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Abstract

Stress-oftening is one of the significant features experienced by cohesive-frictional granular materials

subjected to deviatoric loading. This paper focuses on mesoscopic evolutions of the dense granular

assembly during a typical drained biaxial test conducted by DEM, and proposes mesoscopically-based

framework to interpret both hardening and softening mechanisms. In this context, force chains play a

fundamental role as they form the strong contact phase in granular materials. Their geometrical and

mechanical characteristics, as well as the surrounding structures, are defined and analyzed in terms of

force chain bending evolution, local dilatancy, rotation and non coaxiality between the principal stress

and the geometrical orientation of force chains. By distinguishing two zones inside and outside shear

band, force chain rotations are shown to be of opposite sign, which may contribute to the observed

macroscopic softening as one of the origin of the structural softening.

Keywords: DEM, granular materials, softening, mesomechanics, force chains, strain localization,

rotation

1. Introduction1

When going down to the microscale granular materials may appear deceptively simple but at2

the macroscale, the huge number of internal degrees of freedom results in very complex behaviors3

(Suiker et al., 2001; Roux, 2000; Kruyt, 2010; Tordesillas et al., 2016). It is widely accepted that4

the macroscopic mechanical responses are due to the combination of local contact mechanics and5

the geometrical arrangement of the granular assembly. Strain softening is maybe one of the most6
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puzzling features in cohesive-frictional granular media. Opposite to strain hardening, strain softening7

corresponds in plasticity theory to negative values for the hardening modulus. Being able to capture8

accurately this feature has been one of the key issues in constitutive modeling of geomaterials for9

decades. Two kinds of softening can be distinguished depending on the loading conditions (Sterpi,10

1999): the “material softening” which is an intrinsic material property and the “structural softening”11

for which the decrease in the shear resistance is related to the loss of homogeneity due to strain local-12

ization. Drained triaxial tests are often used to characterize strain softening experimentally. Contrary13

to the undrained triaxial test stress reduction observed during this test is partly driven by the boundary14

conditions. If no loss of homogeneity is observed, the experimental test directly characterizes the15

material softening as a consequence of the change in the plastic behaviors from strain hardening to16

strain softening. Otherwise, the test characterizes a structural softening as the sample is composed17

of two zones: the shear band domain where the material experiences locally material softening (Zhu18

et al., 2016a) and the rest of the sample where the plasticity is hardly not activated. The mathematic19

descriptions of the classical stress-strain relationship including softening phase have been mentioned20

in many constitutive models (Lade, 1977; Sterpi, 1999), and typically for non-cohesive granular soils,21

state-dependent models have been suggested (Been and Jefferies, 1985; Wan and Guo, 1998; Li and22

Dafalias, 2000; Sun et al., 2017). However, we do mention that while structural softening takes place23

within a given material specimen, the notion of constitutive behavior disappears on that specimen24

scale.25

Recently, perspectives at the micro- and mesoscale have been opened with the introduction of26

efficient simulation tools (e.g. DEM, Discrete Element Method) and laboratory imaging techniques27

(e.g., X-Ray Computed Tomography, Digital Image Correlation and Photoelastic stress analysis). The28

micro- and mesoscale information can help understand the underlying mechanisms behind macro-29

scopic observations and incorporate more physics in constitutive modeling. The microscopic scale30

investigations focus on individual particle kinematics and contact dynamics, in some cases particle31

breakage is considered (Ma et al., 2014, 2017; Yin et al., 2016; Zhou et al., 2015); while at the meso-32

scopic scale, structural features are accounted for with clusters of a few particles such as force chains33

and grain loops (in 2D) (Tordesillas et al., 2010; Zhu et al., 2016b). These two types of mesostructures34

can stand as the dual characteristics of granular contact systems (Radjai et al., 1996, 1998). Meso-35

scopic investigations have succeeded in explaining significant mechanisms in granular materials, such36

as failure modes (e.g., Zhu et al. (2016a)), instability (e.g., Rechenmacher et al. (2011); Wautier et al.37

(2018)) and shear band forming (e.g.,Tordesillas (2007)). As a result, mesostructure-based consti-38
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tutive models have been proposed as a convenient way to homogenize the mechanical behavior of39

granular materials (Nicot and Darve, 2011; Xiong et al., 2017).40

The manuscript attempts to show the extent to which mesoscale analysis can address the macro-41

scopic softening in granular materials. In previous contributions (Tordesillas and Muthuswamy, 2009;42

Zhu et al., 2016a), the force chain bending was focused on, which was regarded as the local failure43

of the mesostructure (Tordesillas and Muthuswamy, 2009; Nicot et al., 2017). Walker and Tordesil-44

las (2010); Zhu et al. (2016b) claimed that the development of force chain bending is related to the45

characteristic point (the switch between contractive and dilative behaviors before the stress peak) of a46

biaxial test for dense granular assembly. At the same time, the fraction of sliding contacts decreases47

and contact sliding localizes within some subdomains (Liu et al., 2018), and a non-affine deformation48

mode is identified (Ma et al., 2018).49

Internal structures become unstable before the macroscopic limit state is reached. It is therefore50

necessary to describe and define the softening at the mesoscale as an indication of prefailure mech-51

anism for the bulk. To this respect, the mechanical and geometrical evolutions of mesostructures52

should be significant to the softening occurence in granular materials, and interactions between force53

chains and 2D loops mentioned by Zhu et al. (2016b); Tordesillas et al. (2010), is somehow thought54

to influence the hardening/softening transition.55

In this paper, the structural softening accompanied by shear banding is emphasized by mainly56

focusing on dense granular materials subjected to drained tests. Investigations at the micro- and meso-57

levels were carried out, and the hardening and softening phase mechanisms are explored in terms of58

mesoscopic stress, strain and fabric evolutions. In particular, we analyze how the force chains and59

the surrounding loops control the mechanical responses at the mesoscopic scale. It should be noted60

that when softening occurs and one shear band forms, mesoscopic characteristics are investigated61

separately inside and outside shear band.62

This paper is organized as follows. In Section 2 two numerical samples are prepared and subjected63

to drained biaxial tests. Thanks to the use of grain loop and force chain analysis, the respective64

micro to macro links between grain displacements and strain, and also between contact forces and65

stress are reviewed and discussed. Section 3 provides a comprehensive study on the mesoscopic66

stress, fabric and topology exchanges, which are consistent with macroscopic stress-strain responses.67

Finally, Section 4 focuses on the strain softening induced by the structural change (shear band). The68

rotations of force chain fabric and principal stresses are found, and the failure mechanism of force69

chains is discussed.70
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2. Biaxial test and granular mesostructures71

In this section, the basic macroscopic stress-strain relationships of biaxial tests are recalled for72

grain assemblies with two densities. Mesostructure definitions are introduced and a particular care73

is paid to locally define the strain and stress indicators able to account for macroscopic observations.74

Contrary to other coarse graining approaches, the use of mesostructures is central in our approach to75

bridge the gap between micro and macro scales.76

2.1. Numerical set up and macroscopic responses77

Biaxial tests are carried out numerically with the use of the open-source DEM software YADE78

(Šmilauer et al., 2015). The granular assemblies are generated within a rectangular box of aspect79

ratio 1.5 (shown in Figure 1), containing a single layer of 20,000 spheres with a uniform distribution80

of diameters (d50 = 0.008 m and dmax/dmin = 2). Dense and loose specimens are compressed to an81

isotropic desired confining state of 4 kN/m, with initial parameters listed in Table 1. During the82

preparation of dense and loose samples, different friction angles φ (2◦ for the dense and 35◦ for the83

loose) are set to reach a large density gap between them. When biaxial conditions are met under84

loading process, φ is set to 35◦ for both the samples. In Table 1, n is the 2D porosity of the assembly,85

Zm is the initial coordination number, kn and kt are the normal and tangential stiffness of the contact86

model, ds = 2R1R2/(R1 +R2) is the harmonic average of the raddii of the particles in contact and φ87

is the contact friction angle between spheres. To accelerate the simulations, the numerical damping88

coefficient is set to 0.25 (see details in Šmilauer et al. (2015) for its definition).89

Table 1: Initial isotropic states and loading parameters of dense and loose specimen.

Specimen n Zm kn/ds kt/kn φ

Dense 0.161 4.01 300 MPa 0.5 35◦

Loose 0.207 3.06 300 MPa 0.5 35◦

Typical macro stress-strain relations are shown in Figure 2. For the dense sample, the deviatoric90

stress (q = σ1−σ2 where σ1 and σ2 are the major and minor principal stresses) demonstrates a peak91

for ε22 = 0.014. Before this point, the stress state of the assembly is in the hardening regime while92

after that the sample stress state is in the softening regime1. The volumetric strain evolution of the93

1As recalled in the introduction, the distinction between the hardening and softening regimes can be read directly on

the stress strain curve for drained biaxial test.
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Figure 1: DEM specimen for biaxial tests.

dense sample also shows a characteristic point around ε22 = 0.01, which corresponds to the transition94

from contractancy to dilatancy (characteristic point). As a result, 3 stages can be identified in Figure95

2(a):96

- Stage I — hardening phase with shear contractancy;97

- Stage II — hardening phase with shear dilatancy;98

- Stage III — softening phase with shear dilatancy.99

For the loose specimen, neither softening nor dilative characteristics are observed.100

2.2. Contact based loop and local strain definition101

For 2D granular materials, the contact network can be used to provide a partition of the material102

domain into polygonal shapes forming grain loops (Kuhn, 1999; Kruyt and Rothenburg, 1996; Satake,103

1992). The loops play an important role in volumetric and anisotropic evolutions, as they contain104

deformable pores. An example of the 2D loop tessellation is given in Figure 3. The larger the loop105

valence (the number of particles within the given loop), the larger its deformability. A number of106

5



0.00 0.01 0.02 0.03 0.04 0.05
ε22

0

2

4

6

8

10
q

(k
N

/m
)

Deviatoric Stress

I II III
−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

ε v

Volumetric Strain

(a) Dense sample

0.00 0.01 0.02 0. 03 0.04 0.05
ε22

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

q
(k

N
/m

)

Deviatoric Stress

−0.02

−0.01

0.00

0.01

0.02

ε v

Volumetric Strain

(b) Loose sample

Figure 2: Macro stress strain relations during the biaxial loading for the dense (a) and loose (b) specimens.

Figure 3: An example of 2D loop tessellation in granular materials

studies were conducted to describe the topological compositions (Zhu et al., 2016a,b; Tordesillas107

et al., 2010) and mechanical characteristics (Kuhn, 1999; Nguyen et al., 2012) of 2D loops.108

Under certain assumptions, strain definitions based on these local loops can been proposed (Kuhn,109

1999; Bagi, 1996; Li and Yu, 2009; Dedecker et al., 2000; Wang et al., 2007; Cambou et al., 2013).110

In this paper, a simple 2D definition is adopted by assuming uniform deformation within each loop L:111

112

εi j =
1
|L|

∫
L

ui, j +u j,i

2
dS (1)

where |L| is the area of the loop domain L and ui, j =
∂ui
∂x j

is the gradient of displacement field within113

L. The definition of 3D loops is however a difficult task because of void connectivity and the notion114

of loop has to be replaced by grain clusters (containing grains and internal pores) for instance.115

For an enclosed system, the integration can be changed to the loop boundary ∂L:116

εi j =
1
|L|

∫
∂L

uin j +u jni

2
dl (2)
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Figure 4: Mesostrain definition of a loop domain L.

in which n is the outer normal to ∂L. At the microscale, the notion of continuous displacement117

field is meaningless and only grain displacements are known. By assuming a linear interpolation of118

the displacement along the loop edges, the incremental strain tensor is eventually defined as (see for119

example Bonelli et al. (2012)):120

εi j =
1
|L|

c

∑
k=1

1
2

lk

(
nk

j
u1k

i +u0k
i

2
+nk

i
u1k

j +u0k
j

2

)
(3)

where u1k and u0k are the incremental displacement of the vertice of kth edge. The notations used121

in Equation (3) are summarized in Figure 4. In this definition, grain rotations are not taken into122

account, and the incremental displacement field is interpolated only based on the discrete incremental123

displacements of grain centers. If grain rotations are considered as the second-order terms of local124

strain, Equation 3 has to be changed as in Kruyt et al. (2014) for instance. But as shown in the125

cited paper, the contribution of rotations to the average displacement gradient is negligible for dense126

granular assemblies.127

The spatial distributions of the incremental deviatoric strain for ε22 = 0.03 are shown in Figure128

5, for both dense and loose specimens. Patterns of diffuse failure (loose specimen) and localized129

failure (dense specimen) are evident, as exhibited in previous studies (Sibille et al., 2015; Zhu et al.,130

2016a). Similar to the biaxial simulation in Liu et al. (2018), shear bands with an “X” shape firstly131

appear in the dense assembly at the stress peak, and then evolves to a diagonal persistent one as132

shown in Figure 5(a). This evident loss of homogeneity shall induce macroscopic strain softening.133

Since the domains inside and outside the shear band belongs to different stress states, we investigate134

their micro- and mesoscopic features individually during Stage III in the following sections. For a135

quantitative definition of the shear band domain, the reader can refer to Liu et al. (2018).136
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(a) Dense specimen (b) Loose specimen

Figure 5: Spatial distributions of incremental deviatoric strains εd for dense (a) and loose (b) specimens during biaxial

tests at ε22 = 0.03. Local incremental strains are computed with macroscopic strain increments dε22 = 10−3.

2.3. Force chains as stress transmission paths137

As recalled in the introduction, the force chain concept provides a relevant mesoscopic scale to138

account for the macroscopic mechanical behavior of granular materials (Zhu et al., 2016a; Zhang139

et al., 2017; Wautier et al., 2017; Tordesillas et al., 2010). The definition of a force chain used140

throughout this paper is similar to the one proposed by Peters et al. (2005). It is illustrated in Figure141

6(a) and briefly reviewed here:142

- The particles belonging to a force chain have a larger major principal stress than the mean major143

principal stress (σ1 ≥ <σ1>).144

- The major principal stress direction of chained particles is aligned with the geometrical direc-145

tion of contact (less than 45◦ deviation).146

- A force chain contains at least 3 contacting particles.147

According to this definition, elementary parts of force chains are composed of groups of three148

aligned and heavily stressed contacting particles. Such elementary stuctures, referred to as “3-p149
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groups” hereafter, are the simplest mesostructures that can be defined to investigate the stress trans-150

mission in granular materials Tordesillas and Muthuswamy (2009)2. Attached to each 3-p group,151

a stress tensor can be defined in quasi-static conditions in the sense of Love-Weber formula (Love,152

1927; Weber, 1966; Bagi, 1996; Maeda et al., 2001; Nguyen et al., 2012). By assuming the existence153

of a micro-stress field, a mesoscopic stress tensor can be defined by averaging this micro-stress over154

a given domain Ω3-p containing the entire 3-p group. If the frontier ∂Ω3-p of the domain is chosen155

such that i) it contains only contact points cp attached to the 3-p group and ii) at each contact point156

cp, the outward normal n to Ω3-p equals the contact normal, then the meso-stress σΩ3-p reads157

σΩ3-p =
1
|Ω3-p|

∫
Ω3-p

σ dS =
1
|Ω3-p|

∫
∂Ω3-p

(σ ·n)⊗x dl =
1
|Ω3-p|∑p

∑
cp

Fcp⊗xcp (4)

where xcp is the vector position of contact cp belonging to particle p and |Ω3-p| is the area of domain158

Ω3-p. Note that Equation 4 remains valid in 3D by replacing dS and dl with dV and dS respectively.159

In the above formula, a strong underlying hypothesis is implicitly introduced by imposing locally160

the mechanical equilibrium (div σ = 0 and ∑cpFcp = 0). Under this condition, the summations in161

Equation 4 can be applied to all the contacts included in Ω3p and not limited to the contacts located162

on the boundary ∂Ω3-p.163

In the meso-stress definition given in Equation (4), the domain Ω3-p has not been specified. As164

illustrated in Figure 6(b), two particular domains can be considered as:165

- the domain Ωmin
3-p composed of the three grains only (dark domain in Figure 6(b));166

- the domain Ωmax
3-p composed of the three grains and the inner area of the surrounding loops (light167

and dark domain in Figure 6(b)).168

These two domains correspond to the minimal and maximal surface respectively which fulfill the169

two properties of Ω3-p Equation (4). By construction, these two domains give different levels of170

information in order to describe the stress at the mesoscale:171

- σ
Ωmin

3-p
corresponds to the mean stress tensor inside 3-p groups (only for the solid phase) and172

provides information about the intensity of the contact forces;173

2Note that “3-p groups” are considered here instead of the whole force chains for the two following reasons needed

for the analyses shown in Section 4: i) these mesostructures are sufficiently simple to be characterized by a single geo-

metric parameter and ii) these mesostructures have better chances to be persistent between to strain increments such that

incremental quantities can be defined.
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(a) Force chain (b) Mesodomains σΩ3-p

Figure 6: Definition of (a) a force chain according to Peters et al. (2005) and (b) the two mesodomains σ
Ωmin

3-p
(3-p group

in grey) and σΩmax
3-p

(3-p group in grey and pore space in light blue). Contact points cp involved in Equation (4) are shown

as red dots.

- σΩmax
3-p

takes into account the void phase in the stress averaging process and accounts for the174

local porosity around force chains.175

In Figure 7, the strain evolution of the mean deviatoric stresses (over all 3-p groups) computed176

for Ωmin
3-p and Ωmax

3-p are shown for the biaxial test presented in Section 2.1 and compared to the macro-177

scopic deviatoric stress shown in Figure 2. For the dense case, as a shear band appears after the stress178

peak, averaged mesoscopic stresses are computed separately inside and outside the shear band.179

In Figure 7, the qualitative trends observed at the macro and the meso scales are similar. For the180

dense specimen a stress peak followed by a softening regime is observed for both Ωmin
3-p and Ωmax

3-p .181

A better quantitative agreement between meso and macro data is achieved when voids around force182

chains are taken into account in the meso-stress computation. Indeed, σΩmax
3-p

incorporates the porous183

nature of granular materials while σ
Ωmin

3-p
does not3. Ωmin

3-p and Ωmax
3-p corresponds indeed to two limit184

cases for the voids: only solid phase and the solid phase with maximum surrounding void area (see185

Figure 6(b)). The trend shown by the deviatoric stress computed for Ωmin
3-p is very informative in the186

sense that the macro softening results not simply from an increase in the porosity around force chains187

but also from the decrease in the grain stresses.188

3It should be underlined that the local porosity corresponding to Ωmax
3-p is larger than the geometric porosity computed

for the whole sample and corresponds to the notion of equivalent porosity (or void ratio) used in soil mechanics to account

for the fraction of grain not involved in stress transmission.
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While comparing the mean deviatoric stress noted inside the shear band in Figure 7(a) to the one189

measured outside it should be noted that σin
Ωmin

3-p
> σout

Ωmin
3-p

while σin
Ωmax

3-p
< σout

Ωmax
3-p

. This can be physically190

interpreted as follows:191

- 3-p group density is smaller inside the shear band which results in stress concentration (σin
Ωmin

3-p
>192

σout
Ωmin

3-p
);193

- In the meantime, local porosity around 3-p group inside the shear band is higher and counter194

balances the stress concentration in the solid phase (σin
Ωmax

3-p
< σout

Ωmax
3-p

).195

In Figure 7, we can observe that the deviatoric meso-stress is non-zero at the initial state, which196

is due to the fact that the directional information is ignored in the deviatoric meso-stress averaging197

(qmeso is a scalar quantity). The overall average of meso-stesses can be accounted for by computing198

the deviatoric stress from the mean meso-stress tensor <σΩmax
3-p

> as < σmeso
22 >−< σmeso

11 > in Figure199

7(a).200

3. Mesoscopic evolutions: stress, fabric and topology201

During the deviatoric loading, macroscopic stress-strain responses are shown in Figure 2. To202

reveal the underlying mechanisms of the typical Stages I, II and III from new mesoscopic perspec-203

tives, this section provides a comprehensive investigation in terms of meso-stress, meso-fabric and204

topological evolution.205

3.1. Chained grain population and meso-stress evolutions206

At the first stage of the deviatoric loading of the dense specimen (Stage I), a nearly elastic response207

with contractancy in volumetric strain is observed in Figure 2. The evolutions of the number of208

chained particles (the set of particles composing force chains) given in Figure 8 characterize the209

adaptability of the contact network to the evolving external loading.210

In Figure 8, the number of force chain particles increases up to the characteristic point (Stage I) in211

the dense sample. After the characteristic point (Stages II and III, especially for Stage III), the number212

of chained particles decreases until reaching a constant value. For the dense specimen, the increasing213

number of chained particles seems to enhance the strength, as the deviatoric stress increases until214

Stage II. However, if we consider the loose sample in Figure 8, a weak hardening is accompanied215

with a decrease in the number of chained particles. This counter intuitive trend may be explained by216

looking at force chain spatial distributions in Figure 9. As the biaxial loading starts, both the loose217

12
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with vertical dashed lines. The spatial distributions of chained particles corresponding to the six dot points are given in

Figure 9

and dense samples lose horizontal force chains. Thanks to the lateral support of the weak phase,218

longer and more aligned force chains in the vertical direction are found in the dense sample than in219

the loose sample (see Figure 9). As a result, the mesoscopic origin of the stress hardening observed220

in the loose sample corresponds only to the load bearing capacity of preexisting short force chains in221

the vertical direction while in the dense sample it corresponds to the increase in both the number of222

chained particles and in the length of force chains as well.223

During Stage II for the dense sample, no more particles are recruited to build new force chains224

but the macroscopic deviatoric stress does not stop rising, which may be due to the fact that at the225

characteristic point, the existing strong contact network is not yet used at the maximum bearing226

capacity. As a result, stress concentration within 3-p groups should be observed after the characteristic227

point.228

In Figure 10 the stress concentration phenomenon is quantified by rescaling the mesoscopic devia-229

toric stress qmeso derived from σΩmax
3-p

(as introduced in Section 2.3) with the macroscopic value qmacro.230

The evolutions of qmeso/qmacro are given for three passing fractions (20%, 50% and 80%) of the cumu-231

13



Figure 9: Spatial distributions of chained particles corresponding to the six dot points shown in Figure 8. Particles are

colored according to their radius values.

lative distribution curves4: (qmeso/qmacro)50 (median value), (qmeso/qmacro)20 and (qmeso/qmacro)80.232

The statistical distribution of qmeso/qmacro characterizes whether the macroscopic stress is evenly dis-233

tributed on chained particles while the median value characterizes to which extent stress concentrates234

in force chains. If only few chained particles contribute to the macroscopic stress, qmeso/qmacro is ex-235

pected to be quite larger than 1; while if all the particles contribute evenly to the macroscopic stress,236

qmeso/qmacro is expected to be around unity.237

In Figure 10 the ratio qmeso/qmacro decreases until ε22 = 0.01 (the hardening regime) before in-238

creasing again in stage II and III, which corresponds to stress concentration in force chains during the239

4The cumulative distributions of qmeso/qmacro are not shown here, but they experience similar shapes as the rotation

distribution for 3-p groups (see in Section 4, Figure 20).
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Figure 10: Evolution of the 20 % (lower), 50 % (middle) and 80 % (upper) passing fractions of the cumulative distribution

of qmeso/qmacro during biaxial loading for the dense specimen. After the stress peak, cumulative distributions are computed

separately inside (dashed) and outside (solid) of the shear band. qmeso is computed based on σΩmax
3-p

(see Section 2.3)

softening regime. These observations are consistent with Figure 8 and 9 showing that the number of240

chained particles increases during Stage I (the macroscopic load is distributed among an increasing241

number of chained particles), and decreases in Stages II and III (the macroscopic load becomes more242

and more concentrated on the remaining 3-p groups as the number of chained particles decreases243

rapidly).244

The stress concentration phenomenon is also consistent with the differences in deviatoric meso-245

stresses inside and outside the shear band observed in Figure 7(a). When the local porosity is not246

taken into account, the deviatoric meso-stress inside the shear band shows a higher magnitude.247

3.2. Mesoscale fabric248

At the contact level, the non-directional connectivity of a network can be assessed through the249

coordination number. For the whole contact system, Ztot
c = 2Nc/Np, where Nc is the total number250

of contacts within the overall system, and Np is the total number of particles. Moreover, the con-251

tact system without rattlers (particles with no contact) should also be concerned, to better show the252

average transmission path of loaded particles. The coordination number disregarding the rattlers is253
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calculated as ZnonFree
c = 2Nc/(Np−N f ree), where N f ree denotes to the number of rattlers. In Figure254

11, coordination number for all contacts Ztot
c and for the contact system without rattlers ZnonFree

c are255

shown, together with the volumetric strain evolution. The decreasing trend of coordination number256

is identified for all the three periods (I, II, III) for the dense specimen, while the loose specimen257

seems to gain more contacts during the loading process. A significant feature is that the coordination258

number drops during Stage I for the dense specimen despite the contractant behavior and an increase259

in the number of chained particles. As already shown by Kruyt and Rothenburg (2016), this can be260

explained by the anisotropy of the contact network which increases in the vertical direction during261

Stage I. The coordination number as a scalar information is not sufficient to describe or explain the262

hardening phase with contractancy in dense granular materials.
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Figure 11: Mean coordination numbers computed for all particles (solid) and for non-rattlers (dashed) over the whole

sample domain. The evolutions are given for the dense (red diamonds) and the loose (blue dots) specimens during the

biaxial test. The volumetric strain curves are recalled in dotted lines.
263

Considering the contact orientation characteristics, the fabric tensor of granular contact system264

was introduced (Oda, 1982; Satake, 1982) and widely applied in anisotropy analysis. The concept of265

fabric in granular materials is quite important for describing the statistical and geometrical informa-266

tion of the structure, and it has also been incorporated in some modified constituitive models (Li and267

Dafalias, 2012; Dafalias, 2016). The contact-based anisotropy provides the complementary informa-268

tion to the global loss of contacts and force chain population evolution, for both the hardening and269

softening phases. As commonly used, the second-order fabric tensor F within granular assembly is270
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averaged by contact normals within a system:271

F =
1

Nc

Nc

∑
c=1
nc⊗nc (5)

where the nc is the contact normal vector. Usually, this fabric tensor F is analyzed on the whole con-272

tact system (c ∈ [1,Nc]) and is proved to be one of the contributions to the stress anisotropy (Rothen-273

burg and Bathurst, 1989; Li and Yu, 2013; Guo and Zhao, 2013). To distinguish the role of strong and274

weak contact systems, the anisotropy evolutions of different contact systems were shown in Guo and275

Zhao (2013). Particularly, for a single force chain k, the same formal expression as Equation 5 could276

also be adopted. The corresponding fabric tensor F k is then fully characterized in 2D by the major277

direction θk and eigen values Fk
±:278

tan(2θk) =
2Fk

12

Fk
11−Fk

22
(6)

279

Fk
± =

1
2
(Fk

11 +Fk
22)±

√
(
1
2
(Fk

11−Fk
22))

2 +(Fk
12)

2 (7)

For a given force chain k, the deviatoric invariant (second invariant of the deviatoric part of the fabric280

tensor) Dk = Fk
+− Fk

− characterizes the recti-linearity of the mesostructure, while θk provides an281

estimation of the force chain orientation. By definition, Dk ∈ [0,1] with Dk = 1 corresponding to a282

perfectly straight force chain and Dk = 0 to a sort of “isotropic” force chain (very tortuous in other283

words). Figure 12 gives these two extreme conditions of force chain linearity. Usually, according to284

the definition of force chains given in Section 2.3, the maximum deviation angle for each 3-p group285

is 45 ◦. This geometrical limit results in Dk larger than 0.5 in most cases.286

Figure 12: Extremal conditions of force chain linearity Dk.
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Similarly, the deviatoric invariants D and Ds corresponding to the overall fabric tensor F (con-287

sidering contacts within the whole sample) and to the fabric tensor Fs built only from the chained288

contacts can be defined. Figure 13(a) shows the evolutions of D, Ds and <Dk> (the average Dk289

over all force chains) during the biaxial loading, and Figure 13(b) gives the schematic drawing of the290

difference between Ds and Dk. <Dk> increases and reaches a maximum level at the end of Stage I,291

indicating that force chains become more and more linear during this period. At the same time, Ds292

rises from 0 to around 0.6 and D increases with a weaker trend. It is accepted that the strong contact293

system plays an important role in fabric anisotropy generation (Radjai et al., 1998; Guo and Zhao,294

2013), and the increase in force chain recti-linearity and force chain population during Stage I both295

reflect that fact. <Dk> and Ds reach their maximum levels around the characteristic point (dividing296

line between Stage I and II), while the overall fabric invariant D reaches its maximum even after the297

stress peak (at the beginning of Stage III). Indeed during Stage II, the overall anisotropy increases due298

to the weak contact phase. By combining these observations with stress concentration results from299

Figure 10, it can be inferred that:300

- The first stage of hardening is associated with a strong increase in fabric anisotropy and pro-301

portions of strong contact phase (force chains);302

- The hardening with dilatancy (Stage II) corresponds to the beginning of load concentration and303

to the increase in weak contact anisotropy;304

- During the softening phase, the mesoscopic fabric anisotropy related to the force chain recti-305

linearity decreases in general, leading to the axial stress reduction.306

3.3. Topological and geometrical exchanges307

Introduced in Section 2.3, 3-p groups are the elementary parts composing force chains responsible308

for stress transmission. Their geometric evolutions are strongly coupled with the deformability of the309

grain loops surrounding the force chains. These loops can change either in topology (coordination310

number) or in geometry (area). For a given loop, the change in topology can be divided in three311

categories: (a) keep the same particles and contacts, i.e, unchanged in topology, called “C-loop”;312

(b) lose one or several contacts and become larger, called “L-loop”; (c) create new contacts among313

the particle participants and get smaller cells, called “S-loop”. Possible topological exchanges of314

“L-loop”, “C-loop” and “S-loop” are illustrated in Figure 14.315
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(a)

(b)

Figure 13: Force chain linearity compared with the anisotropies of force chain network and the overall contact network.

Quantities are computed over the whole sample domain. The evolution curves are shown in (a), and the sketches for how

to calculate Dk and Ds are shown in (b).

Around each 3-p group, there exists dozens of loops which could be identified as “C-loop”, “S-316

loop” or “L-loop”. The average fractions of the three topological exchanges related to each 3-p317

group are plotted in Figure 15. The exchanges are defined incrementally for strain increments of318

0.1 %. From the beginning to the end, the set of “C-loop” around 3-p groups represents the largest319

population (over 90%). The set of “L-loop” represents a larger proportion than “S-loop” before the320

stress peak (ε22 = 0.014), which is consistent with the decrease in coordination number shown in321

Figure 11. Therefore during the hardening phase, several contacts are opened to form larger loops,322

which contributes to fabric anisotropy. As the shear band forms after the stress peak, topological323

exchanges concentrate inside the shear band where the fraction of “C-loop” decreases significantly.324

In Figure 15, “L-loop” represents a larger proportion than “S-loop” during the hardening phase325

19



(a) (b)

(c)

Figure 14: Possible changes for 2D loops between steps: (a) “L-loop”: loops will be enlarged in topology; (b) “S-loop”:

loops will shrink in topology; “C-loop”: loops will keep the same topology, composed by “C-loop-AL” (larger area in

next step), “C-loop-A0”(same area in next step) and “C-loop-AS”(smaller area in next step).
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Figure 15: Proportions of topological loop exchanges around 3-p force chain groups. During Stage III, the dashed line

shows the corresponding evolutions inside the shear band, while the solid line shows those outside the shear band.

(Stage I and II). These topological exchanges tends to indicate a dilatancy trend, however the volu-326

metric strain does not behave like that during Stage I. To have a rational explanation of this incon-327

sistency, it is necessary to look at the area changes for the topologically constant loops. As a result,328

“C-loop” can be redivided into “C-loop-A0”, “C-loop-AS” and “C-loop-AL” to represent loops with329

unchanged area, smaller area and larger area respectively, as shown in Figure 14(c). Figure 16 gives330

the evolutions of average proportions of “C-loop-A0”, “C-loop-AS” and “C-loop-AL” around 3-p331

groups (solid line) and for the whole system (dashed line). It can be seen that the crossing points332

of proportion curves “C-loop-AS” and “C-loop-AL” are near to the characteristic point ε22 = 0.01,333

before which the “C-loop-AS” owns a larger fraction (nearly Stage I). This is the mesoscopic origin334

of the contractive behavior observed at first stage of hardening (Stage I). During this period, the loop335

exchanges (or contact loss and gain) do not influence very much on the volumetric evolutions, but336

the area evolutions of “C-loop” induce the contractancy hardening features. During Stage II, both337

topological exchanges (Figure 15) and area evolutions (Figure 16) indicate a dilative trend, which338

gives corresponding trends compared to the volumetric strain in Figure 2. Another interesting obser-339

vation in Figure 16 is that the crossing point for 3-p groups comes earlier than for the whole system340

which denotes once again the driving role played by the surrounding voids around force chains in341

Figure 6(b). In Zhu et al. (2016b), loops surrounding force chains were also investigated, especially342

the transformation from L3 (loops of 3 particles) to L6 (loops of 6 particles) was focused on. It343
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Figure 16: Proportions of “C-loop” with different area changes: around 3-p force chain group (solid line); for the whole

system (dashed line).

was proved that geometrical and topological evolutions of loops surrounding force chains could be344

regarded as the key origin of the overall stress-strain responses in granular materials. This paper con-345

siders in a more general way by incorporating transformation types of all loops within the granular346

assembly, and combined to the results of defined mesoscopic stress and the force chain recti-linearity,347

the hardening phases with both the contractancy and dilatancy are further figured out.348

In summary, we can conclude that the loop topology evolution and the area change of topologically349

constant loops play different roles in hardening phases. As the loop size and area both increase during350

Stage II, kinematic constraints around force chains are released and force chains are prompt to be351

destabilized, which could finally induce the softening process.352

4. 3-p group bending and rotation in relation with macroscopic softening353

The geometry of a 3-p group can be characterized by the two angles α1 and α2, as shown in Figure354

17. Equivalently, the bending angle β = |α1−α2| and the mean orientation angle γ = 1
2(α1+α2) can355

be considered. In addition to these angles, the principal stress orientation (as defined by diagonalizing356

σΩ3-p) is characterized by a third non coaxiality angle θ (Figure 17).357

This section focuses on the relations between the geometric evolutions of 3-p groups (character-358

ized by the orientation angle γ and the bending angle β ) and the associated meso-stresses (charac-359

terized by the non coaxiality angle θ defined in Section 2 and the deviatoric meso-stress defined in360
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meso

meso

Figure 17: Geometrical and mechanical features of 3-p groups. The geometry is characterized by the bending angle β and

orientation angle γ while the mesoscopic stress state is characterized by the major (σ1) and minor (σ2) stresses as well as

the non coaxial angle θ .

Equation (4) for Ωmin
3-p ).361

4.1. Force chain bending and buckling362

In the wake of previous researches, e.g. Tordesillas (2007); Zhu et al. (2016b); Zhang et al.363

(2017), it is tempting to relate internal deformation of 3-p groups (in the form of bending) to force364

chain buckling (mesoscopic softening) and thus to macroscopic softening. In most of existing studies,365

buckling is defined as an increase in the bending angle β (see Figure 17). However, a rigorous366

definition of buckling needs to incorporate both a geometrical evolution and a force or stress saturation367

or decrease. As a result, a distinction is emphasized here between bending (dβ > 0) and buckling368

which should incorporate an additional decreasing load information in usual definitions found in the369

literature.370

To this respect, a possible mesoscale definition is to relate the bending of a 3-p group during371

the biaxial loading ( dβ

dε22
> 0) to a simultaneous decrease in the deviatoric stress derived from σΩmax

3-p
372

(dqmeso
dε22

< 0). Mathematically speaking a buckling definition is sought when both the conditions are373

reached:374

dβ

dε22
> 0, and

dqmeso

dε22
< 0 (8)

In Figure 18, the spatial distribution of dβ

dε22
and dqmeso

dε22
is illustrated for two axial strain values375

(at the peak and in the softening regime). In this figure, the size of the symbols is proportional to376
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the absolute variation of the deviatoric stress |dqmeso
dε22
|. Triangles pointing upward correspond to 3-p377

groups with increasing deviatoric stress while triangles pointing downward correspond to 3-p groups378

with decreasing deviatoric stress. 3-p groups undergoing bending are highlighted in dark. As a result,379

3-p groups that fulfill the buckling definition of Equation 8 correspond to dark triangles pointing380

downward in Figure 18.381

In Figure 18, the largest evolutions in |dqmeso
dε22
| (shown here) and in | dβ

dε22
| (not shown here) con-382

centrate in the shear band domain. Since 3-p groups are elementary parts constituting force chains,383

a strong spatial correlation is observed between adjacent 3-p groups in terms of deviatoric stress rate384

(adjacent triangles are of similar sizes). It is however not always the case for bending rate. In par-385

ticular, 3-p groups subjected to a decrease in deviatoric stress and in bending angle (light triangles386

pointing downward) are often located in between 3-p groups subjected to a decrease in deviatoric387

stress together with an increase in bending angle (dark triangles).388

As a result, and contrary to what is usually stated in the literature, 3-p groups are not the right389

elementary structure to define buckling at the mesoscopic scale. As illustrated in Figure 19, we can390

find indeed geometrical configurations in which a given 3-p group undergoes bending ( dβ

dε22
> 0) while391

the next 3-p group in the same force chain experience an opposite straightening evolution ( dβ

dε22
< 0).392

These two geometric evolutions are indeed a consequence of grain rolling (between chained grains,393

sliding is unlikely to occur simply by definition of a force chain). Despite having two opposite geo-394

metrical evolutions, the two 3-p groups have very similar meso-stress tensor because of spatial cor-395

relation (Frenning and Alderborn, 2005). Therefore, for a given meso-stress evolution, both bending396

and straightening can be observed simultaneously. For 3-p groups, the buckling condition consider-397

ing β variations is thus not relevant and a proper definition should be sough while considering larger398

mesostructures. 3-p groups can however still be used to analyze the impact of force chain rotations399

onto the macroscopic behavior which is detailed in Section 4.2.400

4.2. 3-p group rotations inside and outside shear band401

Cumulative distributions of γ for three particular states are shown in Figure 20. In the coordinate402

system recalled in Figure 17, 90◦ denotes a vertical direction aligned with the macroscopic loading403

direction (e2).404

In the initial state (Figure 20(a)), the cumulative distribution of γ is typical of a uniform distribu-405

tion between 0 and 180◦ which is consistent with the isotropic stress state imposed before any biaxial406

loading and the spatial distribution of chained particles illustrated in Figure 9. As soon as the load407
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(a) Dense sample, ε22 = 0.010 (b) Dense sample, ε22 = 0.013

(c) Dense sample, ε22 = 0.015 (d) Dense sample, ε22 = 0.025

Figure 18: Spatial distribution of deviatoric stress rates in 3-p groups for different axial strain levels in the dense sample.

The size of the symbols is proportional to the absolute variation of the deviatoric stress | dqmeso
dε22
|. Triangles pointing upward

correspond to 3-p groups with increasing deviatoric stress and vice versa. 3-p groups undergoing bending are shown in

dark.
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Figure 19: Example of simultaneous bending and straightening for two neighboring 3-p groups.

progresses, the force chain orientation changes (ε22 = 0.01, Figure 9). The cumulative distribution408

shows a concentration of 3-p groups with mean orientation around 90◦ in Figure 20(b) (which is con-409

sistent with qualitative observations of Figure 9). After the shear band has formed, three cumulative410

distributions can be considered in Figure 20(c) for i) the domain inside the shear band, ii) the domain411

outside the shear band and iii) the whole sample. For the whole domain, γ is still aligned with the412

vertical direction on average, but slight deviations are observed while restricting the analysis inside413

and outside the shear band as illustrated in Figure 20(c) and 20(d):414

- inside the shear band γ tends to align to a direction less than 90◦, denoting a clockwise rotation;415

- outside the shear band γ shows the opposite trend, the counter clockwise rotation is identified.416

To better show this trend, the strain evolution of the cumulative distribution is shown in Figure417

21 in the same form as used in Figure 10. Values corresponding to 20 % (γ at Point A in Figure418

20), 50 % (γ at Point O in Figure 20) and 80 % (γ at Point B in Figure 20) passing fraction of γ419

cumulative distributions are plotted together in Figure 21. Force chain geometrical directions of all420

passing percentages follow the same trend with clockwise rotaion inside the shear band and counter-421

clockwise rotation outside the shear band (as illustrated in Figure 20(d)).422

Note that the rotation of force chains here is not the same indicator as in previous studies. For423

example, Oda and Kazama (1998); Iwashita and Oda (2000) used individual particle rotations to424

identify fluctuation behaviors inside the shear band. Tordesillas et al. (2014, 2016) gave a vortex425

definition based on particle displacement field and explored the relations between vortices and force426

chain buckling. Kawamoto et al. (2018) found that major principal stress inside the shear band rotates427

differently compared to the major principal stress outside the shear band. The original signature of428

force chain geometrical rotation introduced in this paper corresponds to the rotation of mesostructures429
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(a) Dense sample, ε22 = 0 (b) Dense sample, ε22 = 0.01
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(c) Dense sample, ε22 = 0.04 (d) 3-p groups rotations (Stage III)

Figure 20: γ cumulative distributions for three strain levels within the dense sample: (a) initial state; (b) characteristic

state; (c) fully developed shear band state. (d) schematic diagram showing 3-p group rotations probably responsible for

macroscopic softening.

of a few grains, while the internal changes (such as displacement of each sphere) within the 3-p group430

are ignored.431

In Tordesillas et al. (2016), the force chains are almost at the boundary of the vortices. Indeed,432

the geometrical rotation of force chains influences the surrounding particles and the confining loops.433

As a result, displacements and rotations of particles on both sides of a given force chain may differ434

and form structures like vortices. Because the rotation of 3-p group is more intense inside the shear435

band, more vortices are identified within the shear band zone which is consistent with the results of436

Tordesillas et al. (2016).437

27



0.00 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140

160

180
tot
20

tot
50

tot
80

in
20

in
50

in
80

out
20

out
50

out
80

Figure 21: Strain evolution of the 20 %, 50 % and 80 % passing fractions of the cumulated distributions of the geometrical

orientation γ of 3-p groups. After the stress peak, cumulative distributions are computed separately inside and outside the

shear band.

4.3. Principal meso-stress rotations in force chains438

Besides the geometrical rotation, a similar analysis can be carried out for the principal mesoscopic439

stress rotation as shown in Figure 22 for the angle γ + θ . Stress also rotates in opposite directions440

inside (clockwise) and outside (counter clockwise) the shear band. A small difference is that principal441

stress orientations show less fluctuations around 90◦ as (γ +θ)80− (γ +θ)20 < γ80−γ20. This means442

that the stresses of 3-p groups are on average more aligned with the axial loading direction than the443

geometrical orientation.444

We do recall that, internal geometrical changes are induced by the evolution in the external forces445

applied to the 3-p groups. As a result the geometrical rotation of 3-p groups should be linked to an446

evolution of the non-coaxiality angle θ that is expected to take non-zero values. For the purpose of447

this analysis, the strain evolution of the mean absolute non coaxiality (<|θ |>) is shown in Figure 23.448

During the hardening phases (Stage I and II), the geometrical orientation of 3-p groups tend to449

align to the axial loading direction. At the stress peak (ε22 = 0.014), the mean absolute non-coaxiality450

reaches its minimum value <|θ |>= 25◦. As the major direction of stress is closer to the major451

loading direction than that of the geometry (Figure 21 and 22), the pilot role of the mesoscopic stress452

distribution in the loading direction is then identified before Stage III. After the stress peak, <|θ |>453

increases both inside and outside the shear band. 3-p groups rotate under the plausible combined454
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Figure 22: Strain evolution of the 20 %, 50 % and 80 % passing fractions of the cumulated distributions of the principal

stress direction orientation γ +θ of 3-p groups. After the stress peak, cumulative distributions are computed separately

inside and outside the shear band.

influence of the non coaxial stress and the release in kinematic constraints. Because the direction455

of the meso-stress is strongly influenced by the macroscopic boundary conditions, it does not rotate456

as much as the geometry and the non-coaxiality increases again. Besides, if we connect the present457

definition of force chain based on grain compression stresses with the other classical definition of458

force chains based on contact force networks (see Radjai et al. (1998) for instance), the geometrical459

rotation of 3-p groups is expected to change the internal stress distribution. Indeed, the meso-stress460

component initially aligned in vertical direction rotates and contribute to the lateral macro stress. As461

the macro lateral stress is imposed as constant (drained biaxial loading conditions), the meso-stress462

with the major direction oriented within a certain lateral sector will decrease accordingly. Therefore,463

large 3-p group rotations inside the shear band might be a contributor to the macro structural softening.464

5. Conclusion and outlook465

The structural strain softening observed in biaxial tests is revisited in this paper with mesoscopic466

analyses. Perspectives at the mesoscale are focused on, including geometrical and mechanical evo-467

lutions of basic force chain elements (3-p groups) and their surrounding loops. By investigating the468

stress, fabric, confining loops and rotations of force chains at this elementary mesoscale, new findings469
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Figure 23: Evolution of the mean non coaxial angle <|θ |> during the biaxial test for the dense sample. As the shear

loading develops, <|θ |> is computed separately inside and outside the shear band.

for both hardening and softening mechanisms are presented, which can be summarized as follows:470

1. Dense and loose assemblies react differently as the deviatoric loads are applied. Structural471

softening is identified for the dense specimen, with a final shear band forming. Using the meso-472

stress definition based on 3-p groups, it has been shown that the meso softening also exists473

locally in the solid phase of the granular sample. Also, the macroscopic softening is not simply474

due to the geometric stress reduction coming from the increase in porosity.475

2. The stress-strain relations for the dense assembly can be divided into three phases: hardening476

with contractancy (Stage I), hardening with dilatancy (Stage II) and softening with dilatancy477

(Stage III). At the mesoscale, the force chain population, relative stress, fabric and associated478

topology exchanges are explored for all the three stages. For the first stage of hardening (Stage479

I), the number of chained particles increases, force chains straighten and surrounding voids480

shrink. This contributes to the robustness of the granular assembly and the persistence of the481

force network, allowing for reversibility to a certain extent (quasi-elastic domain). For Stage II,482

as dilatancy occurs, no new force chains are built and stress concentrates within existing force483

chains. As contacts are continuously lost, force chains have more and more kinematic degrees484

of freedom to evolve. At this stage, the persistence of the force network is more and more485

compromised.486
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3. During Stage III, the meso-stress is highly concentrated on force chains, the recti-linearity of487

which decreases (mesoscopic fabric anisotropy). As a shear band develops, the two homoge-488

neous domains inside and outside the shear band are analyzed separately. Mesoscopic geometry489

and stress rotations within the shear band are shown to differ from those outside the shear band490

at the scale of 3-p groups. Finally, the non-coaxiality between geometry and stress contributes491

to the mesoscopic softening.492

4. At the level of 3-p groups, a meso-stress definition is proposed with and without taking into493

account the surrounding voids. The corresponding statistics of meso-stresses give qualitative494

correspondence to the macro stress, and with respect to the meso-stress of 3-p groups, the het-495

erogeneity of force transmission is also identified. The force chain rotation of the 3-p group pro-496

vides a sound micromechanical explanation for the observed macroscopic strain softening. 3-p497

group rotation contributes to transfer the vertical load on the lateral boundaries. As the lateral498

stress is imposed as constant, the vertical stress adapts accordingly, leading to the macroscopic499

softening. This result connects material scale properties to the boundary conditions and relates500

thus to structural softening. It has been derived here for a particular sample of aspect ratio 1.5501

but a parametric study has shown that it can be generalized for other aspect ratios. The aspect502

ratio influences however the shear band direction which will be discussed in a forthcoming503

paper.504

This study has shown once again the relevance of mesoscale structures to capture the physics of505

granular materials. A number of statistical observations provide mesoscale clues to understand the506

meso origin of hardening and softening in granular materials. 3-p group rotation has been shown to507

contribute to this softening but this does not exclude other mesoscale mechanisms. By accounting508

for spatial correlations between the introduced mesostructures, we envision to extend our mesoscale509

description of granular materials in order to precise the mesoscale definition of buckling or softening510

which has been shown to be irrelevant at the scale of 3-p groups.511

The mesoscale analysis presented in this paper can also be used to bridge the gap between dis-512

crete and continuum descriptions of granular materials at a scale where the concept of representative513

elementary volume (REV) does not hold (the scale separation hypothesis required to define a REV is514

not fulfilled at mesoscale). This will pave the way for a micromechanical analysis of slip lines and515

shear bands as defined within continuum mechanics framework (discontinuities in the displacement516

and strain fields respectively).517
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Kawamoto, R., Andò, E., Viggiani, G., Andrade, J. E., 2018. All you need is shape: Predicting shear546

banding in sand with ls-dem. Journal of the Mechanics and Physics of Solids 111, 375–392.547

Kruyt, N., Rothenburg, L., 1996. Micromechanical definition of the strain tensor for granular materi-548

als. Appi. Mech 118, 706–711.549

Kruyt, N. P., 2010. Micromechanical study of plasticity of granular materials. Comptes rendus550
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