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Abstract: This review presents a complete picture of current knowledge on 2-methyloxolane (2-MeOx),
a bio-based solvent for the extraction of natural products and food ingredients. It provides the
necessary background about the properties of 2-MeOx, not only its solvent power and extraction
efficiency, but its detailed toxicological profile and environmental impacts are discussed. We compared
2-MeOx with hexane which is the most used petroleum-based solvent for extraction of lipophilic
natural products. The final part focuses on successful industrial transfer, including technologic,
economic, and safety impacts. The replacement of petroleum-based solvents is a hot research topic,
which affects several fields of modern plant-based chemistry. All the reported applications have
shown that 2-MeOx is an environmentally and economically viable alternative to conventional
petroleum-based solvents for extraction of lipophilic foodstuff and natural products.

Keywords: 2-methyloxolane; 2-MeOx; 2-MeTHF; bio-based solvent; green extraction; hexane

1. Introduction

During the 20th century, extraction solvents have been exclusively volatile organic compounds
(VOCs) obtained from non-renewable resources, and now, most of them are known or suspected to be
harmful to both human health and the environment. One widely used solvent (1500 ktons/year) is
hexane, a mixture of C6 products obtained from the distillation of petroleum mixtures. The primary
advantage of such a petroleum based solvent is the ease of production (low cost) and chemical
properties that impart ideal functionalities, particularly its ability to solubilise a variety of products,
including vegetable oils, aromas, or colors. Nevertheless, hexane is a neurotoxic substance, classified
as a reproductive toxicant (category 2) and is toxic for the aquatic environment (category 2), under
the European Directives and Registration, Evaluation, Authorization and Restriction of Chemicals
(REACH) regulation.

Extraction of natural products is often considered as “clean” or “green” when compared with
traditional chemical industries, but researchers and professional specialists know that environmental,
security, and health impacts can be greater than first appeared. For example, 1 kg of rose absolute
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(refined perfume extract) does not only require almost 2 tons of fresh roses as raw material, but also a
large quantity of petroleum based solvent (hexane), a lot of energy (mainly fossil) for extraction and
evaporation, and water to cool and clean, on top of generating toxic solid waste with petroleum-based
solvent residues, wastewater, and emissions of VOCs. As another example, to extract 1 ton of rapeseed
or soybean oil, we need more than 4 tons of raw material to be processed with almost same amount of
hexane. Despite an optimized solvent recycling, it is known that up to 1 kg of solvent can be lost per
ton of raw material. Addition of fresh solvent is necessary to compensate losses due to leakages to
the atmosphere (2/3) or solvent traces in final products (1/3), such as oils or feed meals. If the hexane
residual is limited to 1 ppm in refined oil within the European Union, no regulatory limit currently
exists for feed meal.

The choice of the extraction solvent is crucial, and a number of criteria must be considered
(properties, toxicity, cost, etc.). The recent need for greener products led to the publication of the
twelve principles of green chemistry [1] and the twelve principles of green engineering [2], which
define the good practices to be adopted. Following those principles, researchers from academia and
industry defined the term of “green extraction” and established the six principles of green extraction [3].
The choice of the solvent for green extraction must particularly ensure the durability of global process
and good practice guidelines must be respected, such as:

1. Use of 100% natural, natural origin, renewable or agro-sourced solvent with condition of having
good knowledge, evaluation, and control of related risks

2. Avoid the use of solvent which might affect the safety and health of operators and consumers:
no CMR, toxic, allergens, endocrine disruptors substances

3. Use of solvent suitable with existing industrial facilities
4. Prefer a solvent with high rate of recyclability, high bio-degradability and no bio-accumulation,

to limit global process impact on environment
5. Use of solvent with low VOC emissions related
6. Use of solvent which limits energy consumption and cost of global process
7. Ensure a maximal solvent recovery using various available techniques

In this context, this review presents a complete picture of current knowledge on 2-metyloxolane
(2-MeOx)—also known as 2-methyltetrahydrofuran (2-MeTHF)—as a bio-based solvent for the
extraction of natural products. Readers such as chemists, biochemists, chemical engineers, physicians,
and food technologists, from academia or industry, will find a deep and complete perspective regarding
2-MeOx properties, applications, toxicological, and environmental impacts, and also industrial
applications. The first part presents history, synthesis, sourcing, and production of 2-MeOx. The second
part is dedicated to the physico-chemical properties and solvation power comparing 2-MeOx with
hexane. The third part focuses on applications of 2-MeOx as solvent of different targeted natural
products and presentation of the most relevant extraction procedures. The last parts give new insights
in term of toxicity and regulations, even for operators or final consumers, up-scaling and industrial
applications, quality, security and safety considerations, economic and environmental impacts, and
future directions for research and industry.

2. Production of 2-Methyloxolane

2-Methyloxolane (2-MeOx) is a cyclic ether, issued from carbohydrates derived from lignocellulosic
biomass, which represents the most abundant biomass resources on earth [4]. The term lignocellulosic
covers a range of biomass containing cellulose, hemicellulose (polysaccharides) and lignin (aromatic
polymer), making a rigid, compact, and complex assembly of polymers naturally recalcitrant to
microbial and enzymatic degradation [5]. The content of cellulose is generally in the range of 29–45%,
and hemicellulose in the range of 18–30%. Industrially, 2-MeOx is produced from agricultural
by-products such as corn stover, sugarcane bagasse, and rice straw, which could be found mainly in
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China, South Africa, and Dominican Republic. Agricultural by-products as lignocellulosic biomass are
preferred, because they do not compete with the use of land for the production of food [6].

First, harsh acidic pretreatment is required for deconstructing lignocellulose to make
polysaccharides into more accessible intermediate sugars for subsequent conversions [7].
After separation of the solid residue (from lignin), the acidic solution containing a mixture of both
hemicellulose and cellulose is subject to hydrolysis of the polymers into monomeric C5 (pentoses) and
C6 (hexoses) sugars. Then, C6- and C5- monosaccharides undergo multiple acid-catalyzed reactions to
give the platform molecules levulinic acid (LA) and furfural (FAL), which are used as the building
blocks for the synthesis of 2-MeOx. Indeed, 2-MeOx can be produced either from FAL pathway or LA
pathway, as shown in Figure 1. Hayes et al. reported that the “biofine” process [8] seems to be the only
industrially relevant process able to lead the production of either LA or FAL starting from a mixture of
C5 and C6 monosaccharides [6].
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2.1. Furfural Pathway

FAL is a colorless, organic liquid aldehyde (C5H4O2) obtained by dehydrating C5 sugars.
It naturally occurs in small quantities in many foods such as fruits, cocoa, in tea, coffee (55–255 mg/kg)
and whole grain bread (26 mg/kg) [9]. It has been primarily used as a solvent for extraction of
heavy molecules in oil refineries [10], but it rapidly became a renewable building block for industrial
downstream products such as resins and polymers, solvents, lubricants, and fuel additives. Finally,
due to its desirable aromatic characteristics, caramel smell, it is used to a lesser degree as a flavoring
agent in a variety of food products and alcoholic and non-alcoholic beverages [11].

In the synthesis of 2-MeOx, two successive hydrogenations of FAL over Cu-Zn catalysts allow
a nearly complete conversion to 2-methylfuran in a range of temperature of 200–300 ◦C, with a
yield >95% [12]; 2-methylfuran is then isolated by distillation and converted into 2-MeOx at lower
temperature (100 ◦C) over Ni catalyst with a yield around 85%. The 2-MeOx is also recovered by
distillation, which allows the production of a product purity >99.9%. The choice of the catalyst has a
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great importance in the conversion yield as a wide variety of compounds can be obtained depending
on the reaction conditions [12].

2.2. Levulinic Acid Pathway

LA is a keto acid (C5H8O3) found as white crystalline solid. It is a highly versatile compound used
for several applications like in resins or plasticizers industry, but also as precursor for pharmaceuticals
and others high-value added chemicals [13–15]. LA is considered as one of the United States Department
of Energy’s (DOE’s) top 12 platform bio-based chemicals [16].

The synthesis of 2-MeOx from LA consists in consecutive catalyzed hydrogenations and
dehydrations. The catalyzed hydrogenation of the keto group of LA leads to a hydroxyl acid that results
in γ-valerolactone. Further hydrogenation of the keto bond of γ-valerolactone allows the formation of
the cyclic hemiacetal in equilibrium with the aliphatic hydroxyl aldehyde. The hydrogenation of the
last carbonyl group leads to 1,4-pentanediol that can be etherified in 2-MeOx by dehydration in acid
conditions. Although the 2-MeOx can be directly produced from LA using a batch-type reactor, harsh
reaction conditions and/or precious metal catalysts such as Ru [17], Pt [18] and Pd [19] are required.
Using these catalysts, the conversion of LA to 2-MeOx gives 85–92% yields.

2.3. History

To the best of our knowledge, 2-MeOx was first prepared and isolated in 1906 [20], during research
on furfural, which was discovered 76 years before (Figure 2). At that time, there were plenty of
resources available to produce furfural and researchers were trying to find uses for it, either directly
or through an impressive number of derivatives [21]. Due to its interesting properties, 2-MeOx was
first employed as a reaction medium in 1951 in laboratories [22]. Almost 100 years were necessary
between its first isolation and its efficient production at an industrial scale [23]. It is only a few years
ago, in 2012, that 2-MeOx began to draw the attention of researchers working on the extraction of
natural products while searching for alternative to benchmark petrochemical solvents.
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3. Solvent Properties

The general properties of 2-MeOx and hexane (food extraction grade) are summarized in Table 1.
2-methyloxolane (also known as 2-methyltetrahydrofuran or 2-MeTHF), is a clear liquid with an ether
smell, produced from crop by-products. It is currently mainly used as solvent for chemical reactions as
a green alternative to tetrahydrofuran (THF) [24,25].
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Table 1. Solvent properties of 2-MeOx vs hexane.

Properties/IUPAC Name 2-Methyloxolane [25,26] Hexane (Extraction) [27]

Chemical structure
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CAS number 96-47-9 64742-49-0 (extraction grade)
110-54-3 (n-hexane)

Synonyms 2-methyltetrahydrofuran; 2-MeOx;
2-MeTHF -

Sourcing Bio-based Petro-sourced

Formula C5H10O C6H14

Molecular weight (g/mol) 86.1 86.2

Boiling point (◦C) 80 66–70

Vapor pressure (kPa; 20 ◦C) 13.6 19.0

Vaporization enthalpy (kJ/kg) 364 334

Specific heat (kJ/kg.K; 25 ◦C) 1.8 2.2

Evaporation rate (BuAc) a 4.2 8.0

Density (20 ◦C) 0.855 0.675

Viscosity (cP; 25 ◦C) 0.60 0.30

Electrical Conductivity (S/m; 25 ◦C) 8.10−9 1.10−14

Dielectric constant (25 ◦C) 7.0 1.9

Dipole moment (D) 1.38 0.09

Log Po/w 1.85 4.00

HSP b parameters (MPa 1
2 ) δd = 16.8 δp = 4.8 δh = 4.6 δd = 15.0 δp = 0.0 δh = 0.0

Solubility in H2O (20 ◦C; %w) 14 1.10−3

H2O solubility (20 ◦C; %w) 4.4 9.10−3

Azeotropic point with H2O 71 ◦C/89%w 61.5 ◦C/94%w

Flash Point c.c. c (◦C) −11 −30

Auto-ignition temperature (◦C) 270 225–375

Explosion range (vol%) 1.5–8.9% 1.1–7.4%
a relatively to n-butylacetate; b Hansen Solubility Parameters; c c.c. = closed cup.

The properties that make a solvent a “good extraction solvent” are complex and must fulfil many
criteria (technical, economic, environmental, regulatory, etc.). From a purely technical point of view,
hexane is a good reference for extraction of lipophilic products, because of its advantageous properties:
boiling point around 70 ◦C, good chemical selectivity towards lipids, high volatility, easy separation
with water, etc. However, it must be noted that extraction industrial processes have been optimized
since the 1950s with this solvent, therefore only solvents with close properties could be easily transposed
at an industrial scale, in particular for the oil and fats industry that require large plants. In this context,
2-MeOx shows interesting properties: briefly, its boiling point (80 ◦C) is high enough to allow a
good extraction temperature, but low enough to be easily removed from final products and recycled.
In addition, the density (0.855) and viscosity (0.6 cP) are close to hexane and in the acceptable ranges
for efficient diffusion through solids particles.

In order to better understand the properties that make a solvent a good extraction solvent, we can
decompose the solid-liquid extraction process in several steps involving the solvent:
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• Solvent diffusion into the solid
• Solubilization of the solute in the solvent
• Solvent + solute diffusion out from the solid
• Solute isolation by solvent evaporation

3.1. Diffusion

The first step generally considered in the solid-liquid extraction is the solvent diffusion from the
external medium into the matrix. The diffusion steps (in and out) are usually the limiting steps of the
extraction process and are essentially influenced by the temperature and the structure of the solid
particle (porosity, moisture, bulk density, type of cell membranes, etc.). Therefore, the solvent itself
as usually only a limited influence on the speed of diffusion, but we can say that mass diffusion is
faster for low viscosity and water miscible solvent (if moist material). In the case of 2-MeOx, viscosity
is a little bit higher, but still close to hexane viscosity (0.6 cP vs. 0.3 cP). However, in contrast with
hexane, the partial water miscibility of 2-MeOx may result in a better diffusion in cases when the solids
to extract contains moisture.

3.2. Solubilization

Once the solvent is inside the solid, the solvation phenomenon occurs. Due to its particular
structure, 2-MeOx is mostly lipophilic (log P = 1.85) therefore it is able, to solubilize both fatty molecules,
like hexane (log P = 4.00), but also more polar molecules thanks to the oxygen atom (dipole moment =

1.38 D). Beyond those classical indicators, thermodynamics are now used to predict more precisely the
solubilization capacity of a solvent. In the context of vegetable extraction, two models are mostly used
since 2010: Hansen Solubility Parameters (HSP) and COSMO-RS models [28–32].

Hansen solubility parameters are already quite known by researchers to describe and quantify
the various types of interactions between a solvent and a solute (dispersion δd, hydrogen bond δh,
and polar bond δp) [33]. In the case of 2-MeOX, Hansen solubility parameters show that, unlike hexane
(δh = 0; δp = 0), interactions with more polar compounds via hydrogen and polar bonding are possible.
2-MeOx parameters (δh = 4.8; δp = 4.6) are close to chloroform (δh = 3.1; δp = 5.7), known to be used
for solubilization of fatty compounds in analytical methods [34]. Interestingly, the polar bonding
contribution is higher for 2-MeOx, highlighting the potential for solubilization of more polar molecules.

HSP predictions are more and more superseded by COSMO-RS simulations, using both
quantic and thermodynamic calculations for predictions of physico-chemical properties, including
solubilization [30,32,35]. Figure 3 illustrates for n-hexane and 2-MeOx the polarization charge density
around the molecule (σ-surface) and its distribution (σ-profile). The polarization charge density σ

is a good local descriptor of the molecular surface polarity. Green surfaces that are visible in the
σ-surfaces of both n-hexane and 2-MeOx are neutral surfaces (fatty chains) that interacts mostly with
other neutral surfaces such as fatty chains in fatty acids. On the contrary, the red surface on 2-MeOx
reveals the presence of negative polar surface in the molecule that may interact with positive polar
surfaces of solutes. Both σ-surface and σ-profile are the starting points used by the COSMO-RS model
for solubility predictions. In particular, COSMO-RS is able to predict absolute or relative solubilities
of a solute in several solvents or of several solutes in a solvent. In most cases, absolutes solubilities,
expressed as “xsolub” values going from 0% (fully insoluble) to 100% (fully miscible), are used to
compare the solubility of a specific solute in several solvent. Examples of solubility calculations for
some lipophilic solutes (oil components, carotenoids, terpenes, etc.) in n-hexane and 2-MeOx will be
later presented in part 4.
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3.3. Solvent Distillation

Once the target compounds are solubilized in the solvent and extracted from the solid, the mixture
is usually separated by filtration or centrifugation to get two fractions: the extracted solid and the
extract solution which will be distillated to get the dry extract. This distillation step is generally the
most energy consuming step, as a large quantity of solvent must be heated until the boiling point and
then vaporized (see Equation (1)). Therefore, an ideal extraction solvent must have a low boiling point,
low Cp (heat capacity) and ∆Hvap (vaporization enthalpy).

∆Emass = Eheat + Evap = Cp,m × (Tb − T0) + ∆Hvap (1)

With: ∆Emass the total energy consumption for distillation by kg for solvent; Eheat the energy
consumption for heating 1 kg of solvent of heat capacity Cp,m, from the starting temperature T0 to the
boiling point Tb; Evap the energy consumption by kg for solvent vaporization; ∆Hvap the vaporization
enthalpy of the solvent.

2-MeOx (excluding azeotropes) has a higher boiling point and vaporization enthalpy than
hexane; therefore higher energy consumption is expected for solvent distillation step. However,
it is still acceptable for industrial applications and still much lower than it would be with ethanol
(∆Hvap = 843 kJ/kg), which is the other viable solvent considered for oil extraction.

3.4. Safety

As with many organic solvents, 2-MeOx is a flammable liquid therefore it must be handled with
caution at laboratory or industrial scales. Even if its flash point is higher than hexane (−11 vs. −30 ◦C),
it is still far lower than storage and process temperatures, so the risk is the same. Moreover, the
explosivity interval is a bit larger than for hexane (1.5–8.9% vs. 1.1–7.4%), however the lower explosivity
limits (LEL) is higher, meaning that more solvent vapors are necessary for ignition than for hexane.
It must be also noted that 2-MeOx electrical conductivity is much higher than hexane, thus reducing
the risk of electrical charge accumulation in the piping during solvent flowing [37]. However, in any
case, both solvents must be handled in explosion-proof conditions, in agreement with local regulations.
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Interestingly, it must be also noted that the strong ether odor, usually seen as a major drawback
of 2-MeOx, is actually a “embedded safety” as workers can immediately detect the presence of
solvent vapors (odor threshold <1mg/m3) way before it reaches the LEL or hazardous exposure levels.
Moreover, any vapors of solvent in working atmosphere can be very easily scrubbed using water
sprinkling thanks to 2-MeOx solubility in water (14% at 20 ◦C).

In parallel, like most of the ethers, 2-MeOx is prompt to generate peroxides in presence of oxidative
species, with a formation kinetic close to THF [24]. For this reason, 2-MeOx should be always stored
away from light, with peroxide inhibitors (preferentially natural α-tocopherol) and/or under a nitrogen
blanket. In the context of natural product extraction processes, we do not expect major issues related
to peroxides as (i) extractions will be run away from the light and from air (for flammability reasons),
usually at moderate temperature (<80 ◦C) during a limited time (generally less than 4 h), (ii) vegetable
material usually contains natural antioxidant such as phenolic compounds, carotenoids, tocopherols
etc. that would inhibit peroxides formation, and (iii) solvent distillation is never supposed to reach
dryness (presence of the vegetable extract), reducing the risk of peroxides concentration, if any.

4. 2-Methyloxolane as Extraction Solvent for Production of Natural Extracts

4.1. Flavours and Fragrances

Flavors and fragrances are complex mixtures of a huge number (sometimes hundreds) of volatile
compounds responsible for the organoleptic properties of a product. It is important to note that
flavors do not have any nutritional value, but they are still essential in our alimentation, for example
to stimulate appetite or can enable the distinction between fresh and rotten food. These aromatic
compounds are small molecules made of a linear, cyclic, or aromatic hydrocarbon skeleton. Among
them, terpenes are a preponderant category of lipophilic aromatic molecules. They can be simple
hydrocarbons (limonene, myrcene), alcohols (linalool, menthol), aldehydes (geranial), or ketones
(carvone). Even though chemistry grants access to a wide range of synthetic aromas, the appearing
current trend of consumers is to ask for natural products which are believed to be healthier and
eco-friendly [38]. Natural flavors and fragrances can be found in an impressive variety of plants,
originating from different parts: flowers, leaves, berries, fruit peels, buds, seeds, bark, roots, etc.

Industrially, two extraction processes are commonly used to recover aromatic compounds from
plants: Hydrodistillation and solvent extraction. The first method consists of exposing the matrix to
steam in order to extract the volatile compounds enclosed in the plant cells. That fraction is called an
essential oil. However, this technique involves working at high temperature and is not compatible
with heat-sensitive molecules. With solvent extraction, it is possible to work at lower temperatures.
However, the crude extract (named concrete) often contains other compounds than the volatile ones
and needs to be purified with alcohol to recover only the odorous fraction, giving an “absolute”.
When extracting with a solvent, its nature is really important, as it will directly impact the composition
of the extract and its quality. Indeed, sensitive molecules can be deteriorated when evaporating the
solvent; solvent which can also be difficult to eliminate completely afterwards. Hexane is typically
one of the main solvents used to recover aromatic compounds from natural products. Considering its
hazardous characteristic to human health and environment, a lot of efforts are made to find a suitable
alternative applicable in the industry [30,31,39,40].

To help scientists to find a convenient solvent, predictive tools such as the Hansen Solubility
Parameters or COSMO-RS have been used to evaluate the solvation of a molecule in a solvent.
To illustrate, the solubilities of several aroma compounds in n-hexane (main isomer of extraction-grade
hexane) and 2-MeOx were calculated using COMO-RS and are shown in Figure 4. These results
indicate that both n-hexane and 2-MeOx can effectively solubilize aromatic molecules such as limonene
or carvone. However, the efficiency of extraction of compounds from a matrix is a complex process that
cannot be simulated considering only the solvation parameter. Therefore, the results given by predictive



Molecules 2020, 25, 3417 9 of 32

tools are only the first step to find the best solvent and have to be combined with experimental studies.
Recent works combining both approaches for hexane substitution by 2-MeOx are reported in Table 2.
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Table 2. Flavors and Fragrances extractions.

Matrix Solvents a Extraction Conditions and Remarks b Ref.

Ribes nigrum L.
(blackcurrant) buds

2-MeOx compared to
n-hexane, α-pinene,

BuOH, EtOH, EtOAc, EL,
IPA, MeOAc

Reflux, BP, 2 h, 1:4 (m/v). 2-MeOx extract
had a similar chemical composition to

that of n-hexane one.
[25,29]

Carum carvi L.
(caraway) seeds

2-MeOx compared to
n-hexane, α-pinene,
BuOH, DMC, EtOH,

EtOAc, EL, IPA

Reflux, BP, 2 h, 1:10 (m/v). 2-MeOx gave
the best limonene recovery among

green solvents.
[30]

Pistacia lentiscus L.
(lentisk) leaves

2-MeOx compared to
hexane, CPME, DMC,

EtOH, EtOAc, IPA

Reflux, BP, 2 h, 1:10 (m/v). 2-MeOx
extraction yield was the third higher

among green solvents.
[41]

Citrus sinensis L.
(orange) peel waste

2-MeOx compared to
hexane, CPME, DMC,
EtOAc, EL, IPA, IPAc,

MEK, PEG 300

Maceration in a shaking incubator, 70 ◦C,
1.5 h, 1:10 (m/v). 2-MeOx increased
limonene yield by 40% compared

to hexane.

[42]

Humulus lupulus L.
(hop) cones

2-MeOx compared
to hexane

Reflux, BP, 2 h, 1/10 (m/v). Soxhlet,
40–60 ◦C, 6 h, 1:6 (m/v). 2-MeOx and

hexane extracts had similar
olfactory profiles.

[40]

a BuOH = Butanol, CPME = Cyclopentyl methyl ether, DMC = Dimethylcarbonate, EtOH = Ethanol, EtOAc =
Ethyl acetate, EL = Ethyl lactate, IPA = Isopropyl alcohol, IPAc = Isopropryl acetate, MeOAc = Methyl acetate,
MEK = Methyl ethyl ketone, PEG 300 = Polyethylene glycol 300. b Optimized conditions (when available) are in
bold, BP = Boiling Point, given ratios are solid-to-solvent ratios.

In 2014, Filly et al. compared the performances of nine solvents to n-hexane in order to extract
aromas from blackcurrant buds [29]. This study was based on theory (Hansen Solubility Parameters) and
experiments. Eventually, it was concluded that 2-MeOx was the most suitable solvent to replace hexane
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for the extraction of these aromas, giving an extract with similar chemical composition. Some of the
main components found in both concretes were δ-3-carene, terpinolene, sabinene, and β-caryophyllene,
suggesting that 2-MeOx enables the extraction of non-oxygenated terpenes as well as hexane does. It is
interesting to note that the crude yield reached with 2-MeOx was twice as high as with n-hexane (7.10
and 3.87% respectively); the authors concluded that this is due to the extraction of other molecules
than aromas from the matrix. The next year, they assessed the extraction of carvone and limonene
from caraway seeds [30]. This investigation relied again on the use of a predictive tool combined with
experiments. This time, the criteria applied to select the best solvents were the selectivity of carvone
against limonene and the concordance with the chemical composition of the essential oil, recovered
through Clevenger hydrodistillation. Therefore, 2-MeOx was not identified as an outstanding solvent,
even if it afforded the best limonene recovery and an extract with a chemical composition close to the
n-hexane one. In 2019, 2-MeOx was again tested, after a COSMO-RS evaluation, to recover flavors from
lentil leaves by Chaabani et al. [41]. Some major compounds of the 2-MeOx extract (β-caryophyllene,
germacrene D,β-elemene, andα-pinene) were also abundant in the hexane one. On this matrix, 2-MeOx
gave the third highest yield among the green solvent tested. The same year, a study conducted by
Ozturk et al. showed that 2-MeOx was a promising solvent for the extraction of limonene from orange
peel residues [42]. At optimum conditions, its outperformed hexane by increasing limonene extraction
yield by 40%. In addition, the solvent was successfully recycled within the process, and it provided
2-fold limonene extraction yields in comparison to that provided by hexane after three consecutive
extraction cycles. The results of this analysis support the suitability of replacing hexane with 2-MeOx
to develop sustainable processes. Recently, we investigated the potential of using 2-MeOx for the
extraction of volatile compounds from hop cones [40]. Again, the crude yields provided by 2-MeOx
either after maceration or Soxhlet procedure were higher than that of hexane (16.6 and 20.2% against
12.7 and 17.9%). Besides, both extracts showed relatively similar chemical and olfactory profiles.

These theoretical and experimental works proved that 2-MeOx can recover of the same aroma
compounds than hexane (mainly terpenes, either oxygenated or not). However, their proportions can
differ, and the extracts given by this new solvent can contain other compounds. A classical procedure
to extract aroma compounds with 2-MeOx is described by Filly et al. [30]. First, the dried plant material
is ground to a suitable size. Then, 5 g of raw material are placed into a flask filled with 50 mL of solvent.
The extraction is performed using a conventionally heated reflux equipment at the boiling point of
2-MeOx for two hours. Then, the mixture is filtered, and the solvent eliminated through evaporation
under vacuum. It is worth to note that the chemical composition of an extract produced with this
new solvent is likely to be different than hexane extracts. Thus, it would be relevant to identify a
convenient purification method and realize sensory analyses to figure out if the new extract is similar
to the conventional one or if it should be considered a brand-new product.

4.2. Colors

The history of colors goes back to the time when men started to employ them in order to color
themselves or represent the world, they were living in. Until the end of the 19th century, plant colors
have been one of the most important sources of coloring material. After some works on plant chemistry,
the first total chemical syntheses of colors were performed successfully. These works and progress
in organic chemistry marked the advent of industrial color synthesis and the decline of vegetable
coloring matters. Nowadays, color additives are still widely used to enhance the aesthetic value of
foods, but they are mainly artificial and made from petrochemical sources. However, even if regulated,
these synthetic substances are suspected to release harmful chemicals for the environment [43]. On the
contrary, natural colors constitute renewable resources and can meet the consumer expectation for
sustainable food. The colors that we can see in nature are principally due to the presence of one or
several of the following compounds: flavonoids and especially anthocyanins, responsible for the red,
purple, or blue in berries; chlorophyll, giving the green color of almost all plant leaves; quinones,
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for example alizarin which has a deep red color, indigo dyes, carotenoids, imparting a yellow, orange
or red color in carrots, oranges, tomatoes, red peppers, etc.

In particular, carotenoids are currently one of the main groups of natural colors that are widely used
in the industry. They can act as food additives, cosmetic colorants, antioxidants, and are also precursors
of vitamin A [44]. Carotenoids can be divided as carotenes, which are exclusively hydrocarbons,
and xanthophylls. This wide category of compounds can be synthesized by many plants, algae and
bacteria. Due to their hydrophobicity, their extraction is usually achieved with petrochemical organic
solvents and especially hexane [45]. Considering its hazardousness and because of an increase in
demand for natural products, alternative extraction methods are currently under research.

Thanks to predictive tools, the solvation of color compounds in a solvent can be assessed in order
to find a suitable candidate to replace hexane for their extraction. The solvation probabilities of four
usual carotenoids in n-hexane and 2-MeOx were calculated by Yara-Varón et al. using COMO-RS
(Figure 5) [46]. These results indicate that 2-MeOx could be as good as n-hexane in solubilizing
carotenoids, and even better than the reference for slightly polar molecules like lutein. However,
again, the predicted solvation performances of solvents are not sufficient to make a choice and they
have to be confirmed with experiments. Given the encouraging results obtained with predictive
tools, the possible use of 2-MeOx to replace hexane for the extraction of carotenoids has been recently
evaluated, as reported in Table 3.Molecules 2020, XX, x FOR PEER REVIEW 12 of 35 

 

 
Figure 5. Representation of predicted solubilities of some carotenoids in n-hexane and 2-MeOx from 
[46] and their corresponding sigma surfaces, given by COSMO-RS. Rating: 0–20% bad solvent; 
20–60% average solvent; 60–100% good solvent. 

  

Figure 5. Representation of predicted solubilities of some carotenoids in n-hexane and 2-MeOx from [46]
and their corresponding sigma surfaces, given by COSMO-RS. Rating: 0–20% bad solvent; 20–60%
average solvent; 60–100% good solvent.



Molecules 2020, 25, 3417 12 of 32

Table 3. Color extractions.

Matrix Solvents a Extraction Conditions and Remarks b Ref.

Plants

Daucus carota L.
(carrot) taproot

2-MeOx compared to
n-hexane

Reflux, BP, 6 h. This kinetic study showed
that extraction was faster with 2-MeOx

than with n-hexane.
[25]

Daucus carota L.
(carrot) taproot

2-MeOx compared to
n-hexane, CPME, DMC,

EtOAc, IPA

Reflux, BP, 1 h, 1:4 (m/v). Carotenoid
yields (m% DM) were 65.8 and 55.8 for

2-MeOx and n-hexane, respectively
corresponding to 80 and 68% recovery.

[46]

Microalgae

Chlorella vulgaris Beij.
dry and wet

2-MeOx compared to
2-MeOx/EtOH (1:1)

ASE c, 103 bars, 110 ◦C, 30 min. Pure
2-MeOx enabled 38 and 45% carotenoid

recovery from dry and wet biomass.
[47]

Haematococcus
pluvialis Flot. culture

2-MeOx compared to
almond oil, BuOH,

cyclohexane, DEC, DMC,
EtOAc, IAA, MIBK

Liquid/liquid extraction, RT, 30 min, 3:1
(v/v). 2-MeOx performance was the
second highest with more than 80%

astaxanthin recovery.

[48]

a BuOH = Butanol, CPME = Cyclopentyl methyl ether, DEC = Diethylcarbonate, DMC = Dimethylcarbonate,
EtOH = Ethanol, EtOAc = Ethyl acetate, IAA = Isoamyl alcohol, IPA = Isopropyl alcohol, MIBK = Methyl
isobutyl ketone. b BP = Boiling Point, RT = Room Temperature, given ratios are either solid-to-solvent ratios or
liquid-to-solvent ratios. c ASE = Accelerated Solvent Extraction.

Sicaire et al. conducted a kinetic study of the extraction of carotenoids from dried carrots with
n-hexane and 2-MeOx in 2014 [25]. As a result, they found that both starting accessibility (quantity of
solute directly available from the surface of the matrix) and effective diffusivity (coefficient representing
the speed of diffusivity of the solute in the solvent) of color compounds were higher in 2-MeOx,
resulting in a faster extraction. Quantitatively speaking, 2-MeOx extracted 23% more carotenoids
than n-hexane did after six hours of extraction. The same trend was obtained by Yara-Varón et al.,
who evaluated 2-MeOx among five green solvents for the substitution of n-hexane in the extraction
of carotenoids from the same plant matrix [46]. In accordance with COSMO-RS predictions, one of
the highest yields was obtained using 2-MeOx, with 12% more carotenoids extracted compared with
n-hexane after one hour.

The potential of 2-MeOx was also assessed to extract carotenoids from algae. In 2017, Damergi et al.
obtained good results in extracting wet Chlorella vulgaris with pure 2-MeOx for 30 min, at 110 ◦C and
under pressure (45% of total carotenoids extracted) [47]. However, the optimum conditions were
found to be with dry biomass and a 1:1 mixture of 2-MeOx and ethanol. Here, 2-MeOx enabled the
recovery of both carotenes and xantophylls, like astaxanthin or lutein. Besides, the different crude
yields were way higher than the actual carotenoid yields, meaning that other compounds (probably oil
and waxes) were extracted from the algae together with carotenoids. In 2019, Samorì et al. extracted
Haematococcus pluvialis cultures with several green solvents [48]. Among them, 2-MeOx was one of the
most effective, giving excellent astaxanthin recovery (>80%) in only 30 min. A patent has even been
granted to Reddy et al. from Western Washington University describing the extraction of fucoxanthin
and other carotenoids from defatted marine algae using 2-MeOx [49].

These different studies showed that 2-MeOx can be at least as effective as hexane to extract
carotenoids from plants or microalgae. It allows the recovery of both apolar carotenes and more
polar xantophylls. In addition, a kinetic study showed that the extraction process was faster with
2-MeOx than with hexane. Nevertheless, it appears that 2-MeOx is not selective towards carotenoids
and can extracts other compounds, depending on the initial composition of the matrix, in this case
using co-solvents such as alcohols can be relevant. A classical procedure to extract carotenoids with
2-MeOx is described by Yara-Varón et al. [46]: First, the dried plant material is ground to a suitable
size immediately before extraction. Then, 30 g of raw material are placed into a jacketed reactor filled
with 120 mL of solvent. The mixture is mechanically stirred and extraction is performed in the dark,
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at 65 ◦C for one hour. Then, the mixture is filtered and the solvent eliminated through evaporation
under vacuum.

4.3. Lipids

Lipid is the general term for biomolecules that dissolve in non-polar solvent, comprising oils
and fats. Although “fats” is often used as a synonym of lipids, it normally refers to lipids which are
solid at room temperature, while oils are fluid. Lipids are essential for human life as, together with
carbohydrates and proteins, they are one of the three macronutrients used to produce energy by the
body through oxidation process [50]. This energy is crucial, as it ensures normal functions of vital
organs (brain, heart, or lungs) and enables any physical activity. They also have other biological roles,
as they are important constituents of cell membranes, structural components of hormones, and play a
part in cell signalization. Four lipid subgroups are particularly important from a biological point of
view: fatty acids or free fatty acids (FFAs), triacyl glycerides (TAGs), phospholipids, and sterols.

A fatty acid is a carboxylic acid with a long aliphatic chain, either saturated or unsaturated.
Some fatty acids, such as α-linolenic and linoleic acids, are called essential, because they are crucial
for humans and animals health, as they are not able to synthesize them. In fats or oils, fatty acids
can be found as glycerol esters formed of one, two, or three fatty acid chains: monoacylglycerides
(MAGs), diacylglycerides (DAGs), and triacylglycerides (TAGs). TAGs are generally the main
component of vegetable oils, while other organisms like algae or insects can contain FFAs, MAGs,
DAGs, and TAGs in varying proportions. Phospholipids are made of two fatty acids bound to the
hydrophilic glycerol-3-phosphate. Because of their amphiphilic characteristic, phospholipids like
phosphatidylcholine (PC) are an important constituent of cell membranes [51]. Sterols are a subgroup
of steroids which are notably involved in the formation of various hormones, such as testosterone
and estrogen. In addition, fatty substances can also contain fat soluble vitamins such as tocopherols
(Vitamin E).

Regarding their essential role in animal diet, most of the lipids produced today are used for
food and feed. However, their properties make them interesting for several industrial applications:
as lubricants, binding agent in paintings, active ingredient, or texturizing agents in cosmetics, etc.
Moreover, the idea of using oils to produce biodiesel recently emerged, with the aim of finding
a convenient alternative to fossil fuels. Depending on the biomass they come from, biofuels can
be classified into different generations. Each one presents advantages but also has drawbacks [52].
First generation biodiesels were made from edible crops oil, while the second and third generation
biodiesel are based on the use of non-edible plant oil and microalgae, respectively. According to recent
estimations, the world production of vegetable oil could reach 214 Mt in 2020, of which 143 Mt (67%)
would be used for food and 30 Mt (14%) for biofuel production [53]. Industrially, two different processes
can be employed to extract oil, depending on seed’s oil content. If it is higher than 25%, seeds are usually
mechanically pressed to collect 2/3 of the total oil content. However, when the oil content in the seed
(or in the press cakes) is less than 25% the product often undergoes solvent extraction. Again, hexane
is still conventionally the solvent used in the oil industry despite its drawbacks. Considering its
hazardous characteristic to human health and environment, researchers started an intensive search
for suitable alternative solvents since the 1980s [54]. They tested several alternatives such as ethanol,
isopropanol, and supercritical CO2 or even liquefied gases; however, none of them were as efficient
and economic than hexane, a reason why it is still used today [55]. Only later in the 2010s, few studies
came out about oil extraction using “green” solvents, including 2-MeOx [25,31].

In order to assess the solubility of some neutral and polar lipids in 2-MeOx vs. hexane, COMO-RS
calculations are shown in Figure 6. These results indicate that 2-MeOx could be as good as n-hexane in
solubilizing lipids, and even better for polar lipids like phospholipids. The promising results obtained
with predictive tools, were supported by several publications, as reported in Table 4.
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Table 4. Lipid extractions.

Matrix Solvents a Extraction Conditions and Remarks b Ref.

Plants

Brassica napus L.
(rape) seeds

2-MeOx compared to
n-hexane, CPME, DMC,

EtOH, EtOAc, IPA,
limonene, p-cymene

Soxhlet, 40–60 ◦C, 8 h, 1:5 (m/v). 2-MeOx gave the
highest lipid yield, 47.2% DM versus 46.7% for

n-hexane.
[35]

Brassica napus L.
(rape) seed cakes

2-MeOx compared to
n-hexane

Soxhlet, 55 ◦C, 2 h, 1:5 (m/v). Maceration, 55 ◦C, 2 h,
1:5 (m/v). Pilot scale percolation, 55 ◦C, 5 × 30 min,
2:3 (m/m). The kinetic study showed that extraction

was faster with 2-MeOx than with n-hexane.

[31]

Phoenix dactylifera L.
(date palm) seeds

2-MeOx compared to
n-hexane

Soxhlet, 40–60 ◦C, 8 h, 1:13 (m/v). Maceration, 40 ◦C,
30 min, 1:10 (m/v). Ultrasound, 20 kHz, 130 W, 40 ◦C,
30 min, 1:10 (m/v). Microwave, 20 MHz, 450 W, 40 ◦C,

30 min, 1:10 (m/v). The highest lipid yields were
obtained by ultrasound method, with 5.57 and 6.18%

for 2-MeOx and n-hexane.

[57]

Pimpinella anisum L.
(anise) and

Foeniculum vulgare
Mill. (fennel) seeds

2-MeOx compared to
n-hexane

Soxhlet, 40–60 ◦C, 8 h, 1:4 (m/v). 2-MeOx extracts
showed the highest total phenolic content, strongest

antioxidant activity and oxidative stability.
[58]

Carum carvi L.
(caraway) seeds

2-MeOx compared to
n-hexane

Soxhlet, 40–60 ◦C, 6 h, 1:4 (m/v). 2-MeOx extract had
a higher total phenolic content and 2 times strongest

antioxidant activity than n-hexane extract.
[59]

Pistacia lentiscus L.
(lentisk) fruits

2-MeOx compared to
hexane, CPME, DMC,
EtOH, EtOAc, EL, IPA,

limonene, α-pinene,
p-cymene

Soxhlet, 40–60 ◦C, 8 h, 1:4 (m/v). 2-MeOx was found
to be the best alternative solvent compared to hexane

both qualitatively and quantitatively.
[60]

Pseudotsuga menziesii
(Mirb.) Franco
(Douglas fir)

2-MeOx as mono-solvent
or in mixtures with

EtOAc, EtOH and water

ASE c, 100 bars, 50–90 ◦C, 3–45 min. In this invention
2-MeOx is used to extract simultaneously lipophilic

and polyphenolic molecules.
[61]

Opuntia ficus-indica L.
(prickly pear) seeds

2-MeOx compared to
n-hexane

Soxhlet, 40–60 ◦C, 8 h, 1:10 (m/v). 2-MeOx gave the
highest oil yield i.e., 9.55% versus 8.86% for n-hexane. [62]
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Table 4. Cont.

Matrix Solvents a Extraction Conditions and Remarks b Ref.

Oleaginous microalgae and microorganisms

Nannochloropsis sp.
D.J.Hibberd culture

2-MeOx compared to
CHCl3, heptane,

cyclohexane, toluene,
CPME, DMC, EtOAc,

MIBK, MTBE, limonene

Liquid/liquid extraction, 20 ◦C, 10 min, 2:1 (v/v).
2-MeOx extracted the most total fatty acids among

green solvents.
[63]

Chlorella vulgaris Beij.
and Nannochloropsis

sp. D.J.Hibber

2-MeOx compared to
hexane, CPME,

EtOAc, EL

Soxhlet, 40–60 ◦C, 8 h, 1:100 (m/v). 2-MeOx provided
twice extraction yield in comparison with hexane and
showed the most effective cell disruption of biomass.

[64]

Chlorella pyrenoidosa
Beij.

2-MeOx compared to
pure n-hexane, CHCl3,

IAA, and different
mixtures of these

solvents with water,
EtOH and MeOH

Maceration, RT, 30 min, 1:10 (m/v). Bligh and Dyer,
RT. Regarding maceration, 2-MeOx recovered 10.3%

(lipids) vs. 6.12% with n-hexane.
[65]

Chlorella pyrenoidosa
Beij.

2-MeOx compared to
pure hexane, CHCl3,
CPME and different

mixtures of these
solvents with water,

MeOH, IAA, and IPA

Soxhlet, 40–60 ◦C, 8 h, 1:4 (m/v). Single solvent
maceration, RT, 45 min, 1:4 (m/v). Bligh and Dyer,
Folch and Hara and Radin, RT. After maceration,

2-MeOx recovered 2.98% (lipids) while 0.96%
with hexane.

[66]

Yarrowia lipolytica
Van der Walt and Arx

2-MeOx compared to
hexane CPME, DMC,

EtOH, EtOAc, EL, IPA,
limonene, α-pinene,

p-cymene

Maceration, RT, 1h, 1:45 (m/v). 2-MeOx was
identified among the most promising green solvent

to replace hexane for extraction of microbial oils.
[32]

Animal sources

Salmo salar L.
(salmon fish)

2-MeOx compared to
hexane CMPE, DMC,

EtOH, EtOAc, IPA,
limonene, p-cymene

Soxhlet, 40–60 ◦C, 8 h, 1:5 (m/v). 2-MeOx gave
qualitatively and quantitatively (32.5%) similar oil

than that of hexane.
[36]

Hermetia illucens L.
(black soldier fly)

larvae

2-MeOx compared to
n-hexane

Soxhlet, 40–60 ◦C, 6 h, 1:10 (m/v). Maceration, 55 ◦C,
3 h, 1:10 (m/v). Multistage cross current industrial
simulation, 55 ◦C, 3 × 60 min, 1:10 (m/v). 2-MeOx

yielded more oil with enhanced bioactivity and the
protein quality parameters of defatted flour were

slightly better than with n-hexane.

[56]

a CPME = Cyclopentyl methyl ether, DMC = Dimethylcarbonate, EtOH = Ethanol, EtOAc = Ethyl acetate,
EL = Ethyl lactate, IAA = Isoamyl alcohol, IPA = Isopropyl alcohol, MeOH = Methanol, MIBK = Methyl isobutyl
ketone, MTBE = Methyl tertbutyl ether. b RT = Room Temperature. c ASE = Accelerated Solvent Extraction.

A classical laboratory procedure to extract lipids with 2-MeOx is described by Cascant et al. [36].
First, the dried material is ground to a suitable size. Then, 25 to 30 g of raw material are weighed into a
cellulose thimble and placed inside the extraction chamber of a Soxhlet apparatus. This latter is fitted
with a condenser and put on a flask containing 300 mL of solvent. The sample is extracted under reflux
for 8 h and after this time, the flask content is evaporated under reduced pressure.

Overall, the different works cited in Table 4 showed that considering oil recovery, 2-MeOx gave
similar results compared to hexane in terms of lipid yield, fatty acid, and neutral lipid profile relative
contents. Moreover, 2-MeOx is likely to provide a higher crude yield, due to the extraction of other
compounds from the raw material. Indeed, higher proportions of phospholipids in oil were notably
reported for different matrix [32,35,60]. It is worth mentioning that Saunois et al. patented the extraction
of an oil or butter with high unsaponifiable content from a vegetable matrix or a micro-organism [67].
Beauduc et al. even patented the simultaneous extraction of lipophilic and polyphenolic compound
from Douglas fir [61]. Bettaieb Rebey et al. found out that the oxidative stability of 2-MeOx extracted
fennel and aniseed oils was significantly superior to hexane [58]. It is also interesting to note that some
2-MeOx extracted oils exhibited important anti-inflammatory activity [58,59]. Beside oil yield and
composition, the protein quality of the residual meal or flour is also an important parameter to take care
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of when the matrix is defatted prior being used for food or feed. In this regard, Ravi et al. conducted a
comparative study on the lipid extraction of black soldier fly larvae (BSFL) by n-hexane and 2-MeOx [56].
Protein quality of defatted BSFL flours was assessed through different parameters, including KOH
solubility and protein dispersibility index (PDI). They found that the investigated protein quality
parameters were slightly better in 2-MeOx defatted flour than the n-hexane defatted flour.

About the process itself, extractions using 2-MeOx were further examined with the help of kinetic
studies by Sicaire et al. and Ravi et al. [31,56]. They observed the same trend over the extractions
of rapeseed and BSFL oils: 2-MeOx is faster than hexane under the same conditions. Additional
investigations would be of great help to understand this speed difference, but it could partly be due to
a most effective cell disruption, as seen by Wan Mahmood et al. [64], or thanks to the partial miscibility
with water that could help the solvent penetration into the solids.

With such promising results, the possibility of using 2-MeOx in replacement of hexane for
the extraction of lipids was investigated with industrial simulations and even on a larger scale by
Sicaire et al. [31], as discussed further in part 9. Indeed, hexane and 2-MeOx were tested on pressed
rapeseed cake using a 6 L percolation extractor. The extraction was conducted by doing five washings of
30 min with fresh solvent. Residual oil content in the meal were 1.8% for hexane and 0.8% for 2-MeOx.

4.4. Miscellaneous

In addition to the above-mentioned compounds, Bundeesomchok et al. successfully extracted
α-mangostin, a bioactive molecule, from Garcinia mangostana (mangosteen) with 2-MeOx [68].

5. Toxicity

2-MeOx has been used for more than a decade as a solvent for chemical synthesis and especially
for the production of active pharmaceutical ingredients. It is now expanding into cosmetic and food
extraction applications. The increasing use of 2-MeOx results in the potential exposure of workers
and in the presence of limited but unavoidable residues in the finished products. Therefore, it is very
important to establish a clear toxicological profile to warrant a safe use for workers, consumers, and the
environment. In Europe, solvent producers and importers must comply with the REACH regulation
(EC) No 1907/2006 by evaluating, among other things, the solvents toxicological profile, including
acute, subchronic, and geno-toxicity. Data for 2-MeOx and hexane can be found on the ECHA’s website
(European Chemicals Agency) [69]. A summary of the mandatory toxicological studies of 2-MeOx is
shown hereafter.

5.1. Toxicological Data Collection

Henderson and Gurule reported the toxicokinetics of 2-MeOx in rats and mice in 2007 [70].
They concluded that the product had an oral absorption rate of 93%, rapid metabolism and excretion,
and low bioaccumulation potential. Excretion was mostly via exhaled carbon dioxide and urine.
Following oral exposure, the highest levels of radio activity were found in the kidney, but no tissue
accumulated the radiolabel 2-MeOx in either species. The studies confirmed that, following oral
exposure in the mouse or rat, there was almost complete absorption, making both species good models
for the assessment of systemic toxicity.

5.2. Acute Toxicity

2-MeOx has of low acute toxicity via oral route (ingestion) and is essentially non-toxic following
dermal or inhalation exposure (Table 5). It may cause severe eye damage and skin irritation but it is
not a skin sensitizer.
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Table 5. Summary of the studies assessing acute toxicity and irritation.

Endpoint Method Results Ref.

Oral acute toxicity
(rat)

Acute Oral Toxicity-Fixed Dose Method
OECD Guideline 420

LD50: 300–2000 mg/kg
bw (female) [71]

Oral acute toxicity
(rat) not current guideline LD50: 3800 mg/kg bw [72]

Acute inhalation
toxicity (rat) not current guideline LC50: 22 mg/L air [72]

Acute dermal toxicity
(rat)

Acute Dermal Toxicity
OECD Guideline 402

LD50: >2000 mg/kg bw
(male/female) [73]

Acute dermal toxicity
(rabbit) not current guideline LD50: 4500 mg/kg bw [72]

Skin corrosion
in vitro study

In Vitro Skin Corrosion: Human Skin
Model Test

OECD Guideline 431
Non-corrosive [74]

Skin irritation
in vitro study

In Vitro Skin Irritation
OECD Guideline 439

Irritating
Relative mean

viability = 40.4%
[75]

Eye irritation
ex-vivo study

Bovine Corneal Opacity and Permeability
Test Method for Identifying Ocular

Corrosives and Severe Irritants
OECD Guideline 437

Corrosive/severe irritant [76]

in vivo study
Skin sensitization

Skin Sensitization: Local Lymph Node
Assay

OECD Guideline 429
Not sensitizing [77]

OECD: Organization for Economic Co-operation and Development; LD50: Median lethal dose; bw = body weight.

The acute toxicity data is useful for the classification of the substance and the risk assessment of
workers who are potentially exposed to the bulk material. 2-MeOx is classified for the following acute
health hazards in accordance with Regulation (EC) No. 1272/2008:

• Category 3 Acute Toxicity, H301: Toxic if swallowed
• Category 1 Eye Damage, H318: Causes serious eye damage
• Category 2 Skin Irritant, H315: Causes skin irritation

5.3. The Subchronic Toxicity

The subacute toxicity of 2-MeOx has been investigated in rats via inhalation and ingestion (Table 6).
There are two oral studies. The publication by Antonucci et al. [78] uses only a high dose level of
26 mg/kg/day and this is also identified as the no-observed-adverse-effect level (NOAEL); there is
limited information available for this study. In 2017, the publication by Parris derives a NOAEL of
250 mg/kg/day; based on a good laboratory practice (GLP) study conducted to support the use of
2-MeOx as a solvent for pharmaceutical active ingredients manufacture [79]. There is no access to the
full report but detailed group mean data is presented for the parameters assessed in a peer reviewed
journal and results are highly reliable. In addition, this data from the oral study is most relevant to
human risk assessment from dietary exposure.
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Table 6. Summary of the subchronic toxicity, oral and inhalation.

End Point Method Results Ref.

Subchronic toxicity, oral
(rat)

subchronic ora
l0, 80, 250, 500 and 1000 mg/kg/day

Exposure: 3 months + 1-month recovery
Equivalent to OECD 408

NOAEL: 250 mg/kg
bw/day (male/female)
increased liver weight

and hypertrophy

[79]

subchronic oral
26 mg/kg bw/day + unspecified lower doses

Exposure: “approximately 3 months”
(daily)

Equivalent to OECD 408

NOAEL: 26 mg/kg
bw/day (male/female)
No toxicity observed

[78]

Subchronic toxicity,
inhalation

(rat)

subchronic inhalation
0, 2, 4.5 and 10 mg/L

Exposure: 3 months (6 h/day for
5 days/week)

Additional investigations (FOB, estrous
cycle monitoring thyroid analysis, sperm

analysis).
OECD 413

NOAEC: 10 mg/L
(male/female)

some non-adverse
transient clinical signs,
and minor bodyweight
and food consumption

effects at 10 mg/L

[80]

NOAEL: No-observed-adverse-effect level; NOAEC: No-observed-adverse-effect concentration.

In the oral study [79], the dose of 1000 mg/kg/day was associated with a slight decrease in male
weight gain and, in both genders, effects associated with liver (increased liver weight, minimal/mild
centrilobular hypertrophy, and increased serum cholesterol). At 500 mg/kg/day, there was a slight
increase in liver weight, but no corresponding pathology. Otherwise these high dose levels were well
tolerated and clinical signs were restricted to pre and post dose salivation in limited animals at both
dose levels. It is not surprising to see effects in the liver at high doses; it has previously been shown
that 93–100% of 2-MeOx is absorbed following oral administration [70] and the effects may be due to
first pass metabolism and is considered an adaptive change; 250 mg/kg/day was a clear NOAEL for
oral exposure.

Following nose-only inhalation exposure for 13 weeks, 10.0 mg/L was well tolerated and considered
to be the no-observed-adverse-effect concentration (NOAEC). This dose level was associated with some
effects that were considered to be none adverse and included transient unsteady gait and excessive
salivation which were observed at routine observations; during the functional observation battery
in week 13 abnormal gait/posture was also noted in females at this dose level. Liver weight was
also slightly elevated at 4.5 and 10 mg/L, but there was no corresponding histopathology and the
observation was again considered to be non-adverse. Although it was not quantified, inhalation
exposure may transiently increase the systemic exposure to 2-MeOx, compared to oral exposure where
most 2-MeOx must first pass through the liver where it is metabolised before general systemic exposure.
Clinical signs following oral exposure to 1000 mg/kg/day were restricted to excessive salvation, and the
observation of unsteady gait following inhalation exposure is without relevance when considering oral
exposure in man. Taking into consideration all studies, the oral NOAEL is 250 mg/kg/day. Toxicokinetic
assessment confirms that 2-MeOx is readily absorbed from the gastrointestinal tract and therefore
effects of unabsorbed material do not need to be investigated.

5.4. Genotoxicity

The genotoxicity of 2-MeOx has been investigated by the National Toxicology Program (NTP)
and by the pharmaceutical company Merck [81]. 2-MeOx was not genotoxic in bacterial or mammalian
cells in vitro, nor in vivo tests (Table 7).
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Table 7. Summary of genotoxicity studies.

End Point Method Results Ref.

in vitro bacterial
mutation

Bacterial reverse mutation assay (e.g., Ames
test) (gene mutation) S. typhimurium
Equivalent to OECD Guideline 471

Negative
Test concentrations:
10–10,000 µg/plate

[81]

Bacterial reverse mutation assay (e.g., Ames
test) (gene mutation)

S. typhimurium and E. coli
OECD Guideline 471

Negative
Test concentrations: up

to 5490 µg/plate
[78]

in vitro mammalian
mutation

Mammalian cell gene mutation assay (gene
mutation)

mouse lymphoma L5178Y cells
Equivalent to OECD Guideline 476

Negative
Test concentrations:
63.75–1020 µg/mL

[82]

Mammalian cell gene mutation assay (gene
mutation)-mouse lymphoma cells
Equivalent to OECD Guideline 476

Negative
Test concentrations:

1500–5000 µg/ml
[81]

in vitro mammalian
micronucleus

Human lymphocytes
(chromosome aberration)

OECD Guideline 487

Negative
Test concentrations:

up to 10 mM
[83]

in vitro mammalian
cytogenicity

In vitro mammalian chromosome
aberration test (chromosome aberration)

lymphocytes: peripheral human
OECD Guideline 473

Negative
Test concentrations:

up to 10.7 mM
[78]

in-vivo micronucleus
Micronucleus assay (chromosome

aberration)-rat male/female
OECD Guideline 474

Negative
Oral doses:

up to 26 mg/kg/day
[78]

6. Solvent Regulations

6.1. Worker Safety

In the European Union (EU), the safety of workers and consumers for technical applications is
regulated by REACH and 2-MeOx has been registered according to Regulation EC (No) 1907/2006.
It is registered for annual quantities above 1000 tons for its use as a solvent for chemical synthesis
including fine chemicals, agrochemicals, and pharmaceuticals. A comprehensive hazard identification
has been conducted as part of this process.

The submitted hazard classification, made according to regulation EC (No) 1272/2008 on the
classification, labelling and packaging of substances and mixtures (CLP Regulation) was:

• Flammable liquid category 2 H225: Highly flammable liquid and vapor.
• Acute Toxicity category 4 H302: Harmful if swallowed.
• Skin Irritant category 2 H315: Causes skin irritation.
• Eye Damage category 1 H318: Causes serious eye damage.

6.2. Pharmaceutical Applications

The maximum solvent residual in the pharmaceutical product is regulated worldwide by the
document “Impurities: Guideline for residual solvents Q3C”. As long as the toxicological solvent
database is not sufficient, the product remains in a “non-classified” list.

Based on the above mentioned key studies, the draft version of the 8th revision of the International
Council for Harmonization (ICH) Q3C, issued in 2020, and currently under public consultation, proposes
a permitted daily exposure for human (PDE) for 2-MeOx (2-MeTHF) of 50 mg/day. The document,
which results from the discussion of an expert working group, also recommend that 2-MeOx would be
placed into Class 3, “Solvents with low toxic potential”. This conclusion was based on the sub-chronic
oral study reported by Parris in 2017 [79]. As hexane is generally the reference solvent for lipophilic
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extraction, it is interesting to compare this classification with the one of hexane in the Q3C Guideline
for residual solvents (Table 8).

Table 8. Hexane versus 2-MeOx in the International Council for Harmonization (ICH) Q3(R8) draft.

PDE (mg/day) Maximum Residual Solvent Classification

Hexane 2.9 290 ppm Class 2: solvent to be limited
2-MeOx 50 According to GMP (up to 5000 ppm) Class 3: low toxicity solvent

GMP: Good Manufacturing Practices.

6.3. Cosmetic Applications

Cosmetic application often relies on toxicological assessment on published studies and
pharmaceutical framework.

6.4. Food Applications

There is no worldwide regulation for solvent residue in food. Each country/territory has its own
system, classification, and limits. As an example, Table 9 shows the regulatory body of different
territories and limits in food for technical hexane.

Table 9. Different territories, different regulations.

Regulatory Body Territory Hexane for Food

FDA USA Hexane: no limit in oil and proteins
Limits in flavors

FSANZ Australia/New Zealand Hexane: <20 ppm in all foods
JETRO Japan Hexane: <5 ppm in oils

Health Canada Canada Hexane: <10 ppm in oils and proteins

EFSA Europe Hexane: <1 ppm in oil and flavors and
<10 ppm in food formulated with proteins

FDA: Food and Drugs Administration; FSANZ: Food Standards Australia New Zealand; JETRO: Japan External
Trade Organization; EFSA: European Food Safety Authority.

2-MeOx is not registered for food application yet, the regulatory dossier is currently under
review by the European Food Safety Authority (EFSA). Based on laboratory and scale-up tests,
we anticipate that the residue in food will be equal to or less than the tolerated hexane residue in the
European regulation.

7. Environmental Impacts of 2-Methyloxolane

Regarding environmental impacts, 2-MeOx offers a renewable alternative, reducing the need
for non-renewable petroleum-based chemicals. Biobased products, through petroleum displacement,
are known to play an increasingly important role in reducing greenhouse gas emissions that exacerbate
global climate change [84].

However, turning a molecule into a “green” carbon origin is not necessarily sufficient to reduce
environmental impact, especially CO2 emission. Therefore, despite this high biobased content, a deeper
analysis has been initiated back in 2012 to determine the global impact of 2-MeOx on carbon emissions.
A Life Cycle Inventory (LCI) has been conducted by Slater et al. [85] to determine the cradle to gate life
cycle emissions (Figure 7). Analyses have been performed using different methods to show greenness
in both its production and industrial use.
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Using this approach, the overall life cycle emissions for production of 1 kg of 2-MeOx were
determined to be 0.191 kg, including 0.150 kg of CO2 coming from the furfural production. Life cycle
emissions generated to produce the starting block (furfural) represents most of the overall environmental
impact (78%), the rest being generated during transformation into 2-MeOx. Compared to typically used
solvents such as hexane, the evaluation showed that using 2-MeOx in an industrial scenario results in a
97% reduction in CO2 emissions. In case of solvent recycling (to dryness), the CO2 emissions of 2-MeOx
increase to 0.247 kg of CO2 by kg of solvent (see distillation step, Figure 8), but it is greatly compensated
by the reduction of the solvent consumption. However, it must be noted that for high-volume products
in continuous processes (for instance, oils and fats), the 2-MeOx can be recycled without distillation
(until dryness) by simple decantation of the condensed solvent-water azeotrope. In this case, the
extraction is carried out with 95–96% purity 2-MeOx (+ water). Only the water phase recovered from
the decantation has to pass through a distillation column before it is discharged, to recover the solvent
dissolved in the aqueous phase (up to 14% at 20 ◦C).Molecules 2020, XX, x FOR PEER REVIEW 24 of 35 
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Most recently, in 2019, an eco-toxicological profile (Figure 9) has been carried out, as part
of a REACH evaluation process, to determine environmental impact of 2-MeOx, if released in the
environment. Those tests have been done according to international guidelines, under OECD references
and revealed the innocuity of the solvent towards the environment and especially in water. In addition,
its biodegradability has been proven after 5 days and compost testing according to watercress test
showed no phytotoxicity for the product. As short-term EC50 (half maximal effective concentration)
and long-term NOEC values are above 100 mg/L, 2-MeOx is not classified in the EU according to the
regulation (EC) No. 1272/2008, while n-hexane is classified chronic category 3 (toxic to aquatic life with
long lasting effects).
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8. Economic Viability of 2-MeOx in Extraction Processes

Every industrial process needs to consider optimization of all steps in regards of the final market
segment for the end-products. This becomes even more of importance in large scale continuous
processes where every detail counts; 2-methyoxolane is so far to be considered as a specialty solvent
in regards of its sales price range which is in the 7–9 €/kg range (Pennakem LLC, 2020), despite its
production in several thousand tons a year—in comparison, food grade Hexane price is comprised in the
0.80–1.00 €/kg range and produced in millions of tons a year. Nevertheless, despite this significant price
difference, 2-MeOx shows competitive edge when it comes to the economical equation of extraction
processes; obviously if recycling is considered, and extraction process optimized with low solvent
losses (i.e., lower than 1 kg per ton of extracted biomass/seeds). This has been demonstrated on few
seeds currently extracted continuously using hexane. In accordance with the existing literature (see
part 4), recent results we obtained at laboratory and pilot scale reported higher yields of extraction with
lower residual oil in the meals which benefit for the whole mass balance evaluation and economical
calculations. The difference in costs becomes negligible when it comes to evaluate all benefits of using
an eco-friendly and safe solution to replace hexane in an optimized set-up.

Table 10 shows an example of preliminary calculations for canola (rapeseed) extraction. Some
assumptions are coming from industry standards and especially for solvent loses in operation units
that are set for the most modern ones, at 0.3 kg per ton of extracted seeds. Those losses are found
in vapor and wastewater emissions, as well as residues in final products (oil and meal). Seed losses,
estimated at 36 kg per ton, come from first crushing/pressing and preparation steps before solvent
extraction and correspond to standards observed in the industry. Oil residual in the meal for hexane
extraction could vary but standard industry average is found at 1.0–1.5%, whereas residual oil obtained
with 2-MeOx usually vary between 0.5–1.0%. Sicaire et al. [31] confirmed part of those premises and
run comparisons on various parameters including kinetics of extraction, playing an important role for
productivity. As a result, and also thanks to the possibility to run at an higher extraction temperature
(65 ◦C instead of 55 ◦C for hexane), we might have an improvement on extraction production cycle
time impacting the overall process costs and converted into a gain of 0.9€ per ton of seeds. On the
other hand, the simulation anticipates an additional steam consumption because of the enthalpy of
vaporization difference between hexane (334 kJ/kg) and 2-MeOx (364 kJ/kg), as well as their boiling
point difference, being 61 ◦C for hexane/water azeotrope and 69 ◦C for 2-MeOx/water azeotrope. The
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study reports the total energy consumption—heat supply or steam production injected—in the process
and especially at the desolventization and recycling steps, requiring the major part of the energy
consumed throughout the whole process for solvent vaporization, removal, and recovery. After various
trials and optimizations, this impact has been calculated to be 1.1€ per ton of seeds (Table 10). Those
key costs of the solvent extraction process have been included in the global cost evaluation as reported
in the above chart showing finally an impact of only 0.47 € per ton of seeds extracted. This slight
difference is minimal and could easily be compensated by applying a slight price premium on sales
price of the edible oil. Less than one cent per kilo, representing 1% of premium, allows to even generate
more benefits per ton of seeds, as reported in the last column of the chart.

Table 10. Turnover estimations for rapeseed oil extraction with standard residual oil observed in
the meal.

Scenarios * Hexane
(Reference) 2-MeOx 2-MeOx

(Oil with Premium Price)

Oil price (€/t) 710 710 717 (1% premium)
Seeds (kg) 1000 1000 1000

Preparation losses (kg) 36 36 36
% oil in meal 1.5% 0.8% 0.8%

Solvent consumption (kg) 0.30 0.30 0.30
Oil quantity (kg) 416 420 420

Oil recovery vs. hexane 0.93% 0.93%
Meal quantity (kg) 548 544 544

Oil turnover (€) 295 298 301
Meal turnover (€) 126 125 125

Solvent cost (€) 0.0 −2.4 −2.4
Steam extra-cost (€) 0 −1.1 −1.1
Productivity gain (€) 0 0.9 0.9

Total turnover €/ton seeds 421.40 420.66 423.64
Delta vs. hexane €/ton seeds / −0.47 +2.51

* The following assumptions were used: standard rapeseed oil price at 710 €/ton, standard rapeseed meal price at
230 €/ton, hexane price at 900 €/ton, 2-methyoxolane price at 8000 €/ton.

Additional comparison could be done with Organic certified processes, such as mechanical
pressing. In such cases, best case scenarios for oilseeds (double press) leave behind 8% oil in the
meal, impacting the overall cost balance of the process more than 2-MeOx. Based on similar premises
than in the above chart, earning difference compared to hexane reference will land at 18 € per ton of
extracted seeds. This cost simulation must of course be updated as the scale-up will go along. Indeed,
it is well known that when you carry out a change in a large highly optimized continuous process
(and the oilseed hexane extraction process has been optimized since 1950), temporary additional
production costs must be anticipated until the new optimum operating point is found. However,
Table 10 calculations show that it should be possible to produce hexane free clean oil, plant protein,
and feed meal with no major production cost change, once the process optimization will be over.

Beside the very large scale, highly optimized, and oilseed crushing industry, many other smaller
scale extraction applications exist. There are numerous high added value compounds that are made in
limited quantities and cannot justify a dedicated large-scale plant. Those species and compounds need
to be made and produced either in multi-purposes and multi-solvent continuous facilities or in batch
extractors. For such processes, 2-MeOx appears as well as an interesting option for the companies
who want to get rid of petrochemicals residues in their product or claim a clean label production.
As explained previously, hexane is widely used for flavor and fragrance production, recovered after the
extraction and may be reused in further operations. In a very similar way, 2-MeOx could be recovered
and reused allowing cost optimization on solvent losses, as well as on waste disposal. In any case,
even if the solvent is not recycled, its disposal would be cheaper than the disposable of hazardous
petro-based solvents, such as hexane.
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9. Scale-Up

As exposed previously, many potential alternatives to hexane have been reviewed since the
neurotoxicity of this solvent was discovered. Some solutions, such as supercritical CO2 or ethanol,
offer today credible alternatives for small scale or high value-added extraction. However, none ever
managed to compete with the large-scale continuous oilseeds crushing facilities. A typical oilseed
crushing plant processes from 0.5 to 20 ktons of seeds/day. The oil and feed meals are commodities
therefore the market is highly competitive and the margins are low. Even if the use of the 2-MeOx
could open new higher value markets, such as organic oils for cosmetics, or clean label edible oils,
the industrial players are asking for evidences that the good results obtained in the laboratory can be
scaled up. To do so, we carried out several scale-up trials:

1. Multi-stages batch extractions (80 kg) on different seeds (soy, rapeseed, and sunflower). These tests
allowed to refine the oil and confirm its quality for edible purposes. We also checked the quality
of the proteins (typically, soy white flakes).

2. A continuous test on soybeans at Crown Iron Works facility (Minneapolis, MN, US) [86].
We produced about 150 kg of soy white flakes over 5 h on a percolation extractor (Crown
Model III); 2-MeOx was compared with hexane using similar extraction conditions, both solvents
achieved a residual oil content of 0.75%.

3. A continuous test on canola at ENAT International (Salamanca, Mexico).

9.1. Large-Scale Trial

Recently, we successfully extracted more than 46 tons of canola press cake (22.8% oil) at 340 kg/h,
including solvent recycling by simple decantation of the condensates [86]. This test was based on
an immersion extractor (Figure 10), a desolventizer–toaster at atmospheric pressure of Schumacher
type, a vacuum distillation installation consisting of a single-effect rising flow evaporator and a live
steam stripper (Figure 11). All gas streams, equipment vents, and vapors generated during oil and
seedcake desolventizing were condensed in two stages (not shown in Figure 10) and sent to the
decanter. Condensates were decantated to obtain 2 phases: a first organic, mainly 2-MeOx (+4–5%
water), reusable as is for extraction, and a second aqueous, sent in azeotropic distillation, to optimize
the recovery of the solvent. An absorption column was used after the last step of condensation to
reduce solvent loss and limit VOC emissions.
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We produced a properly defatted (residual oil = 0.3%) and desolventized canola meal (residual
solvent = 10 ppm). The optimized solvent/raw material feed ratio was 1.3/1 w/w, for a final oil
concentration in the solvent of 20–25% oil. After a two steps desolventization, the solvent residue in the
oil was between 0.5 and 1.5%; thus, a third step should allow to drop to the usual 50 ppm on crude oil.
All gas streams, equipment vents, and vapors generated during oil and seedcake desolventizing were
condensed in two stages and sent to the decanter. Condensates were decantated to obtain 2 phases:
a first organic, mainly 2-MeOx (+4–5% water), reusable as is for extraction, and a second aqueous,
sent in azeotropic distillation to optimize the recovery of the solvent. An absorption column was
used after the last step of condensation to reduce solvent loss and limit VOC emissions. A simplified
process diagram of an extraction facility converted for using 2-MeOx (ENAT International, Salamanca,
Mexico) is shown Figure 11. Finally, in order to support the scale up process, we used the data we
obtained during this trial to develop an oilseed plant simulation on a chemical process software
CHEMCAD (version 7.1.8, Chemstations Inc., US). That simulation will help us to identify optimal
working parameters and solve any bottleneck for further plants conversions.

9.2. Further Scale-Up

In order to support the scale up process for further plant conversions, we used a four-step
systematical approach to secure the implementation of the 2-MeOx in an existing facility:

1. Preliminary diagnosis (on site visit and plant parameters collection). We issued a report where
we list the needed adaptations.

2. Plant simulation. Estimation of the modification capital expenses and plant future operating costs.
3. Plant modification and run preparation
4. Run, data collection, and analysis of the results for further process optimization.
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9.2.1. Preliminary Diagnosis

This diagnosis consists in:

• Checking the overall plant condition and environment, safety culture, and risk prevention
• Checking the gasket compatibility: as 2-MeOx is a highly efficient solvent, some plastics or

elastomer materials are not compatible.
• Collecting the plant process diagram and parameters necessary for the simulation.
• Identifying the potential sensors and sampling points for monitoring of the key parameters during

the run.

9.2.2. Plant Modification

The substitution of hexane by 2-MeOx does not require substantial modifications, unlike other
solvents such as supercritical CO2 or liquefied gases, the only adaptations concern:

• Replacement of incompatible polymeric materials presents in seals, pump seals, conveyor belts,
sight glasses, by per-fluorinated materials (PTFE, FFKM, etc.)

• Replacement of the wastewater boiler by an azeotropic distillation column to maximize the
recovery of the solvent present in the water phase, before the water discharge or recycling.

• Setup a thermo-controlled decantation tank to reduce the quantity of 2-MeOx in the water phase
(solubility in water drops from 14% at 20 ◦C to only 6.6% at 60 ◦C).

• Conversion of the vent solvent recovery system (Mineral Oil Absorption System). The petroleum-
based light mineral oil can be replaced by cold water. Thus, the entire oilseed crushing facility
would be free from petrochemical fluid and the risk of contamination of the edible oil by mineral
oil would be removed.

10. Societal Impacts

The Agenda 2030 issued by the United Nations (UN) in 2015 emphasized the importance of
sustainability, whether through its ecological, economic, or social dimensions. With the aim of
addressing the daunting challenges that the world is currently facing, 17 Sustainable Development
Goals (SDGs) were adopted. The SDGs represent global guidelines for both public and private
actors that should enable overcoming poverty, hunger, and inequalities, mitigating environmental
degradation and climate change and boosting economic growth and global development. As illustrated
in Figure 12, 2-MeOx can contribute to meet 11 of the 17 SDGs all along its value chain.

First, 2-MeOx can align with SDG 2 “Zero Hunger”. The FAO/SOFI 2020 report related to “Food
security and nutrition in the world” explains that 3 Billion people cannot afford a balance diet with
particularly enough lipid, protein and fibers [87]. Unfortunately, today, the world food security in oil
and protein depends on hexane, a petrochemical compound. Without hexane, the world oil production
would drop of 20%, because the mechanical press cannot technically recover all the oil. Moreover,
mechanical press produces a fat meal which has a low stability and get rancid after 3 months, generating
food waste. There is currently no viable alternative to maximize the oil recovery, produce well defatted
high stability protein meal, and make the most out of our valuable agricultural resources. In this
context, 2-MeOx could offer an alternative, keeping all the hexane technical advantages with additional
safety and sustainability. It could also allow to develop the use of the meal protein for human food
instead of giving most of them to the feedstock, because of their high hexane content.
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Then, all the natural extracts obtained with this bio-based solvent are free of neurotoxic and
reprotoxic solvent residues and can therefore bring a positive contribution to SDG 3 “Good Health and
Well-Being”. Some part of the non-edible agricultural by-products used to make 2-MeOx, as well as the
lipid extracts, can be used as clean power sources which is in line with SDG 7 “Affordable and Clean
Energy”. By replacing hazardous solvents by 2-MeOx, the working conditions of industrial workers
could be greatly improved. This consideration meets the SDG 8 “Decent Work and Economic Growth”.
As suggested by SDG 9 “Industry, Innovation and Infrastructure”, the development of 2-MeOx for
extraction at industrial scale will require more solvent production capacity and open new market for
hemicelluloses-rich by-products. 2-MeOx can meet SDG 11 “Sustainable Cities and Communities”,
as the substitution of hexane by the 2-MeOx will reduce the risks of the oilseeds crushing plants for
the local communities. Today, in Europe, because of the hexane toxicity for the environment, these
facilities are within the Seveso regulation. They will exit that regulation with the 2-MeOx.

Because it is an easy-recyclable bio-based solvent, the use of 2-MeOx and derived products
is in accordance with SDG 12 “Responsible Consumption and Production”. Replacing hazardous
petrochemical solvents by 2-MeOx would drastically reduce the global dependence on fossil energy
and CO2 emissions, limit health-harmful air and water emissions, and promote the valorization of
agricultural waste. These latter points show that 2-MeOx can align with SDG 13 “Climate Action”,
SDG 14 “Life Below Water”, and SDG 15 “Life on Land”. From its production to the consumption of
related products, 2-MeOx would involve various stakeholders that could cooperate and help meeting
the SDGs together. These corporate actions would embody SDG 17 “Partnerships for the Goals”.
Overall, the use of 2-MeOx as an alternative to replace petrochemical solvents would participate in
enhancing the global sustainability of our societies. This perspective is in line with the challenges that
the world is facing, and the SDGs presented by the UN in 2015.
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11. Future Trends

In this 21st century, extraction solvents have to be exclusively green, safe, and obtained only from
renewable resources. Based on this literature review, it is clear that 2-MeOx is a credible alternative to
hexane for the extraction of lipophilic natural products; 2-MeOx also opens new area of innovations,
as it proved to be a viable and green alternative to hexane and related lipophilic petroleum solvents,
but there are still some key challenges and barriers. Figure 13 is an attempt to summarize in a
strengths, weaknesses, opportunities, threats (SWOT) analysis the current perspectives for 2-MeOx use
as extraction solvent, from laboratory innovation to industrial applications. Briefly, even if 2-MeOx has
some drawbacks (flammability, potential peroxides formation) they are totally compatible with large
scale industrial use (2-MeOx is currently used in pharmaceuticals industry), and some of them are also
a source of embedded safety (strong odor) for workers and consumers. Having interesting technical
properties, a safe toxicological profile and low environmental impact, 2-MeOx has the potential to
become the most credible alternative to hexane for extraction of natural products and can be a source
of innovations (process and products). For example, 2-MeOx could be used in mixture with other
bio-based solvents, such as ethanol or water, for specific extraction of more hydrophilic products (polar
lipids, polyphenols, sugars, etc.).
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