N. Alexandratos and J. Bruinsma, World Agriculture Towards 2030/2050: The 2012 Revision, 2012.

A. Van-huis, The environmental sustainability of insects as food and feed. A review, Agron. Sustain. Dev, vol.37, p.43, 2017.

G. Sogari, M. Amato, I. Biasato, S. Chiesa, and L. Gasco, The potential role of insects as feed: A multi-perspective review, vol.9, 2019.

A. Van-huis, Edible insects contributing to food security? Agric. Food Secur, vol.4, pp.1-9, 2015.

V. Varelas, Food wastes as a potential new source for edible insect mass production for food and feed: A review, vol.5, 2019.

S. Diener, C. Zurbrügg, F. Roa-gutiérrez, D. H. Nguyen, A. Morel et al., Black soldier fly larvae for organic waste treatment-prospects and constraints, Proceedings of the Waste Safe 2011-2nd International Solid Waste Management in the Developing Countries, pp.52-59, 2011.

A. Van-huis, J. Van-itterbeeck, H. Klunder, E. Mertens, A. Halloran et al., Edible Insects-Future Prospects for Food and Feed Security, FAO Forestry Paper, vol.171, 2013.

H. P. Makkar, G. Tran, V. Heuzé, and P. Ankers, State-of-the-art on use of insects as animal feed, Anim. Feed Sci. Technol, vol.197, pp.1-33, 2014.

H. K. Ravi, M. A. Vian, Y. Tao, A. Degrou, J. Costil et al., Alternative solvents for lipid extraction and their effect on protein quality in black soldier fly (Hermetia illucens) larvae, J. Clean
URL : https://hal.archives-ouvertes.fr/hal-02619682

F. G. Barroso, M. Sánchez-muros, R. Ramos, M. Segura, E. Morote et al., Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications, J. Food Compos. Anal, vol.62, pp.8-13, 2017.

M. Meneguz, A. Schiavone, F. Gai, A. Dama, C. Lussiana et al., Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae, J. Sci. Food Agric, vol.98, pp.5776-5784, 2018.

. Fao, Food Wastage Footprint: Impacts on Natural Resources, 2013.

J. Gustavsson, C. Cederberg, and U. Sonesson, Global Food Losses and Food Waste. Extent, Causes and Prevention, 2013.

J. Gustavsson, C. Cederberg, U. Sonesson, and A. Emanuelsson, Global Food Losses and Food Waste-Extent, Causes and Prevention-FAO

, SIK-The Swedish Institute for Food and Biotechnology, 2013.

D. Licursi, C. Antonetti, S. Fulignati, A. Corsini, N. Boschi et al., Smart valorization of waste biomass: Exhausted lemon peels, coffee silverskins and paper wastes for the production of levulinic acid, Chem. Eng. Trans, vol.65, pp.637-642, 2018.

I. K. Yu, D. C. Tsang, S. S. Chen, L. Wang, A. J. Hunt et al., Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste, Bioresour. Technol, vol.245, pp.456-462, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02129152

S. K. Karmee, Liquid biofuels from food waste: Current trends, prospect and limitation, Renew. Sustain. Energy Rev, vol.53, pp.945-953, 2016.

M. Wadhwa and S. P. Bakshi, Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of other Value-Added Products, 2013.

M. Gold, C. M. Cassar, C. Zurbrügg, M. Kreuzer, S. Boulos et al., Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates, Waste Manag, vol.102, pp.319-329, 2020.

A. Van-huis, Insects as food and feed, a new emerging agricultural sector: A review, J. Insects Food, vol.2020, pp.27-44

O. Van-hal, I. J. De-boer, A. Muller, S. De-vries, K. H. Erb et al., Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity, J. Clean. Prod, vol.219, pp.485-496, 2019.

M. Cai, K. Zhang, W. Zhong, N. Liu, X. Wu et al., Bioconversion-Composting of Golden Needle Mushroom (Flammulina velutipes) Root Waste by Black Soldier Fly (Hermetia illucens, Diptera: Stratiomyidae) Larvae, to Obtain Added-Value Biomass and Fertilizer. Waste Biomass Valoriz, vol.10, pp.265-273, 2019.

K. B. Barragan-fonseca, M. Dicke, and J. J. Van-loon, Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae

, Entomol. Exp. Appl, vol.166, pp.761-770, 2018.

T. T. Nguyen, J. K. Tomberlin, and S. Vanlaerhoven, Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste, Environ. Entomol, vol.44, pp.406-410, 2015.

M. Tschirner and A. Simon, Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed, J. Insects Food Feed, vol.1, pp.249-259, 2015.

T. Spranghers, M. Ottoboni, C. Klootwijk, A. Ovyn, S. Deboosere et al., Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates, J. Sci. Food Agric, vol.97, pp.2594-2600, 2017.

S. Diener, C. Zurbrügg, and K. Tockner, Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates, Waste Manag. Res, vol.27, pp.603-610, 2009.

J. Larouche, M. Deschamps, L. Saucier, Y. Lebeuf, A. Doyen et al., Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals, vol.9, p.182, 2019.

G. Leni, A. Caligiani, and S. Sforza, Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: A metabolomics and proteomic insight, Food Res. Int, vol.115, pp.116-125, 2019.

A. Caligiani, A. Marseglia, A. Sorci, F. Bonzanini, V. Lolli et al., Influence of the killing method of the black soldier fly on its lipid composition, Food Res. Int, vol.116, pp.276-282, 2018.

T. Arsiwalla and K. Aarts, Method to Convert Insects or Worms into Nutrient Streams and Compositions Obtained Thereby, 2015.

G. Leni, L. Soetemans, J. Jacobs, S. Depraetere, N. Gianotten et al., Protein hydrolysates from Alphitobius diaperinus and Hermetia illucens larvae treated with commercial proteases, J. Insects Food Feed, vol.2020, pp.1-12

D. Stefaan and J. Johan, A Method for Separating Larvae in a Pulp and a Liquid Fraction. Patent WO, 2019.

L. Soetemans, M. Uyttebroek, E. Hondt, and L. Bastiaens, Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid-and protein-enriched fractions, Eur. Food Res. Technol, vol.245, pp.2257-2267, 2019.

R. Smets, B. Verbinnen, I. Van-de-voorde, G. Aerts, J. Claes et al., Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae. Waste Biomass Valoriz, 2020.

F. Chemat, M. A. Vian, H. K. Ravi, B. Khadhraoui, S. Hilali et al., Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects, Molecules, vol.24, p.3007, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02624552

K. Rajendran, K. C. Surendra, J. K. Tomberlin, and S. K. Khanal, Insect-Based Biorefinery for Bioenergy and Bio-Based Products

B. V. Elsevier, , 2018.

D. Keegan, B. Kretschmer, B. Elbersen, and C. Panoutsou, Cascading use: A systematic approach to biomass beyond the energy sector, Biofuels Bioprod. Biorefin, vol.7, pp.193-206, 2013.

H. Wang, K. U. Rehman, X. Liu, Q. Yang, L. Zheng et al., Insect biorefinery: A green approach for conversion of crop residues into biodiesel and protein, Biotechnol. Biofuels, vol.10, pp.1-13, 2017.

S. S. Win, J. H. Ebner, S. A. Brownell, S. S. Pagano, P. Cruz-diloné et al., Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery, Renew. Energy, vol.127, pp.705-712, 2018.

S. Smetana, E. Schmitt, and A. Mathys, Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment, Resour. Conserv. Recycl, vol.144, pp.285-296, 2019.

N. Ewald, A. Vidakovic, M. Langeland, A. Kiessling, S. Sampels et al., Fatty acid composition of black soldier fly larvae (Hermetia illucens)-Possibilities and limitations for modification through diet, Waste Manag, vol.102, pp.40-47, 2020.

N. S. Liland, I. Biancarosa, P. Araujo, D. Biemans, C. G. Bruckner et al., Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media, PLoS ONE, vol.12, pp.1-23, 2017.

B. Matthäus, T. Piofczyk, H. Katz, and F. Pudel, Renewable Resources from Insects: Exploitation, Properties, and Refining of Fat Obtained by Cold-Pressing from Hermetia illucens (Black Soldier Fly) Larvae, Eur. J. Lipid Sci. Technol, vol.121, pp.1-11, 2019.

F. G. Barroso, M. J. Sánchez-muros, M. Á. Rincón, M. Rodriguez-rodriguez, D. Fabrikov et al., Production of n-3-rich insects by bioaccumulation of fishery waste, J. Food Compos. Anal, vol.82, 2019.

F. M. Dayrit, The Properties of Lauric Acid and Their Significance in Coconut Oil, J. Am. Oil Chem. Soc, vol.92, pp.1-15, 2015.

H. C. Mai, N. D. Dao, T. D. Lam, B. V. Nguyen, D. C. Nguyen et al., Purification Process, Physicochemical Properties, and Fatty Acid Composition of Black Soldier Fly (Hermetia illucens Linnaeus) Larvae Oil, J. Am. Oil Chem. Soc, vol.96, pp.1303-1311, 2019.

C. Delicato, J. J. Schouteten, K. Dewettinck, X. Gellynck, and D. A. Tzompa-sosa, Consumers' perception of bakery products with insect fat as partial butter replacement, Food Qual. Prefer, vol.79, 2020.

S. Kroeckel, A. G. Harjes, I. Roth, H. Katz, S. Wuertz et al., When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute-Growth performance and chitin degradation in juvenile turbot (Psetta maxima), Aquaculture, vol.2012, pp.345-352

S. Y. Wang, L. Wu, B. Li, and D. Zhang, Reproductive potential and nutritional composition of hermetia illucens (Diptera: Stratiomyidae) prepupae reared on different organic wastes, J. Econ. Entomol, vol.113, pp.527-537, 2020.

K. Starcevic, L. Lozica, A. Gavrilovic, Z. Heruc, and T. Masek, Fatty acid plasticity of black soldier fly (Hermetia illucens) larvae reared on alternative feeding media: Crude olive cake and processed animal protein, J. Anim. Feed Sci, vol.28, pp.374-382, 2019.

X. Liu, X. Chen, H. Wang, Q. Yang, K. Ur-rehman et al., Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly, PLoS ONE, vol.12, pp.1-21, 2017.

A. Giannetto, S. Oliva, C. F. Ceccon-lanes, F. De-araújo-pedron, D. Savastano et al., Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: Biomass production, fatty acid profile and expression of key genes involved in lipid metabolism, J. Biotechnol, vol.307, pp.44-54, 2020.

M. Cullere, G. Tasoniero, V. Giaccone, G. Acuti, and A. Marangon, Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits, Animal, vol.12, pp.640-647, 2018.

S. Smetana, L. Leonhardt, S. M. Kauppi, A. Pajic, and V. Heinz, Insect margarine: Processing, sustainability and design, J. Clean

W. Kim, S. Bae, K. Park, S. Lee, Y. Choi et al., Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), J. Asia-Pac. Entomol, vol.14, pp.11-14, 2011.

T. Wang, Q. Shen, W. Feng, C. Wang, and F. Yang, Aqueous ethyl acetate as a novel solvent for the degreasing of black soldier fly (Hermetia illucens L.) larvae: Degreasing rate, nutritional value evaluation of the degreased meal, and thermal properties, J. Sci. Food Agric, vol.100, pp.1204-1212, 2020.

M. Cullere, A. Schiavone, S. Dabbou, L. Gasco, and A. D. Zotte, Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source, vol.9, p.140, 2019.

A. Schiavone, S. Dabbou, M. De-marco, M. Cullere, I. Biasato et al., Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source, Animal, vol.12, pp.2032-2039, 2018.

L. Gasco, S. Dabbou, F. Gai, A. Brugiapaglia, A. Schiavone et al., Quality and consumer acceptance of meat from rabbits fed diets in which soybean oil is replaced with black soldier fly and yellow mealworm fats, vol.9, p.629, 2019.

S. Li, H. Ji, B. Zhang, J. Tian, J. Zhou et al., Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian), Aquaculture, vol.465, pp.43-52, 2016.

A. Dumas, T. Raggi, J. Barkhouse, E. Lewis, and E. Weltzien, The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss), Aquaculture, vol.492, pp.24-34, 2018.

I. Belghit, R. Waagbø, E. J. Lock, and N. S. Liland, Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon, Aquac. Nutr, vol.25, pp.343-357, 2019.

J. Sypniewski, B. Kiero?czyk, A. Benzertiha, Z. Miko?ajczak, E. Pruszy?ska-oszma?ek et al., Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality, Br. Poult. Sci, 2020.

E. V. Heugten, G. Martinez, A. Mccomb, and E. Koutsos, 285 Black soldier fly (Hermetia illucens) larvae oil improves growth performance of nursery pigs, J. Anim. Sci, vol.2019, p.97

Q. Li, L. Zheng, H. Cai, E. Garza, Z. Yu et al., From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible, Fuel, vol.90, pp.1545-1548, 2011.

H. C. Nguyen, S. H. Liang, S. Y. Li, C. H. Su, C. C. Chien et al., Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production, J. Taiwan Inst. Chem. Eng, vol.85, pp.165-169, 2018.

L. Zheng, Q. Li, J. Zhang, and Z. Yu, Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production, Renew. Energy, vol.41, pp.75-79, 2012.

C. Su, H. C. Nguyen, T. L. Bui, and D. Huang, Enzyme-assisted extraction of insect fat for biodiesel production, J. Clean. Prod, vol.223, pp.436-444, 2019.

H. C. Nguyen, S. H. Liang, T. T. Doan, C. H. Su, and P. C. Yang, Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology, Energy Convers. Manag, vol.145, pp.335-342, 2017.

F. Manzano-agugliaro, M. J. Sanchez-muros, F. G. Barroso, A. Martínez-sánchez, S. Rojo et al., Insects for biodiesel production, Renew. Sustain. Energy Rev, vol.16, pp.3744-3753, 2012.

Q. Li, L. Zheng, N. Qiu, H. Cai, J. K. Tomberlin et al., Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production, Waste Manag, vol.31, pp.1316-1320, 2011.

G. R. Verheyen, T. Ooms, L. Vogels, S. Vreysen, A. Bovy et al., Insects as an alternative source for the production of fats for cosmetics, J. Cosmet. Sci, vol.69, pp.187-202, 2018.

C. Sangduan and S. Sai, Skincare Products Containing Hermetia illucens Extract, 2018.

U. Zoller and P. Sosis, Handbook of Detergents, Part F: Production, 2008.

L. Yi, C. M. Lakemond, L. M. Sagis, V. Eisner-schadler, A. Van-huis et al., Extraction and characterisation of protein fractions from five insect species, Food Chem, vol.141, pp.3341-3348, 2013.

S. Bußler, B. A. Rumpold, E. Jander, H. M. Rawel, and O. K. Schlüter, Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly

A. Caligiani, A. Marseglia, G. Leni, S. Baldassarre, and L. Maistrello, Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin, Food Res. Int, vol.105, pp.812-820, 2018.

S. O. Andersen, Insect cuticular sclerotization: A review, Insect Biochem. Mol. Biol, vol.40, pp.166-178, 2010.

L. Yi, M. A. Boekel, and C. M. Lakemond, Extracting Tenebrio molitor protein while preventing browning: Effect of pH and NaCl on protein yield, J. Insects Food Feed, vol.3, pp.21-31, 2017.

M. Sugumaran, Comparative Biochemistry of Eumelanogenesis and the Protective Roles of Phenoloxidase and Melanin in Insects, Pigment Cell Res, vol.15, pp.2-9, 2002.

R. H. Janssen, J. Vincken, L. A. Van-den-broek, C. M. Lakemond, and V. Fogliano, Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, J. Agric. Food Chem, vol.65, pp.2275-2278, 2017.

V. C. Cummins, S. D. Rawles, K. R. Thompson, A. Velasquez, Y. Kobayashi et al., Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei), Aquaculture, vol.473, pp.337-344, 2017.

M. Shumo, I. M. Osuga, F. M. Khamis, C. M. Tanga, K. K. Fiab et al., The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya, Sci. Rep, vol.9, pp.1-13, 2019.

H. J. Fisher, S. A. Collins, C. Hanson, B. Mason, S. M. Colombo et al., Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar), Aquaculture, vol.521, 2020.

Z. Ullah, G. Ahmed, M. Nisa, and M. Sarwar, Standardized Ileal amino acid digestibility of commonly used feed ingredients in growing broilers, Asian-Australas. J. Anim. Sci, vol.29, pp.1322-1330, 2016.

Z. N. Mwaniki and E. Kiarie, Standardized ileal digestible amino acids and apparent metabolizable energy content in defatted black soldier fly larvae meal fed to broiler chickens. Can, J. Anim. Sci, vol.99, pp.211-217, 2019.

A. Schiavone, M. De-marco, S. Martínez, S. Dabbou, M. Renna et al., Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility, J. Anim. Sci. Biotechnol, vol.8, pp.1-9, 2017.

S. Do, L. Koutsos, P. Utterback, C. Parsons, M. Godoy et al., Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay, J. Anim. Sci, vol.2020

D. Marco, M. Martínez, S. Hernandez, F. Madrid, J. Gai et al., Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy, Anim. Feed Sci. Technol, vol.209, pp.211-218, 2015.

V. Rabani, H. Cheatsazan, and S. Davani, Proteomics and Lipidomics of Black Soldier Fly (Diptera: Stratiomyidae) and Blow Fly (Diptera: Calliphoridae) Larvae, J. Insect Sci, vol.19, 2019.

R. D. Miles and F. A. Chapman, The Benefits of Fish Meal in Aquaculture Diets; IFAS Extension, 2006.

G. Bosch, S. Zhang, D. G. Oonincx, and W. H. Hendriks, Protein quality of insects as potential ingredients for dog and cat foods, J. Nutr. Sci, vol.3, pp.1-4, 2014.

M. Henry, L. Gasco, G. Piccolo, and E. Fountoulaki, Review on the use of insects in the diet of farmed fish: Past and future, Anim. Feed Sci. Technol, vol.203, pp.1-22, 2015.

Y. Wang and M. Shelomi, Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food, vol.6, p.91, 2017.

S. H. Khan, Recent advances in role of insects as alternative protein source in poultry nutrition, J. Appl. Anim. Res, vol.46, pp.1144-1157, 2018.

D. Souza-vilela, J. Andrew, N. R. Ruhnke, and I. , Insect protein in animal nutrition, Anim. Prod. Sci, vol.59, pp.2029-2036, 2019.

S. Nogales-mérida, P. Gobbi, D. Józefiak, J. Mazurkiewicz, K. Dudek et al., Insect meals in fish nutrition, Rev. Aquac, vol.11, pp.1080-1103, 2019.

P. Ferrer-llagostera, Z. Kallas, and L. Reig, Amores de Gea, D. The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers' perceptions and willingness to pay, J. Clean. Prod, vol.229, pp.10-21, 2019.

L. Gasco, I. Biasato, S. Dabbou, A. Schiavone, and F. Gai, Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality, Animals, vol.9, 2019.

M. Abdel-tawwab, R. H. Khalil, A. A. Metwally, M. S. Shakweer, M. A. Khallaf et al., Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax, Aquaculture, vol.522, 2020.

Y. Li, T. M. Kortner, E. M. Chikwati, I. Belghit, E. J. Lock et al., Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar), Aquaculture, vol.520, 2020.

M. Zarantoniello, B. Randazzo, C. Truzzi, E. Giorgini, C. Marcellucci et al., A six-months study on Black Soldier Fly (Hermetia illucens) based diets in zebrafish, Sci. Rep, vol.9, pp.1-12, 2019.

M. R. Alam, M. Scampicchio, S. Angeli, and G. Ferrentino, Effect of hot melt extrusion on physical and functional properties of insect based extruded products, J. Food Eng, vol.259, pp.44-51, 2019.

M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci, vol.31, pp.603-632, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305792

T. Hahn and S. Zibek, Sewage polluted water treatment via chitosan: A review, Chitin-Chitosan Myriad Functionalities in Science and Technology

R. Dongre, . Ed, and . Intechopen, , 2018.

T. Stegmaier, W. Wunderlich, T. Hager, A. B. Siddique, J. Sarsour et al., Chitosan-A sizing agent in fabric production-Development and ecological evaluation, Clean SoilAirWater, vol.36, pp.279-286, 2008.

S. Islam, M. A. Bhuiyan, and M. N. Islam, Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering, J. Polym. Environ, vol.25, pp.854-866, 2017.

A. Wa?ko, P. Bulak, M. Polak-berecka, K. Nowak, C. Polakowski et al., The first report of the physicochemical structure of chitin isolated from Hermetia illucens, Int. J. Biol. Macromol, vol.92, pp.316-320, 2016.

D. Purkayastha and S. Sarkar, Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens), J. Polym. Environ, vol.2020, pp.445-457

T. Hahn, A. Roth, R. Ji, E. Schmitt, and S. Zibek, Chitosan production with larval exoskeletons derived from the insect protein production, J. Biotechnol, vol.2020, pp.62-67

P. Zhou, J. Li, T. Yan, X. Wang, J. Huang et al., Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens), Carbohydr. Polym, vol.225, 2019.

H. Wang, K. Ur-rehman, W. Feng, D. Yang, R. Ur-rehman et al., Physicochemical structure of chitin in the developing stages of black soldier fly, Int. J. Biol. Macromol, vol.149, pp.901-907, 2020.

N. D. Sanandiya, C. Ottenheim, J. W. Phua, A. Caligiani, S. Dritsas et al., Circular manufacturing of chitinous bio-composites via bioconversion of urban refuse, Sci. Rep, vol.10, pp.1-8, 2020.

D. Souza, P. R. Do-carmo-ribeiro, T. M. Lôbo, A. P. Tokumoto, M. S. De-jesus et al., Removal of bromophenol blue anionic dye from water using a modified exuviae of Hermetia illucens larvae as biosorbent, Environ. Monit. Assess, vol.192, pp.1-16, 2020.

F. G. Irungu, C. M. Mutungi, A. K. Faraj, H. Affognon, C. Tanga et al., Minerals content of extruded fish feeds containing cricket (Acheta domesticus) and black soldier fly larvae (Hermetia illucens) fractions, Int. Aquat. Res, vol.10, pp.101-113, 2018.

A. C. Cohen, Insect Diets: Science and Technology, 2003.

E. Schmitt, I. Belghit, J. Johansen, R. Leushuis, E. J. Lock et al., Growth and safety assessment of feed streams for black soldier fly larvae: A case study with aquaculture sludge, vol.9, p.189, 2019.

H. S. Shin and S. I. Park, Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties, Prep. Biochem. Biotechnol, vol.49, pp.279-285, 2019.

H. Y. Yi, M. Chowdhury, Y. D. Huang, and X. Q. Yu, Insect antimicrobial peptides and their applications, Appl. Microbiol. Biotechnol, vol.98, pp.5807-5822, 2014.

S. V. Sperstad, T. Haug, V. Paulsen, T. M. Rode, G. Strandskog et al., Characterization of crustins from the hemocytes of the spider crab, Hyas araneus, and the red king crab, Paralithodes camtschaticus, Dev. Comp. Immunol, vol.33, pp.583-591, 2009.

W. H. Choi, J. H. Yun, J. P. Chu, and K. B. Chu, Antibacterial effect of extracts of hermetia illucens (diptera: Stratiomyidae) larvae against gram-negative bacteria, Entomol. Res, vol.42, pp.219-226, 2012.

D. Alvarez, K. A. Wilkinson, M. Treilhou, N. Téné, D. Castillo et al., Prospecting Peptides Isolated from Black Soldier Fly (Diptera: Stratiomyidae) with Antimicrobial Activity against Helicobacter pylori (Campylobacterales: Helicobacteraceae), J. Insect Sci, vol.19, pp.1-5, 2019.

W. H. Choi, H. Choi, T. W. Goo, and F. Quan, Novel antibacterial peptides induced by probiotics in Hermetia illucens (Diptera: Stratiomyidae) larvae, Entomol. Res, vol.48, pp.237-247, 2018.

S. I. Park and S. M. Yoe, A novel cecropin-like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization, Entomol. Res, vol.47, pp.115-124, 2017.

H. Vogel, A. Müller, D. G. Heckel, H. Gutzeit, and A. Vilcinskas, Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens, Dev. Comp. Immunol, vol.78, pp.141-148, 2018.

O. Elhag, D. Zhou, Q. Song, A. A. Soomro, M. Cai et al., Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.), PLoS ONE, vol.12, pp.1-15, 2017.

D. Zhu, X. Huang, F. Tu, C. Wang, and F. Yang, Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae, J. Food Biochem, vol.44, pp.1-9, 2020.

E. Schmitt and W. De-vries, Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction, Curr. Opin. Green Sustain. Chem, 2020.

S. Y. Chia, C. M. Tanga, J. J. Van-loon, and M. Dicke, Insects for sustainable animal feed: Inclusive business models involving smallholder farmers, Curr. Opin. Environ. Sustain, vol.41, pp.23-30, 2019.

J. Poveda, A. Jiménez-gómez, Z. Saati-santamaría, R. Usategui-martín, R. Rivas et al., Mealworm Frass as a Potential Biofertilizer and Abiotic Stress Tolerance-Inductor in Plants, Appl. Soil Ecol, vol.142, pp.110-122, 2019.

A. Pakpahan, R. Widowati, and A. Suryadinata, Black soldier fly liquid biofertilizer in Bunga Mayang sugarcane plantation: From experiment to policy implications, MOJ Eco Environ. Sci, vol.2020, pp.89-98

X. Wu, R. Cai, X. Wang, N. Wu, and X. Xu, Study on Effects of Black Soldier Fly Feces on Rice Growth, IOP Conf. Ser. Earth Environ. Sci, vol.2020, p.12099

M. Alattar, F. Alattar, and R. Popa, Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays), Plant. Sci. Today, vol.3, pp.57-62, 2016.

B. M. Dortmans, S. Diener, B. M. Verstappen, and C. Zurbrügg, Black Soldier Fly Biowaste Processing-A Step-by-Step Guide; Eawag, 2017.

M. Meneguz, L. Gasco, and J. K. Tomberlin, Impact of pH and feeding system on black soldier fly (Hermetia illucens, L.; Diptera: Stratiomyidae) larval development, PLoS ONE, vol.13, pp.1-15, 2018.

S. Y. Chia, C. M. Tanga, F. M. Khamis, S. A. Mohamed, D. Salifu et al., Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production, PLoS ONE, vol.13, pp.1-26, 2018.

L. A. Holmes, S. L. Vanlaerhoven, and J. K. Tomberlin, Relative Humidity Effects on the Life History of Hermetia illucens (Diptera: Stratiomyidae), Environ. Entomol, vol.41, pp.971-978, 2012.

J. A. Cammack and J. K. Tomberlin, The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae), vol.8, 2017.

C. Lalander, S. Diener, C. Zurbrügg, and B. Vinnerås, Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens), J. Clean. Prod, vol.208, pp.211-219, 2019.

B. Purschke, R. Scheibelberger, S. Axmann, A. Adler, and H. Jäger, Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain, Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess, vol.34, pp.1410-1420, 2017.

A. A. Somroo, K. Ur-rehman, L. Zheng, M. Cai, X. Xiao et al., Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production, Waste Manag, vol.86, pp.114-122, 2019.

L. Zheng, Y. Hou, W. Li, S. Yang, Q. Li et al., Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes, vol.47, pp.225-229, 2012.

C. Y. Wong, J. W. Lim, F. K. Chong, M. K. Lam, Y. Uemura et al., Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions, Environ. Res, vol.2020, 109458.

B. Hoc, G. Noël, J. Carpentier, F. Francis, and R. C. Megido, Optimization of black soldier fly (Hermetia illucens) artificial reproduction, PLoS ONE, vol.14, pp.1-13, 2019.

C. D. Heussler, A. Walter, H. Oberkofler, H. Insam, W. Arthofer et al., Correction: Influence of three artificial light sources on oviposition and half-life of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae): Improving small-scale indoor rearing, PLoS ONE, vol.14, pp.40-45, 2019.

D. G. Oonincx, N. Volk, J. J. Diehl, J. J. Van-loon, and G. Belu?i?, Photoreceptor spectral sensitivity of the compound eyes of black soldier fly (Hermetia illucens) informing the design of LED-based illumination to enhance indoor reproduction, J. Insect Physiol, vol.95, pp.133-139, 2016.

J. C. Schneider, Effects of light intensity on mating of the black soldier fly (Hermetia illucens, Diptera: Stratiomyidae), J. Insects Food Feed, vol.6, pp.111-119, 2019.

, 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No. 1774/2002 (Animal by-products Regulation), European Commission. Commission Regulation, vol.300, pp.1-33, 2009.

L. Pinotti, C. Giromini, M. Ottoboni, M. Tretola, and D. Marchis, Review: Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals, Animal, vol.13, pp.1365-1375, 2019.

H. J. Van-der-fels-klerx, L. Camenzuli, S. Belluco, N. Meijer, and A. Ricci, Food Safety Issues Related to Uses of Insects for Feeds and Foods, Compr. Rev. Food Sci. Food Saf, vol.17, pp.1172-1183, 2018.

K. Proc, P. Bulak, D. Wi?cek, and A. Bieganowski, Hermetia illucens exhibits bioaccumulative potential for 15 different elements-Implications for feed and food production, Sci. Total Environ, vol.723, 2020.

G. Bosch, T. C. De-rijk, and D. G. Oonincx, Aflatoxin B1 Tolerance and Accumulation in Black Soldier Fly Larvae (Hermetia illucens) and Yellow Mealworms (Tenebrio molitor), Toxins, vol.9, p.185, 2017.

L. Camenzuli, R. Van-dam, T. De-rijk, R. Andriessen, J. Van-schelt et al., Tolerance and Excretion of the Mycotoxins Aflatoxin B 1 , Zearalenone, Deoxynivalenol, and Ochratoxin A by Alphitobius diaperinus and Hermetia illucens from Contaminated Substrates, Toxins, vol.10, p.91, 2018.

U. Konietzny and R. Greiner, Phytic Acid: Nutritional Impact, Encyclopedia of Food Science and Nutrition

B. Caballero, L. Trugo, and P. Finglas, , pp.4555-4563, 2003.

L. Gasco, G. Acuti, P. Bani, A. Dalle-zotte, P. P. Danieli et al., Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition, Ital. J. Anim. Sci, vol.19, pp.360-372, 2020.

L. Mancini, B. Vidal-legaz, M. Vizzarri, D. Wittmer, G. Grassi et al., Mapping the Role of Raw Materials in Sustainable Development Goals. A Preliminary Analysis of Links, Monitoring Indicators, and Related Policy Initiatives, 2019.