961403
https://doi.org/10.1094/MPMI-21-7-0859
https://doi.org/10.1094/MPMI-21-7-0859
https://doi.org/10.1023/A:1005825519998
https://doi.org/10.1007/978-3-319-71997-9_1
https://doi.org/10.1111/j.1365-313X.2006.02739.x
https://doi.org/10.1016/j.jgg.2011.03.010
https://doi.org/10.1080/15572536.2003.11833196
https://doi.org/10.1080/15572536.2003.11833196
https://doi.org/10.1038/35081161
https://doi.org/10.1007/s10142-012-0284-1
https://doi.org/10.1126/science.aai8898
https://doi.org/10.137/journal.pone.0104840
https://doi.org/10.137/journal.pone.0104840
https://doi.org/10.1094/PDIS-08-10-0558
https://doi.org/10.1371/journal.pone.0186201
https://doi.org/10.1093/nar/19.6.1349 
https://doi.org/10.1270/jsbbs.60.336
https://doi.org/10.1270/jsbbs.60.336
https://doi.org/10.1186/1471-2229-10-6
https://doi.org/10.1007/s001220051395
https://doi.org/10.1007/s001220051395
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dong et al. Mapping Blast Resistance Gene Pi69(t)
Jeung, J. U., Kim, B. R., Cho, Y. C., Han, S. S., Moon, H. P., Lee, Y. T., et al. (2007).
A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR
motifs confers broad spectrum of blast resistance in rice. Theor. Appl. Genet.
115, 1163–1177. doi: 10.1007/s00122-007-0642-x

Jia, Y. L., McAdams, S. A., Bryan, G. T., Hershey, H. P., and Valent, B. (2000).
Direct interaction of resistance gene and avirulence gene products confers rice
blast resistance. EMBO J. 19, 4004–4014. doi: 10.1093/emboj/19.15.4004

Lander, E. S., Green, P., Abrahanson, J., Barlow, A., Daly, M. J., Lincoln, S. E., et al.
(1987). MAPMAKER: an interactive computer package for constructing
primary genetic linkages of experimental and natural populations. Genomics
1, 174–181. doi: 10.1016/0888-7543(87)90010-3

Linares, O. F. (2002). African rice (Oryza glaberrima): History and future
potential. Proc. Natl. Acad. Sci. U.S.A. 99, 16360–16365. doi: 10.1073/
pnas.252604599

Lv, Q., Xu, X., Shang, J., Jiang, G., Pang, Z., Zhou, Z., et al. (2013). Functional
analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by
allele mining in common wild rice. Phytopathology 103, 594–599. doi: 10.1094/
PHYTO-10-12-0260-R

McCouch, S., Teytelman, L., Xu, Y., Lobos, K., Clare, K., Walton, M., et al. (2002).
Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).
DNA Res. 9, 199–207. doi: 10.1093/dnares/9.6.199

Meyer, R. S., Choi, J. Y., Sanches, M., Plessis, A., Flowers, J. M., Amas, J., et al.
(2016). Domestication history and geographical adaptation inferred from a
SNP map of African rice. Nat. Genet. 48, 1083–1088. doi: 10.1038/ng.3633

Ndjiondjop, M. N., Albar, L., Fargette, D., Fauquet, C., and Ghesquière, A. (1999). The
genetic basis of high resistance to rice yellowmottle virus (RYMV) in cultivars of two
cultivated rice species. Plant Dis. 83, 931–935. doi: 10.1094/PDIS.1999.83.10.931

Ndjiondjop, M. N., Semagn, K., Gouda, A. C., Kpeki, S. B., Dro Tia, D., Sow, M.,
et al. (2017). Genetic variation and population structure of Oryza glaberrima
and development of a mini-core collection using DArTseq. Front. Plant Sci. 8,
1748. doi: 10.3389/fpls.2017.01748

Ou, S. H. (1980). Pathogen variability and host resistance in rice blast disease. Annu.
Rev. Phytopathol. 18, 167–187. doi: 10.1146/annurev.py.18.090180.001123
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