, TNF-?, and IL-17A producing CD2 + and CD2 ? ?? T cells in the presence of DON and DOM-1. Violet proliferation dye-stained PBMCs were cultivated for 4 days in the presence of ConA alone or in combination, FIGURE 9 | Frequencies of IFN-?

P. Following, A) CD2 + and CD2 ? ?? T cells were gated and further analyzed for production of TNF-?, IFN-?, and IL-17A in the presence of DON and DOM-1. The black rectangles in the pseudocolor plots show the gating strategy that was applied for analysis of total IFN-?, total TNF-?, and total IL-17A producing cells. Red numbers give percentages of cytokine producing ?? T cells in these gates. Representative flow cytometry data from one animal is shown. (B,C) Boxplots show the results for ?? T cells within PBMCs from six individual pigs. (B) Frequency of IFN-? and TNF-? producing cells within CD2 + ?? T cells. (C) Frequency of IFN-?

E. Streit, K. Naehrer, I. Rodrigues, and G. Schatzmayr, Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia, J Sci Food Agric, vol.93, pp.2892-99, 2013.

A. Pierron, I. Alassane-kpembi, and O. Ip, Impact of mycotoxin on immune response and consequences for pig health, Anim Nutr, vol.2, pp.63-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608648

J. J. Pestka, Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance, Arch Toxicol, vol.84, pp.663-79, 2010.

B. Novak, E. Vatzia, A. Springler, A. Pierron, W. Gerner et al., Bovine peripheral blood mononuclear cells are more sensitive to deoxynivalenol than those derived from poultry and swine, Toxins, vol.10, p.152, 2018.

E. Vatzia, A. Pierron, A. Saalmüller, E. Mayer, and W. Gerner, Deoxynivalenol affects proliferation and expression of activation-related molecules in major porcine T-cell subsets, Toxins, vol.11, p.644, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02618453

I. Taranu, D. E. Marina, R. Burlacu, P. Pinton, V. Damian et al., Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins, Arch Anim Nutr, vol.64, pp.383-93, 2010.

D. Bimczok, S. Döll, H. Rau, T. Goyarts, N. Wundrack et al., The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocytederived dendritic cells in vivo and in vitro, Immunobiology, vol.212, pp.655-66, 2007.

J. Hendriks, Y. Xiao, and J. Borst, CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool, J Exp Med, vol.198, pp.1369-80, 2003.

J. S. Burr, N. D. Savage, G. E. Messah, S. L. Kimzey, A. S. Shaw et al., Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL, J Immunol, vol.166, p.5331, 2001.

N. Garreau-de-loubresse, I. Prokhorova, W. Holtkamp, M. V. Rodnina, G. Yusupova et al., Structural basis for the inhibition of the eukaryotic ribosome, Nature, vol.513, pp.517-522, 2014.

J. J. Pestka, Mechanisms of deoxynivalenol-induced gene expression and apoptosis, Food Addit Contam, vol.25, pp.1128-1168, 2008.

H. K. Bae and J. J. Pestka, Deoxynivalenol induces p38 interaction with the ribosome in monocytes and macrophages, Toxicol Sci, vol.105, pp.59-66, 2008.

H. Zhou, Z. Islam, and J. J. Pestka, Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol, Toxicol Sci, vol.87, pp.113-135, 2005.

A. Pierron, S. Mimoun, L. S. Murate, N. Loiseau, Y. Lippi et al., Microbial biotransformation of DON: molecular basis for reduced toxicity, Sci Rep, vol.6, p.29105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636872

E. B. Ünal, F. Uhlitz, and N. Blüthgen, A compendium of ERK targets, FEBS Lett, vol.591, pp.2607-2622, 2017.

A. Springler, S. Hessenberger, N. Reisinger, C. Kern, V. Nagl et al., Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: multi-parameter analysis for the evaluation of cytotoxicity and cellular effects, Mycotoxin Res, vol.33, pp.25-37, 2017.

E. Mayer, B. Novak, A. Springler, H. E. Schwartz-zimmermann, V. Nagl et al., Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line, Mycotoxin Res, vol.33, pp.297-308, 2017.

V. Lazarevic, L. H. Glimcher, and G. M. Lord, T-bet: a bridge between innate and adaptive immunity, Nat Rev Immunol, vol.13, pp.777-89, 2013.

K. J. Oestreich and A. S. Weinmann, Transcriptional mechanisms that regulate T helper 1 cell differentiation, Curr Opin Immunol, vol.24, pp.191-95, 2012.

S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman et al., A novel transcription factor, T-bet, directs Th1 lineage commitment, Cell, vol.100, pp.655-69, 2000.

T. Hosoya, I. Maillard, and J. D. Engel, From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation, Immunol Rev, vol.238, pp.110-135, 2010.

W. Zheng and R. A. Flavell, The transcription factor GATA-3 Is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells, Cell, vol.89, pp.587-96, 1997.

F. Sallusto and A. Lanzavecchia, Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity, Eur J Immunol, vol.39, pp.2076-82, 2009.

S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, Regulatory T cells and immune tolerance, Cell, vol.133, pp.775-87, 2008.

E. L. Sassu, A. Ladinig, S. C. Talker, M. Stadler, C. Knecht et al., Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae, Vet Res, vol.48, p.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01499738

W. Gerner, S. C. Talker, H. C. Koinig, C. Sedlak, K. H. Mair et al., Phenotypic and functional differentiation of porcine ?? T cells: current knowledge and available tools, Mol Immunol, vol.66, pp.3-13, 2015.

A. Saalmüller, M. J. Reddehase, H. J. Bühring, S. Jonjiae, and U. H. Koszinowski, Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes, Eur J Immunol, vol.17, pp.1297-301, 1987.

J. Leitner, K. Reutner, S. E. Essler, I. Popow, W. Gerner et al., Porcine SWC1 is CD52 -final determination by the use of a retroviral cDNA expression library, Vet Immunol Immunopathol, vol.146, pp.27-34, 2012.

K. Reutner, J. Leitner, S. E. Essler, K. Witter, M. Patzl et al., Porcine CD27: identification, expression and functional aspects in lymphocyte subsets in swine, Dev Comp Immunol, vol.38, pp.321-352, 2012.

S. A. Mccracken, K. Hadfield, Z. Rahimi, E. D. Gallery, and J. M. Morris, NF-kappaBregulated suppression of T-bet in T cells represses Th1 immune responses in pregnancy, Eur J Immunol, vol.37, pp.1386-96, 2007.

M. Gao, J. W. Qian, Y. , J. L. Feng, G. Sun et al., Effect of N-methyl-D-aspartate receptor antagonist on T helper cell differentiation induced by phorbolmyristate-acetate and ionomycin, Cytokine, vol.56, pp.458-65, 2011.

K. H. Mair, C. Sedlak, T. Käser, A. Pasternak, B. Levast et al., The porcine innate immune system: an update, Dev Comp Immunol, vol.45, pp.321-364, 2014.

K. Stepanova and M. Sinkora, Porcine ?? T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR, J Immunol, vol.190, pp.2111-2131, 2013.

I. M. Rodríguez-gómez, S. C. Talker, T. Käser, M. Stadler, L. Reiter et al., Expression of T-Bet, eomesodermin, and GATA-3 correlates with distinct phenotypes and functional properties in porcine ?? T cells, Front Immunol, vol.10, p.396, 2019.

C. Sedlak, M. Patzl, A. Saalmüller, and W. Gerner, CD2 and CD8? define porcine ?? T cells with distinct cytokine production profiles, Dev Comp Immunol, vol.45, pp.97-106, 2014.

N. M. Chapman, M. R. Boothby, and H. Chi, Metabolic coordination of T cell quiescence and activation, Nat Rev Immunol, vol.20, pp.55-70, 2020.

I. M. Rodríguez-gómez, S. C. Talker, T. Käser, M. Stadler, S. E. Hammer et al., Expression of T-bet, Eomesodermin and GATA-3 in porcine ?? T cells

, Dev Comp Immunol, vol.60, pp.115-141, 2016.

A. Ladinig, J. K. Lunney, C. J. Souza, C. Ashley, G. Plastow et al., Cytokine profiles in pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome, Vet Res, vol.45, p.113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01290616

S. Dänicke, T. Goyarts, H. Valenta, E. Razzazi, and J. Böhm, On the effects of deoxynivalenol (DON) in pig feed on growth performance, nutrients utilization and DON metabolism, J Anim Feed Sci, vol.13, pp.539-56, 2004.

J. Lee, L. Kim, and J. Choi, Revisiting the concept of targeting NFAT to COntrol T cell immunity and autoimmune diseases, Front Immunol, vol.9, p.2747, 2018.

Y. Moon and J. J. Pestka, Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogenactivated protein kinases, Toxicol Sci, vol.69, pp.373-82, 2002.

V. I. Shifrin and P. Anderson, Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis, J Biol Chem, vol.274, pp.13985-92, 1999.

D. L. Farber, Biochemical signaling pathways for memory T cell recall, Semin Immunol, vol.21, pp.84-91, 2009.

K. Reutner, J. Leitner, A. Müllebner, A. Ladinig, S. E. Essler et al., CD27 expression discriminates porcine T helper cells with functionally distinct properties, Vet Res, vol.44, p.18, 2013.

R. W. Hendriks, M. C. Nawijn, J. D. Engel, H. Van-doorninck, F. Grosveld et al., Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus, Eur J Immunol, vol.29, pp.1912-1930, 1999.

M. Rodríguez-palmero, T. Hara, A. Thumbs, and T. Hünig, Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiationin vitro andin vivo, Eur J Immunol, vol.29, pp.3914-3938, 1999.

A. Pierron, A. P. Bracarense, A. Cossalter, J. Laffitte, H. E. Schwartz-zimmermann et al., Deepoxy-deoxynivalenol retains some immunemodulatory properties of the parent molecule deoxynivalenol in piglets, Arch Toxicol, vol.92, pp.3381-3390, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629256

H. M. Guerrero-netro, A. Estienne, Y. Chorfi, and C. A. Price, The mycotoxin metabolite deepoxy-deoxynivalenol increases apoptosis and decreases steroidogenesis in bovine ovarian theca cells, Biol Reprod, vol.97, pp.746-57, 2017.