A. Orr and H. , Adaptation and the cost of complexity, Evolution, vol.54, p.13, 2006.

R. A. Fisher, The Genetical Theory of Natural Selection, 1930.

A. B. Paaby and M. V. Rockman, The many faces of pleiotropy, Trends Genet, vol.29, pp.66-73, 2013.

E. Marchadier, The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana, PLoS Genet, vol.15, pp.1-27, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02629200

G. P. Wagner, Pleiotropic scaling of gene effects and the 'cost of complexity', Nature, vol.452, pp.470-472, 2008.

Z. Wang, B. Liao, and J. Zhang, Genomic patterns of pleiotropy and the evolution of complexity, Proc. Natl Acad. Sci, vol.107, pp.18034-18039, 2010.

G. P. Wagner and J. Zhang, The pleiotropic structure of the genotypephenotype map: the evolvability of complex organisms, Nat. Rev. Genet, vol.12, pp.204-213, 2011.

G. P. Wagner, M. Pavlicev, and J. M. Cheverud, The road to modularity, Nat. Rev. Genet, vol.8, pp.921-931, 2007.

L. Frachon, Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time, Nat. Ecol. Evol, vol.1, pp.1551-1561, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01723277

C. Violle, Let the concept of trait be functional! Oikos, vol.116, pp.882-892, 2007.

P. B. Reich, The world-wide 'fast-slow' plant economics spectrum: a traits manifesto, J. Ecol, vol.102, pp.275-301, 2014.

I. J. Wright, The worldwide leaf economics spectrum, Nature, vol.428, pp.821-827, 2004.

S. Tisné, Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population, Plant Cell Environ, vol.33, pp.1875-1887, 2010.

K. Sartori, Leaf economics and slow-fast adaptation across the geographic range of Arabidopsis thaliana, Sci. Rep, vol.9, pp.1-12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02411727

G. A. Auge, S. Penfield, and K. Donohue, Pleiotropy in developmental regulation by flowering-pathway genes: is it an evolutionary constraint?, N. Phytol, vol.224, pp.55-70, 2019.

J. A. Bac-molenaar, C. Granier, J. J. Keurentjes, and D. Vreugdenhil, Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis, Plant Cell Environ, vol.39, pp.88-102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635370

M. Blümel, N. Dally, and C. Jung, Flowering time regulation in crops-what did we learn from Arabidopsis?, Curr. Opin. Biotechnol, vol.32, pp.121-129, 2015.

L. H. Cho, J. Yoon, and G. An, The control of flowering time by environmental factors, Plant J, vol.90, pp.708-719, 2017.

S. D. Michaels and R. M. Amasino, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, vol.11, pp.949-956, 1999.

G. C. Chiang, D. Barua, E. M. Kramer, R. M. Amasino, and K. Donohue, Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana, Proc. Natl Acad. Sci, vol.106, pp.11661-11666, 2009.

M. R. Willmann and R. S. Poethig, The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis, Development, vol.138, pp.677-685, 2011.

W. Deng, FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis, Proc. Natl Acad. Sci, vol.108, pp.6680-6685, 2011.

J. T. Lovell, Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation, Proc. R. Soc. B Biol. Sci, vol.280, pp.1-8, 2013.

J. N. Ferguson, Accelerated flowering time reduces lifetime water use without penalizing reproductive performance in Arabidopsis, Plant Cell Environ, vol.42, pp.1847-1867, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154592

J. K. Mckay, J. H. Richards, and T. Mitchell-olds, Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits, Mol. Ecol, vol.12, pp.1137-1151, 2003.

J. Masle, S. R. Gilmore, and G. D. Farquhar, The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature, vol.436, pp.866-870, 2005.

I. Baxter, A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1, PLoS Genet, vol.1, pp.1-8, 2010.

I. Kronholm, X. Pico, J. Goudet, C. Alonso-blanco, J. Meaux et al., Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1, Evolution, vol.66, pp.2287-2302, 2012.

D. S. Vidigal, Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana, Plant Cell Environ, vol.39, pp.1737-1748, 2016.

B. Brachi, Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana, Proc. Natl Acad. Sci, vol.112, pp.4032-4037, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134027

F. Vasseur, C. Violle, B. J. Enquist, C. Granier, and D. Vile, A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry, Ecol. Lett, vol.15, pp.1149-1157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651649

J. Ågren and D. W. Schemske, Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range, N. Phytol, vol.194, pp.1112-1122, 2012.

S. Tisné, Phenoscope: An automated large-scale phenotyping platform offering high spatial homogeneity, Plant J, vol.74, pp.534-544, 2013.

L. Sass, P. Majer, and É. Hideg, Leaf hue measurements: a high-throughput screening of chlorophyll content, High-Throughput Phenotyping in Plants: Methods and Protocols, pp.61-69, 2012.

,

K. C. Scortecci, S. D. Michaels, and R. M. Amasino, Identification of a MADSbox gene, FLOWERING LOCUS M, that represses flowering, Plant J, vol.26, pp.229-236, 2001.

S. Balasubramanian, S. Sureshkumar, J. Lempe, and D. Weigel, Potent induction of Arabidopsis thaliana flowering by elevated growth temperature, PLoS Genet, vol.2, pp.980-0989, 2006.

T. F. Mackay, Complementing complexity, Nat. Genet, vol.36, pp.1145-1147, 2004.

D. Posé, Temperature-dependent regulation of flowering by antagonistic FLM variants, Nature, vol.503, pp.414-417, 2013.

S. Sureshkumar, C. Dent, A. Seleznev, C. Tasset, and S. Balasubramanian, Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis, Nat. Plants, vol.2, pp.1-7, 2016.

G. Capovilla, E. Symeonidi, R. Wu, and M. Schmid, Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana, J. Exp. Bot, vol.68, pp.5117-5127, 2017.

C. Alonso-blanco, 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana, Cell, vol.166, pp.481-491, 2016.

B. Mendez-vigo, F. X. Pico, M. Ramiro, J. M. Martinez-zapater, and C. Alonso-blanco, Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis, Plant Physiol, vol.157, pp.1942-1955, 2011.

C. R. Lee, On the post-glacial spread of human commensal Arabidopsis thaliana, Nat. Commun, vol.8, pp.1-12, 2017.

A. Fulgione, M. Koornneef, F. Roux, J. Hermisson, and A. M. Hancock, Madeiran arabidopsis thaliana reveals ancient long-range colonization and clarifies demography in eurasia, Mol. Biol. Evol, vol.35, pp.564-574, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02388173

N. J. Kooyers, The evolution of drought escape and avoidance in natural herbaceous populations, Plant Sci, vol.234, pp.155-162, 2015.

U. Lutz, Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M, PLoS Genet, vol.11, pp.1-26, 2015.

U. Lutz, Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in arabidopsis, vol.6, pp.1-22, 2017.

J. G. Monroe, Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function, Elife, vol.7, pp.1-18, 2018.

Y. Xu, Adaptation and phenotypic diversification through loss-offunction mutations in Arabidopsis protein-coding genes, Plant Cell, vol.31, pp.1012-1025, 2019.

S. Poormohammad-kiani, Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient, PLoS Genet, vol.8, pp.1-6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190766

B. Gujas, C. Alonso-blanco, and C. S. Hardtke, Natural arabidopsis brx loss-offunction alleles confer root adaptation to acidic soil, Curr. Biol, vol.22, pp.1962-1968, 2012.

W. Wu, A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication, Nat. Plants, vol.3, pp.1-7, 2017.

E. Park, Z. Pan, Z. Zhang, L. Lin, and Y. Xing, The expanding landscape of alternative splicing variation in human populations, Am. J. Hum. Genet, vol.102, pp.11-26, 2018.

G. Zhang, Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome, Genome Res, vol.20, pp.646-654, 2010.

A. S. Reddy, Y. Marquez, M. Kalyna, and A. Barta, Complexity of the alternative splicing landscape in plants, Plant Cell, vol.25, pp.3657-3683, 2013.

S. R. Thatcher, Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation, Plant Cell, vol.26, pp.3472-3487, 2014.

Q. Chen, Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize, Plant Cell, vol.30, pp.1404-1423, 2018.

R. Kesari, Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation, Proc. Natl Acad. Sci, vol.109, pp.9197-9202, 2012.

P. Li, Z. Tao, and C. Dean, Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR, Genes Dev, vol.29, pp.696-701, 2015.

K. Low, C. Lim, H. Ko, and I. Edery, Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation, Neuron, vol.377, pp.364-377, 2008.

A. Fulgione and A. M. Hancock, Archaic lineages broaden our view on the history of Arabidopsis thaliana, N. Phytol, vol.219, pp.1194-1198, 2018.

C. W. Hsu, C. Y. Lo, and C. R. Lee, On the postglacial spread of human commensal Arabidopsis thaliana: journey to the East, N. Phytol, vol.222, pp.1447-1457, 2019.

T. F. Sharbel, B. Haubold, and T. Mitchell-olds, Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe, Mol. Ecol, vol.9, pp.2109-2118, 2000.

A. C. Brennan, The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe, BMC Plant Biol, vol.14, pp.1-14, 2014.

C. Darwin, On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life, 1859.

H. Sheehan, MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation, Nat. Genet, vol.48, pp.159-166, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638244

Y. Van-de-peer, E. Mizrachi, and K. Marchal, The evolutionary significance of polyploidy, Nat. Rev. Genet, vol.18, pp.411-424, 2017.

H. Bradshaw and D. Schemske, Allele substitution at a flower colour locus produces a pollinator shift in monkeyflower, Nature, vol.426, pp.176-178, 2003.

L. Frachon, A genomic map of climate adaptation in Arabidopsis thaliana at a micro-geographic scale, Front. Plant Sci, vol.9, pp.1-15, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02373598

C. M. Fusari, Genome-wide association mapping reveals that specific and pleiotropic regulatory mechanisms fine-tune central metabolism and growth in Arabidopsis, Plant Cell, vol.29, pp.2349-2373, 2017.

M. Simon, Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers, Genetics, vol.178, pp.2253-2264, 2008.

O. Loudet, Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2, Nat. Genet, vol.39, pp.896-900, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02663317

D. Vlad, F. Rappaport, M. Simon, and O. Loudet, Gene transposition causing natural variation for growth in Arabidopsis thaliana, PLoS Genet, vol.6, pp.1-11, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203934

C. Trontin, A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana, Plant J, vol.78, pp.121-133, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204062

K. W. Broman, H. Wu, ?. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, pp.889-890, 2003.

D. Arends, P. Prins, R. C. Jansen, and K. W. Broman, R/qtl: High-throughput multiple QTL mapping, Bioinformatics, vol.26, pp.2990-2992, 2010.

I. Schmalenbach, L. Zhang, M. Ryngajllo, and J. Jiménez-gómez, Functional analysis of the Landsberg erecta allele of FRIGIDA, BMC Plant Biol, vol.14, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204064

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

D. I. Warton, R. A. Duursma, D. S. Falster, and S. Taskinen, smatr 3-an R package for estimation and inference about allometric lines, Methods Ecol. Evol, vol.3, pp.257-259, 2012.

S. Purcell, PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet, vol.81, pp.559-575, 2007.

, Yann Serrand for the supervision of the Phenoscope, and Lilian Dahuron for expert care of our plants. We also would like to thank Markus Schmid, MPI Developmental Biology

, Carlos Alonso-Blanco for sharing his experience in sequence diversity analyses

C. Lee, ) for sharing his analysis concerning relict accessions; and Moises Exposito-Alonso for his advice regarding traits and genotype associations with climatic variables