H. S. Cho, S. B. Hong, and S. J. Go, First Report ofPenicillium brasilianumandP. daleaeIsolated from Soil in Korea, Mycobiology, vol.33, issue.2, p.113, 2005.

J. I. Pitt and A. D. Hocking, Fungi and Food Spoilage, Fungi and Food Spoilage, pp.243-245, 2009.

J. Houbraken, S. Kocsubé, C. M. Visagie, N. Yilmaz, X. Wang et al., Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species, Studies in Mycology, vol.95, pp.5-169, 2020.

J. C. Frisvad and R. A. Samson, PENICILLIUM | Penicillium/Penicillia in Food Production, Encyclopedia of Food Microbiology, vol.49, pp.14-18, 2014.

J. M. Bazioli, L. S. Amaral, T. Fill, and E. Rodrigues-filho, Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential, Molecules, vol.22, issue.6, p.858, 2017.

E. Chain, H. W. Florey, A. D. Gardner, N. G. Heatley, M. A. Jennings et al., PENICILLIN AS A CHEMOTHERAPEUTIC AGENT, The Lancet, vol.236, issue.6104, pp.226-228, 1940.

E. C. Roberts, C. K. Cain, R. D. Muir, F. J. Reithel, W. L. Gaby et al., Penicillin B, an antibacterial substance from Penicillium notatum, J. Biol. Chem, vol.147, pp.47-58, 1943.

J. C. Frisvad, J. Smedsgaard, T. O. Larsen, and R. A. Samson, Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium, Stud. Mycol, vol.49, pp.201-241, 2004.

A. Schueffler and T. Anke, Fungal natural products in research and development, Nat. Prod. Rep., vol.31, issue.10, pp.1425-1448, 2014.

J. C. Frisvad, A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin, World Mycotoxin Journal, vol.11, issue.1, pp.73-100, 2018.

B. Li, Y. Zong, Z. L. Du, Y. Chen, Z. Zhang et al., Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species, Molecular Plant-Microbe Interactions®, vol.28, issue.6, pp.635-647, 2015.

O. Filtenborg, J. C. Frisvad, and U. Thrane, Moulds in food spoilage, International Journal of Food Microbiology, vol.33, issue.1, pp.85-102, 1996.

B. Andersen, J. Smedsgaard, and J. C. Frisvad, Penicilliumexpansum: Consistent Production of Patulin, Chaetoglobosins, and Other Secondary Metabolites in Culture and Their Natural Occurrence in Fruit Products, Journal of Agricultural and Food Chemistry, vol.52, issue.8, pp.2421-2428, 2004.

M. Moss and . Fungi, Fungi, quality and safety issues in fresh fruits and vegetables, Journal of Applied Microbiology, vol.104, issue.5, pp.1239-1243, 2008.

J. Tannous, N. P. Keller, A. Atoui, A. El-khoury, R. Lteif et al., Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research, Critical Reviews in Food Science and Nutrition, vol.58, issue.12, pp.2082-2098, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602724

K. Baert, F. Devlieghere, H. Flyps, M. Oosterlinck, M. M. Ahmed et al., Influence of storage conditions of apples on growth and patulin production by Penicillium expansum, International Journal of Food Microbiology, vol.119, issue.3, pp.170-181, 2007.

M. M. Moake, O. I. Padilla-zakour, and R. W. Worobo, Comprehensive Review of Patulin Control Methods in Foods, Comprehensive Reviews in Food Science and Food Safety, vol.4, issue.1, pp.8-21, 2005.

O. Puel, P. Galtier, and I. P. Oswald, Biosynthesis and Toxicological Effects of Patulin, Toxins, vol.2, issue.4, pp.613-631, 2010.

A. R. Lodder, DIRECTIVE 2000/31/EC ON CERTAIN LEGAL ASPECTS OF INFORMATION SOCIETY SERVICES, IN PARTICULAR ELECTRONIC COMMERCE, IN THE INTERNAL MARKET, Commission Regulation (EC) No 1881/2006 of 19 December Setting Maximum Levels for Certain Contaminants in Foodsteffs, pp.15-58

J. Tannous, R. El-khoury, S. P. Snini, Y. Lippi, A. El-khoury et al., Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum, International Journal of Food Microbiology, vol.189, pp.51-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632345

O. Dolezal, Young Lady with Severe Arm Pain, Clinical Cases in Neurology, vol.2020, pp.27-31, 2019.

A. Ballester, M. Marcet-houben, E. Levin, N. Sela, C. Selma-lázaro et al., Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity, Molecular Plant-Microbe Interactions®, vol.28, issue.3, pp.232-248, 2015.

S. P. Snini, J. Tannous, P. Heuillard, S. Bailly, Y. Lippi et al., Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples byPenicillium expansum, Molecular Plant Pathology, vol.17, issue.6, pp.920-930, 2015.

S. Barad, E. A. Espeso, A. Sherman, and D. Prusky, Ammonia activatespacCand patulin accumulation in an acidic environment during apple colonization byPenicillium expansum, Molecular Plant Pathology, vol.17, issue.5, pp.727-740, 2015.

J. Tannous, D. Kumar, N. Sela, E. Sionov, D. Prusky et al., Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples, Molecular Plant Pathology, vol.19, issue.12, pp.2635-2650, 2018.

D. Kumar, S. Barad, Y. Chen, X. Luo, J. Tannous et al., LaeA regulation of secondary metabolism modulates virulence inPenicillium expansumand is mediated by sucrose, Molecular Plant Pathology, vol.18, issue.8, pp.1150-1163, 2016.

C. E. Assaf, S. P. Snini, S. Tadrist, S. Bailly, C. Naylies et al., Impact of veA on the development, aggressiveness, dissemination and secondary metabolism of Penicillium expansum, Mol. Plant Pathol, vol.19, pp.1971-1983, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061925

J. Tannous, O. Barda, D. Luciano-rosario, D. B. Prusky, E. Sionov et al., New Insight Into Pathogenicity and Secondary Metabolism of the Plant Pathogen Penicillium expansum Through Deletion of the Epigenetic Reader SntB, Frontiers in Microbiology, vol.11, 2020.

A. M. Calvo, R. A. Wilson, J. W. Bok, and N. P. Keller, Relationship between Secondary Metabolism and Fungal Development, Microbiology and Molecular Biology Reviews, vol.66, issue.3, pp.447-459, 2002.

J. W. Bok and N. P. Keller, LaeA, a Regulator of Secondary Metabolism in Aspergillus spp, Eukaryotic Cell, vol.3, issue.2, pp.527-535, 2004.

J. M. Palmer, J. M. Theisen, R. M. Duran, W. S. Grayburn, A. M. Calvo et al., Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in Aspergillus nidulans, PLoS Genetics, vol.9, issue.1, p.e1003193, 2013.

A. L. Lind, F. Y. Lim, A. A. Soukup, N. P. Keller, and A. Rokas, An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human PathogenAspergillus fumigatus, mSphere, vol.3, issue.2, pp.50-68, 2018.

N. P. Keller, Fungal secondary metabolism: regulation, function and drug discovery, Nature Reviews Microbiology, vol.17, issue.3, pp.167-180, 2018.

T. Roncal and U. Ugalde, Conidiation induction in Penicillium, Research in Microbiology, vol.154, issue.8, pp.539-546, 2003.

M. T. Boylan, P. M. Mirabito, C. E. Willett, C. R. Zimmerman, and W. E. Timberlake, Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans., Molecular and Cellular Biology, vol.7, issue.9, pp.3113-3118, 1987.

T. H. Adams, M. T. Boylan, and W. E. Timberlake, brlA is necessary and sufficient to direct conidiophore development in aspergillus nidulans, Cell, vol.54, issue.3, pp.353-362, 1988.

P. M. Mirabito, T. H. Adams, and W. E. Timberlake, Interactions of three sequentially expressed genes control temporal and spatial specificity in aspergillus development, Cell, vol.57, issue.5, pp.859-868, 1989.

M. Ni, N. Gao, N. Kwon, K. Shin, and J. Yu, Regulation of Aspergillus Conidiation, Cellular and Molecular Biology of Filamentous Fungi, pp.557-576, 2014.

M. Wang, X. Sun, C. Zhu, Q. Xu, R. Ruan et al., PdbrlA, PdabaA and PdwetA control distinct stages of conidiogenesis in Penicillium digitatum, Research in Microbiology, vol.166, issue.1, pp.56-65, 2015.

M. Wu, M. E. Mead, M. Lee, E. M. Ostrem-loss, S. Kim et al., Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi, mBio, vol.9, issue.4, pp.1130-1148, 2018.

L. Tao and J. Yu, AbaA and WetA govern distinct stages of Aspergillus fumigatus development, Microbiology, vol.157, issue.2, pp.313-326, 2011.

A. M. Baptista, Das ciências e da literatura: por uma aventura poética, Ciência e Cultura, vol.72, issue.1, pp.28-31, 2020.

S. Han and T. Adams, Complex control of the developmental regulatory locus brlA in Aspergillus nidulans, Molecular Genetics and Genomics, vol.266, issue.2, pp.260-270, 2001.

R. A. Prade and W. E. Timberlake, The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development., The EMBO Journal, vol.12, issue.6, pp.2439-2447, 1993.

T. H. Adams, J. K. Wieser, and J. Yu, Asexual Sporulation in Aspergillus nidulans, Microbiology and Molecular Biology Reviews, vol.62, issue.1, pp.35-54, 1998.

F. Alkhayyat, S. Chang-kim, and J. Yu, Genetic Control of Asexual Development in Aspergillus fumigatus, Advances in Applied Microbiology, vol.90, pp.93-107, 2015.

X. Han, C. Xu, Q. Zhang, B. Jiang, J. Zheng et al., C2H2 transcription factor brlA regulating conidiation and affecting growth and biosynthesis of secondary metabolites in Aspergillus clavatus, Int. J. Agric. Biol, vol.20, pp.2549-2555, 2018.

F. Y. Lim, B. Ames, C. T. Walsh, and N. P. Keller, Co-ordination between BrlA regulation and secretion of the oxidoreductase FmqD directs selective accumulation of fumiquinazoline C to conidial tissues inAspergillus fumigatus, Cellular Microbiology, vol.16, issue.8, pp.1267-1283, 2014.

K. Shin, Y. H. Kim, and J. Yu, Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus, Biochemical and Biophysical Research Communications, vol.463, issue.3, pp.428-433, 2015.

Y. Qin, L. Bao, M. Gao, M. Chen, Y. Lei et al., Penicillium decumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes, Applied Microbiology and Biotechnology, vol.97, issue.24, pp.10453-10467, 2013.

C. Sigl, H. Haas, T. Specht, K. Pfaller, H. Kürnsteiner et al., Among Developmental Regulators, StuA but Not BrlA Is Essential for Penicillin V Production inPenicillium chrysogenum, Applied and Environmental Microbiology, vol.77, issue.3, pp.972-982, 2010.

M. Ojeda-lópez, W. Chen, C. E. Eagle, G. Gutiérrez, W. L. Jia et al., Evolution of asexual and sexual reproduction in the aspergilli, Studies in Mycology, vol.91, pp.37-59, 2018.

D. Vries, R. P. Riley, R. Wiebenga, A. Aguilar-osorio, G. Amillis et al., Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus, Genome Biol, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01496186

O. Etxebeste, A. Otamendi, A. Garzia, E. A. Espeso, and M. S. Cortese, Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi, Critical Reviews in Microbiology, vol.45, issue.5-6, pp.548-563, 2019.

H. C. Lin, G. Chiou, Y. H. Chooi, T. C. Mcmahon, W. Xu et al., Elucidation of the Concise Biosynthetic Pathway of the Communesin Indole Alkaloids, Angewandte Chemie International Edition, vol.54, issue.10, pp.3004-3007, 2015.

Y. Fan, P. Li, Y. Chao, H. Chen, N. Du et al., Alkaloids with Cardiovascular Effects from the Marine-Derived Fungus Penicillium expansum Y32, Marine Drugs, vol.13, issue.10, pp.6489-6504, 2015.

H. Hayashi, H. Matsumoto, and K. Akiyama, New Insecticidal Compounds, Communesins C, D and E, fromPenicillium expansumLink MK-57, Bioscience, Biotechnology, and Biochemistry, vol.68, issue.3, pp.753-756, 2004.

I. Kerzaon, Y. F. Pouchus, F. Monteau, B. Le-bizec, M. Nourrisson et al., Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry, Rapid Communications in Mass Spectrometry, vol.23, issue.24, pp.3928-3938, 2009.

A. Numata, C. Takahashi, Y. Ito, T. Takada, K. Kawai et al., Tetrahedron Lett, vol.34, pp.2355-2358, 1993.

R. Jadulco, R. A. Edrada, R. Ebel, A. Berg, K. Schaumann et al., New Communesin Derivatives from the FungusPenicilliumsp.Derived from the Mediterranean SpongeAxinellaverrucosa, Journal of Natural Products, vol.67, issue.1, pp.78-81, 2004.

G. Xu, L. Li, D. Fang, G. Li, G. Zhang et al., Electrospray ionization tandem mass spectrometry of chaetoglobosins, Rapid Communications in Mass Spectrometry, vol.26, issue.18, pp.2115-2122, 2012.

H. Park, M. Lee, S. C. Kim, and J. Yu, The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans, PLOS ONE, vol.12, issue.5, p.e0177099, 2017.

, Issue Information, Molecular Ecology, vol.29, issue.21, p.31, 2020.

H. Kim, K. Han, K. Kim, D. Han, K. Jahng et al., The veA gene activates sexual development in Aspergillus nidulans, Fungal Genetics and Biology, vol.37, issue.1, pp.72-80, 2002.

M. Ni and J. Yu, A Novel Regulator Couples Sporogenesis and Trehalose Biogenesis in Aspergillus nidulans, PLoS ONE, vol.2, issue.10, p.e970, 2007.

Y. Son, H. Cho, W. Chen, S. Son, M. Lee et al., The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species, Current Genetics, vol.66, issue.3, pp.621-633, 2020.

T. Gauthier, X. Wang, J. Sifuentes-dos-santos, A. Fysikopoulos, S. Tadrist et al., Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells, PLoS ONE, vol.7, issue.2, p.e29906, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02652117

A. Blachowicz, N. Raffa, J. W. Bok, T. Choera, B. Knox et al., Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains, mBio, vol.11, issue.1, pp.3415-3434, 2020.

K. Ishiuchi, T. Nakazawa, F. Yagishita, T. Mino, H. Noguchi et al., Combinatorial Generation of Complexity by Redox Enzymes in the Chaetoglobosin A Biosynthesis, Journal of the American Chemical Society, vol.135, issue.19, pp.7371-7377, 2013.

K. Qiao, Y. Chooi, and Y. Tang, Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1, Metabolic Engineering, vol.13, issue.6, pp.723-732, 2011.

T. J. Baltussen, J. Zoll, P. E. Verweij, and W. J. Melchers, Molecular Mechanisms of Conidial Germination in Aspergillus spp., Microbiology and Molecular Biology Reviews, vol.84, issue.1, pp.49-68, 2019.

J. M. Van-munster, B. M. Nitsche, M. Akeroyd, L. Dijkhuizen, M. J. Van-der-maarel et al., Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ?brlA and ?flbA, PLOS ONE, vol.10, issue.1, p.e0116269, 2015.

S. Upadhyay, G. Torres, and X. Lin, Laccases Involved in 1,8-Dihydroxynaphthalene Melanin Biosynthesis in Aspergillus fumigatus Are Regulated by Developmental Factors and Copper Homeostasis, Eukaryotic Cell, vol.12, issue.12, pp.1641-1652, 2013.

U. Perez-cuesta, L. Aparicio-fernandez, X. Guruceaga, L. Martin-souto, A. Abad-diaz-de-cerio et al., Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction, International Microbiology, vol.23, issue.1, pp.55-63, 2019.

H. Si, W. R. Rittenour, K. Xu, M. Nicksarlian, A. M. Calvo et al., Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2, Molecular Microbiology, vol.85, issue.2, pp.252-270, 2012.

H. Park and J. Yu, Developmental regulators in Aspergillus fumigatus, Journal of Microbiology, vol.54, issue.3, pp.223-231, 2016.

M. Kim, W. Jung, Y. Son, J. Yu, M. Lee et al., The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans, Journal of Microbiology, vol.57, issue.10, pp.893-899, 2019.

Y. Son, H. Cho, M. Lee, and H. Park, Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species, PLOS ONE, vol.15, issue.2, p.e0228643, 2020.

J. Houbraken, L. Wang, H. B. Lee, and J. C. Frisvad, New sections in <I>Penicillium</I> containing novel species producing patulin, pyripyropens or other bioactive compounds, Persoonia - Molecular Phylogeny and Evolution of Fungi, vol.36, issue.1, pp.299-314, 2016.

J. L. Steenwyk, X. Shen, A. L. Lind, G. H. Goldman, and A. Rokas, A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium, mBio, vol.10, issue.4, pp.925-944, 2019.

D. Hagiwara, S. Suzuki, K. Kamei, T. Gonoi, and S. Kawamoto, The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus, Fungal Genetics and Biology, vol.73, pp.138-149, 2014.

E. M. Mortensen, H. Mcdonald, J. Yates, and D. R. Kellogg, Cell Cycle-dependent Assembly of a Gin4-Septin Complex, Molecular Biology of the Cell, vol.13, issue.6, pp.2091-2105, 2002.

J. M. Vargas-muñiz, H. Renshaw, A. D. Richards, G. Waitt, E. J. Soderblom et al., Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus, Frontiers in Microbiology, vol.7, 2016.

A. M. Calvo, The VeA regulatory system and its role in morphological and chemical development in fungi, Fungal Genetics and Biology, vol.45, issue.7, pp.1053-1061, 2008.

J. Pitts, Covid-19, county lines and the seriously ?left behind?, Journal of Children's Services, vol.ahead-of-print, issue.ahead-of-print, p.6660, 2020.

S. M. Sanzani, M. Reverberi, M. Punelli, A. Ippolito, and C. Fanelli, Study on the role of patulin on pathogenicity and virulence of Penicillium expansum, International Journal of Food Microbiology, vol.153, issue.3, pp.323-331, 2012.

J. Sekiguchi and G. M. Gaucher, Conidiogenesis and secondary metabolism in Penicillium urticae., Applied and Environmental Microbiology, vol.33, issue.1, pp.147-158, 1977.

S. Valente, A. Cometto, E. Piombo, G. R. Meloni, A. Ballester et al., Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence, International Journal of Food Microbiology, vol.328, p.108687, 2020.

J. Reiß, Development of Aspergillus parasiticus and formation of aflatoxin B1 under the influence of conidiogenesis affecting compounds, Arch. Microbiol, vol.133, pp.236-238, 1982.

J. Zhang, H. Chen, M. W. Sumarah, Q. Gao, D. Wang et al., veA Gene Acts as a Positive Regulator of Conidia Production, Ochratoxin A Biosynthesis, and Oxidative Stress Tolerance in Aspergillus niger, Journal of Agricultural and Food Chemistry, vol.66, issue.50, pp.13199-13208, 2018.

T. Satterlee, B. Nepal, S. Lorber, O. Puel, and A. M. Calvo, The Transcriptional Regulator HbxA Governs Development, Secondary Metabolism, and Virulence in Aspergillus fumigatus, Applied and Environmental Microbiology, vol.86, issue.3, pp.1779-1798, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02613971

B. N. Lee and T. H. Adams, The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I., Genes & Development, vol.8, issue.6, pp.641-651, 1994.

J. Wieser, B. N. Lee, J. W. Fondon, and T. H. Adams, Genetic requirements for initiating asexual development in Aspergillus nidulans, Current Genetics, vol.27, issue.1, pp.62-69, 1994.

A. B. Rodríguez-urra, C. Jiménez, M. I. Nieto, J. Rodríguez, H. Hayashi et al., Signaling the Induction of Sporulation Involves the Interaction of Two Secondary Metabolites inAspergillus nidulans, ACS Chemical Biology, vol.7, issue.3, pp.599-606, 2012.

J. Chen, W. Zhang, Q. Guo, W. Yu, Y. Zhang et al., Bioactivities and Future Perspectives of Chaetoglobosins, Evidence-Based Complementary and Alternative Medicine, vol.2020, pp.1-10, 2020.

C. M. Coyle, S. C. Kenaley, W. R. Rittenour, and D. G. Panaccione, Association of ergot alkaloids with conidiation inAspergillus fumigatus, Mycologia, vol.99, issue.6, pp.804-811, 2007.

J. Schümann and C. Hertweck, Molecular Basis of Cytochalasan Biosynthesis in Fungi: Gene Cluster Analysis and Evidence for the Involvement of a PKS-NRPS Hybrid Synthase by RNA Silencing, Journal of the American Chemical Society, vol.129, issue.31, pp.9564-9565, 2007.

J. Qi, L. Jiang, P. Zhao, H. Chen, X. Jia et al., Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus, Applied Microbiology and Biotechnology, vol.104, issue.4, pp.1545-1553, 2020.

K. Twumasi-boateng, Y. Yu, D. Chen, F. N. Gravelat, W. C. Nierman et al., Transcriptional Profiling Identifies a Role for BrlA in the Response to Nitrogen Depletion and for StuA in the Regulation of Secondary Metabolite Clusters in Aspergillus fumigatus, Eukaryotic Cell, vol.8, issue.1, pp.104-115, 2008.

P. J. Punt, R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, and C. A. Van-den-hondel, Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli, Gene, vol.56, issue.1, pp.117-124, 1987.

N. A. Shevchuk, A. V. Bryksin, Y. A. Nusinovich, F. C. Cabello, M. Sutherland et al., Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously, Nucleic Acids Research, vol.32, issue.2, pp.19e-19, 2004.

F. Y. Lim, J. F. Sanchez, C. C. Wang, and N. P. Keller, Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi, Enzym. Eng. Evol. Gen. Methods, vol.517, pp.303-324, 2012.

Y. C. Adjovi, S. Bailly, B. J. Gnonlonfin, S. Tadrist, A. Querin et al., Analysis of the contrast between natural occurrence of toxigenic Aspergilli of the Flavi section and aflatoxin B1 in cassava, Food Microbiology, vol.38, pp.151-159, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632483

D. Vries, R. P. Burgers, K. Van-de, P. J. Vondervoort, J. C. Frisvad et al., A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production, Appl. Environ. Microbiol, vol.70, pp.3954-3959, 2004.

M. Meijer, J. Houbraken, S. Dalhuijsen, R. A. Samson, and R. P. De-vries, Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black Aspergilli, Stud. Mycol, vol.69, pp.19-30, 2011.

, Int. J. Mol. Sci, vol.2020, p.6660

M. Pean, S. Boiry, J. Ferrandi, F. Gibiat, O. Puel et al., Production and use of mycotoxins uniformly enriched with stable isotopes for their dosage in biological samples: (1) production of uniformly enriched biomass, J. Label. Compd. Radiopharm, vol.50, pp.569-570, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259031

T. Hautbergue, O. Puel, S. Tadrist, L. Meneghetti, M. Péan et al., Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and high-resolution mass spectrometry, Journal of Chromatography B, vol.1071, pp.29-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607721

S. Macdonald, M. Long, and J. Gilbert, Felgueiras, I. Liquid chromatographic method for determination of patulin in clear and cloudy apple juices and apple puree: Collaborative study, J. AOAC Int, vol.83, pp.1387-1394, 2000.

P. M. Cano, E. L. Jamin, S. Tadrist, P. Bourdaud&apos;hui, M. Pean et al., New untargeted metabolic profiling combining mass spectrometry and isotopic labeling: Application on Aspergillus fumigatus grown on wheat, Anal. Chem, vol.85, pp.8412-8420, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646654

H. Laatsch and . Antibase, The Natural Compound Identifier, 2012.

K. Blin, S. Shaw, K. Steinke, R. Villebro, N. Ziemert et al., antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline, Nucleic Acids Research, vol.47, issue.W1, pp.W81-W87, 2019.

J. Tannous, C. Canlet, P. Pinton, Y. Lippi, I. Alassane-kpembi et al., Patulin transformation products and last intermediates in its biosynthetic pathway, E and Z-ascladiol, are not toxic to human cells, Arch. Toxicol, vol.91, pp.2455-2467, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608528

R. Edgar, M. Domrachev, and A. Lash, Gene expression omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, pp.207-210, 2002.

W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson et al., Orchestrating high-throughput genomic analysis with bioconductor, Nat. Methods, vol.12, pp.115-121, 2015.

S. C. Hicks, K. Okrah, J. N. Paulson, J. Quackenbush, R. A. Irizarry et al., Smooth quantile normalization, Biostatistics, vol.19, issue.2, pp.185-198, 2017.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, issue.7, pp.e47-e47, 2015.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society: Series B (Methodological), vol.57, issue.1, pp.289-300, 1995.