M. Skocaj, M. Filipic, J. Petkovic, and S. Novak, Titanium dioxide in our everyday life; is it safe?, Radiol Oncol, vol.45, pp.227-274, 2011.

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, V. Goetz et al., Titanium dioxide nanoparticles in food and personal care products, Environ Sci Technol, vol.46, pp.2242-50, 2012.

M. Shakeel, F. Jabeen, S. Shabbir, M. S. Asghar, M. S. Khan et al., Toxicity of Nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review, Biol Trace Elem Res, vol.172, pp.1-36, 2016.

J. Böckmann, H. Lahl, T. Eckert, and B. Unterhalt, Blood levels of titanium before and after oral administration of titanium dioxide, Pharmazie, vol.55, pp.140-143, 2000.

L. C. Pele, V. Thoree, S. F. Bruggraber, D. Koller, R. P. Thompson et al., Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers, Part Fibre Toxicol, vol.12, p.26, 2015.

K. Jones, J. Morton, I. Smith, K. Jurkschat, A. Harding et al., Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles, Toxicol Lett, vol.233, pp.95-101, 2015.

S. Bettini, E. Boutet-robinet, C. Cartier, C. Coméra, E. Gaultier et al., Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon, Sci Rep, vol.7, p.40373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508951

C. Coméra, C. Cartier, E. Gaultier, C. O. Panouille, Q. et al., Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice, Part Fibre Toxicol, vol.17, p.26, 2020.

M. B. Heringa, R. Peters, R. Bleys, M. K. Van-der-lee, and P. C. Tromp,

P. Kesteren, Detection of titanium particles in human liver and spleen and possible health implications, Part Fibre Toxicol, vol.15, p.15, 2018.

E. Abbasi-oshaghi, F. Mirzaei, and M. Pourjafar, NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study, Int J Nanomedicine, vol.14, pp.1919-1955, 2019.

L. Zhang, X. Xie, Y. Zhou, D. Yu, Y. Deng et al., Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. IJN, vol.13, pp.777-89, 2018.

S. Chakrabarti, D. Goyary, S. Karmakar, and P. Chattopadhyay, Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure to titanium dioxide nanoparticles, Toxicol Ind Health, vol.35, pp.577-92, 2019.

M. Dhupal, J. Oh, D. R. Tripathy, S. Kim, S. B. Koh et al., Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation, Int J Nanomedicine, vol.13, pp.6735-50, 2018.

T. Suzuki, N. Miura, R. Hojo, Y. Yanagiba, M. Suda et al., Genotoxicity assessment of titanium dioxide nanoparticle accumulation of 90 days in the liver of gpt delta transgenic mice, Genes Environ, vol.42, p.7, 2020.

, EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), EFSA J, vol.14, issue.9, p.4545, 2016.

M. Dorier, D. Béal, C. Marie-desvergne, M. Dubosson, F. Barreau et al., Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress, Nanotoxicology, vol.11, issue.6, pp.751-61, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01564506

K. Yamashita, Y. Yoshioka, K. Higashisaka, K. Mimura, Y. Morishita et al., Silica and titanium dioxide nanoparticles cause pregnancy complications in mice, Nature Nanotech, vol.6, pp.321-329, 2011.

M. Umezawa, Effect of fetal exposure to titanium dioxide nanoparticle on brain development -brain region information, J Toxicol Sci, vol.37, issue.6, pp.1247-52, 2012.

M. Mölsä, T. Heikkinen, J. Hakkola, K. Hakala, O. Wallerman et al., Functional role of P-glycoprotein in the human blood-placental barrier, Clin Pharmacol Therapeutics, vol.78, pp.123-154, 2005.

S. J. Hemauer, S. L. Patrikeeva, X. Wang, D. R. Abdelrahman, G. Hankins et al., Role of transporter-mediated efflux in the placental biodisposition of bupropion and its metabolite, OH-bupropion, Biochem Pharmacol, vol.80, pp.1080-1086, 2010.

E. Delorme-axford, A. Bayer, Y. Sadovsky, and C. B. Coyne, Autophagy as a mechanism of antiviral defense at the maternal-fetal interface, Autophagy Taylor Francis, vol.9, pp.2173-2177, 2013.

E. Rollerova, J. Tulinska, A. Liskova, M. Kuricova, J. Kovriznych et al., Titanium Dioxide Nanoparticles, vol.49, pp.97-112, 2015.

A. Mohammadipour, A. Fazel, H. Haghir, F. Motejaded, H. Rafatpanah et al., Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring, Environ Toxicol Pharmacol, vol.37, pp.617-642, 2014.

E. Bideskan, A. Mohammadipour, A. Fazel, A. Haghir, H. Rafatpanah et al., Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis, Exp Toxicol Pathol, vol.69, pp.329-366, 2017.

X. Gao, S. Yin, M. Tang, J. Chen, Z. Yang et al., Effects of developmental exposure to TiO2 nanoparticles on synaptic plasticity in hippocampal dentate Gyrus area: an in vivo study in anesthetized rats, Biol Trace Elem Res, vol.143, pp.1616-1644, 2011.

K. Takeda, K. Suzuki, A. Ishihara, M. Kubo-irie, R. Fujimoto et al., Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems, J Health Sci, vol.55, pp.95-102, 2009.

A. Schmidt, D. M. Morales-prieto, J. Pastuschek, K. Fröhlich, and U. R. Markert, Only humans have human placentas: molecular differences between mice and humans, J Reprod Immunol, vol.108, pp.65-71, 2015.

A. C. Enders and T. N. Blankenship, Comparative placental structure, Adv Drug Deliv Rev, vol.38, pp.3-15, 1999.

X. Li, A. Li, W. Zhang, X. Liu, Y. Liang et al., A pilot study of mothers and infants reveals fetal sex differences in the placental transfer efficiency of heavy metals, Ecotoxicol Environ Saf, vol.186, p.109755, 2019.

M. K. Wo?niak, E. Jaszczak, M. Wiergowski, ?. Polkowska, J. Namie?nik et al., Meconium analysis as a promising diagnostic tool for monitoring fetal exposure to toxic substances: recent trends and perspectives, TrAC Trends Anal Chem, vol.109, pp.124-165, 2018.

P. Wick, A. Malek, P. Manser, D. Meili, X. Maeder-althaus et al., Barrier capacity of human placenta for Nanosized materials, Environ Health Perspect, vol.118, pp.432-438, 2010.

S. Grafmueller, P. Manser, L. Diener, P. Diener, X. Maeder-althaus et al., Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex Vivo human placental perfusion model, Environ Health Perspect, vol.123, pp.1280-1286, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02163367

M. S. Poulsen, T. Mose, L. L. Maroun, L. Mathiesen, L. E. Knudsen et al., Kinetics of silica nanoparticles in the human placenta, Nanotoxicology, vol.9, pp.79-86, 2015.

C. Muoth, A. Wichser, M. Monopoli, M. Correia, N. Ehrlich et al., A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment, Nanoscale, vol.8, pp.17322-17354, 2016.

L. Aengenheister, B. B. Dugershaw, P. Manser, A. Wichser, R. Schoenenberger et al., Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models, Eur J Pharm Biopharm, vol.142, pp.488-97, 2019.

M. Iwai-shimada, S. F. Nakayama, T. Isobe, Y. Kobayashi, G. Suzuki et al., Investigation of the effects of exposure to chemical substances on child health, Nihon Eiseigaku Zasshi, vol.74, 2019.

E. Gaffet, F. Marano, L. Ferrari, E. Flahaut, J. Jouzel et al., Bilan des connaissances relatives aux effets des nanoparticules de TiO2 sur la santé humaine ; caractérisation de l'exposition des populations et mesures de gestion, 2018.

A. Li, T. Zhuang, J. Shi, Y. Liang, and M. Song, Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer, J Environ Sci, vol.80, pp.99-106, 2019.

T. Raia-barjat, C. Prieux, L. Leclerc, G. Sarry, L. Grimal et al., Elemental fingerprint of human amniotic fluids and relationship with potential sources of maternal exposure, J Trace Elem Med Biol, vol.60, p.126477, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02496639

P. J. Lu, S. W. Fang, W. L. Cheng, S. C. Huang, M. C. Huang et al., Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods, J Food Drug Anal, vol.26, pp.1192-200, 2018.

Z. A. Lewicka, A. F. Benedetto, D. N. Benoit, W. W. Yu, J. D. Fortner et al., The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens, J Nanopart Res, vol.13, p.3607, 2011.

A. T. Saber, N. R. Jacobsen, A. Mortensen, J. Szarek, P. Jackson et al., Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint, Part Fibre Toxicol, vol.9, p.4, 2012.

L. Mikkelsen, K. A. Jensen, I. K. Koponen, A. T. Saber, H. Wallin et al., oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles, Nanotoxicology, vol.7, pp.117-151, 2013.

A. T. Saber, A. Mortensen, J. Szarek, N. R. Jacobsen, M. Levin et al., Toxicity of pristine and paint-embedded TiO2 nanomaterials, Hum Exp Toxicol, vol.38, pp.11-24, 2019.

T. Filippini, S. Tancredi, C. Malagoli, S. Cilloni, M. Malavolti et al., Aluminum and tin: food contamination and dietary intake in an Italian population, J Trace Elem Med Biol, vol.52, pp.293-301, 2019.

T. Grigoratos and G. Martini, Brake wear particle emissions: a review, Environ Sci Pollut Res Int, vol.22, pp.2491-504, 2015.

J. Martin, D. Bello, K. Bunker, M. Shafer, D. Christiani et al., Occupational exposure to nanoparticles at commercial photocopy centers, J Hazard Mater, vol.298, pp.351-60, 2015.

T. Gonet and B. A. Maher, Airborne, vehicle-derived Fe-bearing nanoparticles in the urban environment: a review, Environ Sci Technol, vol.53, pp.9970-91, 2019.

M. Iwai-shimada, S. Kameo, K. Nakai, K. Yaginuma-sakurai, N. Tatsuta et al., Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku study of child development in Japan, Environ Health Prev Med, vol.24, p.35, 2019.

T. Berton, F. Mayhoub, K. Chardon, R. Duca, F. Lestremau et al., Development of an analytical strategy based on LC-MS/MS for the measurement of different classes of pesticides and theirs metabolites in meconium: application and characterisation of foetal exposure in France, Environ Res, vol.132, pp.311-331, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855498

M. H. Beall, J. Van-den-wijngaard, M. Van-gemert, and M. G. Ross, Amniotic fluid water dynamics, Placenta, vol.28, pp.816-839, 2007.

A. Pietroiusti, L. Vecchione, M. A. Malvindi, C. Aru, M. Massimiani et al., Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: the example of silica, Toxicol Appl Pharmacol, vol.342, pp.60-68, 2018.

, Food Safety Commission of Japan. Aluminium Ammonium Sulfate and Aluminium Potassium Sulfate (Food Additives). Food Saf (Tokyo), vol.7, pp.79-82, 2019.

H. C. Winkler, M. Suter, and H. Naegeli, Critical review of the safety assessment of nano-structured silica additives in food, J Nanobiotechnol, vol.14, p.44, 2016.

F. Etwel, J. R. Hutson, P. Madadi, J. Gareri, and G. Koren, Fetal and perinatal exposure to drugs and chemicals: novel biomarkers of risk, Annu Rev Pharmacol Toxicol, vol.54, pp.295-315, 2014.

M. B. Heringa, L. Geraets, J. Van-eijkeren, R. J. Vandebriel, W. H. De-jong et al., Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations, Nanotoxicology, vol.10, pp.1515-1540, 2016.

J. N. D'errico, C. Doherty, S. B. Fournier, N. Renkel, S. Kallontzi et al., Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion, Biomed Pharmacother, vol.117, p.109148, 2019.

M. Semmler-behnke, J. Lipka, A. Wenk, S. Hirn, M. Schäffler et al., Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat, Part Fibre Toxicol, vol.11, p.33, 2014.

T. Buerki-thurnherr, V. Ursula, M. Wick, and P. , Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier

, Swiss Med Wkly [Internet], 2012.

J. M. Radziwill-bienkowska, P. Talbot, J. Kamphuis, V. Robert, C. Cartier et al., Toxicity of food-grade TiO2 to commensal intestinal and transient food-borne Bacteria: new insights using Nano-SIMS and synchrotron UV fluorescence imaging, Front Microbiol, vol.9, p.794, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01824423

P. Talbot, J. M. Radziwill-bienkowska, J. Kamphuis, K. Steenkeste, S. Bettini et al., Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection, J Nanobiotechnol, vol.16, p.53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624418

J. Li, S. Yang, R. Lei, W. Gu, Y. Qin et al., Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure, Nanoscale Royal Soc Chem, vol.10, pp.7736-7781, 2018.

H. Chen, R. Zhao, B. Wang, C. Cai, L. Zheng et al., The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice, NanoImpact, vol.8, pp.80-88, 2017.

B. Lamas, M. Breyner, N. Houdeau, and E. , Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health, Part Fibre Toxicol, vol.17, p.19, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02862993

Y. Zhang, B. Xu, M. Yao, T. Dong, Z. Mao et al., Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells, Chem Biol Interact, vol.296, pp.124-157, 2018.

Z. Mao, M. Yao, Y. Li, Z. Fu, S. Li et al., miR-96-5p and miR-101-3p as potential intervention targets to rescue TiO 2 NP-induced autophagy and migration impairment of human trophoblastic cells, Biomater Sci, vol.6, pp.3273-83, 2018.

Z. Mao, Y. Guan, T. Li, L. Zhang, M. Liu et al., Up regulation of miR-96-5p is responsible for TiO2 NPs induced invasion dysfunction of human trophoblastic cells via disturbing Ezrin mediated cytoskeletons arrangement, Biomed Pharmacother, vol.117, p.109125, 2019.

T. Corbel, V. Gayrard, S. Puel, M. Z. Lacroix, A. Berrebi et al., Bidirectional placental transfer of Bisphenol a and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta, Reprod Toxicol, vol.47, pp.51-59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636605

A. Delvallée, N. Feltin, S. Ducourtieux, M. Trabelsi, and J. F. Hochepied, Direct comparison of AFM and SEM measurements on the same set of nanoparticles, Meas Sci Technol, vol.26, p.85601, 2015.

L. Devoille, M. Revel, C. Batana, N. Feltin, L. Giambérini et al., Combined influence of oxygenation and salinity on aggregation kinetics of the silver reference nanomaterial NM-300K, Environ Toxicol Chem, vol.37, pp.1007-1020, 2018.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations