Macroscopic softening in granular materials from a mesoscale perspective - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue International Journal of Solids and Structures Année : 2020

Macroscopic softening in granular materials from a mesoscale perspective

Résumé

Stress-oftening is one of the significant features experienced by cohesive-frictional granular materials subjected to deviatoric loading. This paper focuses on mesoscopic evolutions of the dense granular assembly during a typical drained biaxial test conducted by DEM, and proposes mesoscopically-based framework to interpret both hardening and softening mechanisms. In this context, force chains play a fundamental role as they form the strong contact phase in granular materials. Their geometrical and mechanical characteristics, as well as the surrounding structures, are defined and analyzed in terms of force chain bending evolution, local dilatancy, rotation and non coaxiality between the principal stress and the geometrical orientation of force chains. By distinguishing two zones inside and outside shear band, force chain rotations are shown to be of opposite sign, which may contribute to the observed macroscopic softening as one of the origin of the structural softening.
Fichier principal
Vignette du fichier
2020_Liu_IJSS_Preprint.pdf (7.28 Mo) Télécharger le fichier
Loading...

Dates et versions

hal-02946256 , version 1 (23-09-2020)

Identifiants

Citer

Jiaying Liu, Antoine Wautier, Stéphane Bonelli, François Nicot, Félix Darve. Macroscopic softening in granular materials from a mesoscale perspective. International Journal of Solids and Structures, 2020, 193-194, pp.222-238. ⟨10.1016/j.ijsolstr.2020.02.022⟩. ⟨hal-02946256⟩
66 Consultations
109 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More