
HAL Id: hal-02948750
https://hal.inrae.fr/hal-02948750

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Validation of Space-based albedo products from
upscaled tower-based measurements over Heterogeneous

and Homogeneous landscapes
Rui Song, Jan-Peter Muller, Said Kharbouche, Feng Yin, William Woodgate,

Mark Kitchen, Marilyn Roland, Nicola Arriga, Wayne Meyer, Georgia
Koerber, et al.

To cite this version:
Rui Song, Jan-Peter Muller, Said Kharbouche, Feng Yin, William Woodgate, et al.. Validation of
Space-based albedo products from upscaled tower-based measurements over Heterogeneous and Ho-
mogeneous landscapes. Remote Sensing, 2020, 12 (5), pp.833. �10.3390/rs12050833�. �hal-02948750�

https://hal.inrae.fr/hal-02948750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


remote sensing  

Article

Validation of Space-Based Albedo Products from
Upscaled Tower-Based Measurements Over
Heterogeneous and Homogeneous Landscapes

Rui Song 1,* , Jan-Peter Muller 1 , Said Kharbouche 1, Feng Yin 2 , William Woodgate 3,
Mark Kitchen 3, Marilyn Roland 4 , Nicola Arriga 4,5, Wayne Meyer 6, Georgia Koerber 6 ,
Damien Bonal 7, Benoit Burban 8, Alexander Knohl 9, Lukas Siebicke 9, Pauline Buysse 10 ,
Benjamin Loubet 10, Montagnani Leonardo 11,12 , Christophe Lerebourg 13 and Nadine Gobron 5

1 Imaging Group, Mullard Space Science Laboratory, Department of Space & Climate Physics, University
College London, Holmbury St Mary, Surrey RH56NT, UK; j.muller@ucl.ac.uk (J.-P.M.);
s.kharbouche@ucl.ac.uk (S.K.)

2 NCEO, Department of Geography, University College London, Gower Street, London WC1E 6BT, UK;
feng.yin.15@ucl.ac.uk

3 CSIRO, Black Mountain, Building 801, Canberra 2601, Australia; William.Woodgate@csiro.au (W.W.);
Mark.Kitchen@csiro.au (M.K.)

4 Research Center of Excellence PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1,
B-2610 Wilrijk, Belgium; marilyn.roland@uantwerpen.be

5 Joint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra, Italy;
Nicola.ARRIGA@ec.europa.eu (N.A.); nadine.gobron@ec.europa.eu (N.G.)

6 TerRésultats de recherche TERN - Terrestrial Ecosystem Research Network (TERN), School of Biological
Sciences, The University of Adelaide, Adelaide 5005, Australia; Wayne.meyer@adelaide.edu.au (W.M.);
georgia.koerber@adelaide.edu.au (G.K.)

7 AgroParisTech, INRAE, UMR Silva, Université de Lorraine, 54000 Nancy, France; damien.bonal@inra.fr
8 AgroParisTech, INRAE, UMR EcoFoG, Cirad, CNRS, Université des Antilles, Université de Guyane,

97310 Kourou, France; benoit.burban@ecofog.gf
9 Bioclimatology, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, 37077 Goettingen,

Germany; aknohl@uni-goettingen.de (A.K.); Lukas.Siebicke@forst.uni-goettingen.de (L.S.)
10 Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, 78850 Saint-Aubin, France;

pauline.buysse@inra.fr (P.B.); Benjamin.Loubet@inra.fr (B.L.)
11 Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
12 Forest Services, Autonomous Province of Bolzano, 39100 Bolzano, Italy; leonardo.montagnani@unibz.it
13 ACRI-ST, 260 Route de Pin Montard, BP 234, 06904 Sophia Antipolis, France; christophe.lerebourg@acri-st.fr
* Correspondence: rui.song@ucl.ac.uk

Received: 21 December 2019; Accepted: 26 February 2020; Published: 4 March 2020
����������
�������

Abstract: Surface albedo is a fundamental radiative parameter as it controls the Earth’s energy
budget and directly affects the Earth’s climate. Satellite observations have long been used to capture
the temporal and spatial variations of surface albedo because of their continuous global coverage.
However, space-based albedo products are often affected by errors in the atmospheric correction,
multi-angular bi-directional reflectance distribution function (BRDF) modelling, as well as spectral
conversions. To validate space-based albedo products, an in situ tower albedometer is often used
to provide continuous “ground truth” measurements of surface albedo over an extended area.
Since space-based albedo and tower-measured albedo are produced at different spatial scales, the can
be directly compared only for specific homogeneous land surfaces. However, most land surfaces
are inherently heterogeneous with surface properties that vary over a wide range of spatial scales.
In this work, tower-measured albedo products, including both directional hemispherical reflectance
(DHR) and bi-hemispherical reflectance (BHR), are upscaled to coarse satellite spatial resolutions
using a new method. This strategy uses high-resolution satellite derived surface albedos to fill the
gaps between the albedometer’s field-of-view (FoV) and coarse satellite scales. The high-resolution
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surface albedo is generated from a combination of surface reflectance retrieved from high-resolution
Earth Observation (HR-EO) data and moderate resolution imaging spectroradiometer (MODIS) BRDF
climatology over a larger area. We implemented a recently developed atmospheric correction method,
the Sensor Invariant Atmospheric Correction (SIAC), to retrieve surface reflectance from HR-EO (e.g.,
Sentinel-2 and Landsat-8) top-of-atmosphere (TOA) reflectance measurements. This SIAC processing
provides an estimated uncertainty for the retrieved surface spectral reflectance at the HR-EO pixel
level and shows excellent agreement with the standard Landsat 8 Surface Reflectance Code (LaSRC) in
retrieving Landsat-8 surface reflectance. Atmospheric correction of Sentinel-2 data is vastly improved
by SIAC when compared against the use of in situ AErosol RObotic NETwork (AERONET) data.
Based on this, we can trace the uncertainty of tower-measured albedo during its propagation through
high-resolution EO measurements up to coarse satellite scales. These upscaled albedo products
can then be compared with space-based albedo products over heterogeneous land surfaces. In this
study, both tower-measured albedo and upscaled albedo products are examined at Ground Based
Observation for Validation (GbOV) stations (https://land.copernicus.eu/global/gbov/), and used to
compare with satellite observations, including Copernicus Global Land Service (CGLS) based on
ProbaV and VEGETATION 2 data, MODIS and multi-angle imaging spectroradiometer (MISR).

Keywords: surface albedo; directional hemispherical reflectance; bi-hemispherical reflectance;
upscaling; CGLS; ProbaV; vegetation; MODIS; MISR

1. Introduction

Surface albedo, or the integrated hemispherical surface reflectance, is the ratio of the radiant
flux reflected from the Earth’s surface to the incident radiant flux. Surface albedo is a fundamental
radiative parameter as it controls the Earth’s energy budget by determining the amount of solar
radiation absorbed by the surface [1]. Since surface albedo is highly variable in space and time over
natural landscapes, it is necessary to have a long-term record of accurately estimated surface albedo
at appropriate spatial scales. It is also a key parameter to assess the impacts of surface warming,
especially in polar regions, such as Greenland [2].

Satellite observations provide a unique tool for monitoring surface albedo on a global scale.
To retrieve surface albedo from satellite-based instruments, sufficient numbers of directional surface
reflectance measurements are needed in order to model the bidirectional reflectance distribution function
(BRDF). Such directional measurements of surface reflectance can be obtained from a single field of
view sensor by accumulating sequential measurements over a period of time (e.g., moderate resolution
imaging spectroradiometer (MODIS) over 16 days), or from multi-angular sensors by directly obtaining
directional measurements near simultaneously (e.g., multi-angle imaging spectroradiometer (MISR)
within 7 minutes). Over the last two decades, global land surface albedo products have been generated
from various satellite-based instruments, including MODIS [3], MISR [4], Advanced Very High
Resolution Radiometer (AVHRR) [5], and more [6,7]. Surface albedo retrieved from satellite observations
are frequently contaminated by noise from atmospheric corrections to convert top-of-atmosphere
(TOA) reflectances to surface reflectances, using narrow-to-broadband conversions to transform
spectral albedo to broadband albedo, as well as using insufficient multi-angular measurements in
BRDF modelling. In addition, there are many instances of residual cloud contamination effects [8].
In situ tower albedometers, which can provide “ground truth” of surface albedo over a field-of-view
(FoV) from tens to a few hundred metres, are therefore often used to validate satellite retrieved
coarse-resolution albedo products. Typical albedometers consist of two calibrated pyranometers,
with one measuring downwelling solar radiation and the other measuring surface reflected upwelling
radiation. The Baseline Surface Radiation Network (BSRN) was designated as the global baseline
network for surface radiation for the World Meteorological Organization (WMO) and World Climate
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Research Programme (WCRP), and started providing systematic albedometer observations since
1992 from 10-m high towers [9]. The surface radiation budget network (SURFRAD), which is also
a contributor to the BSRN, has maintained an excellent record of solar radiation at tower stations in
the US since 1995 [10]. FLUXNET [11] is also a global network of micrometeorological tower sites,
but focused mainly on measurements of carbon dioxide and water fluxes. Many of these FLUXNET
sites include tower-based albedometers covering a wide range of different land cover types including
forests, croplands, grasslands, wetlands, etc. (fluxnet.ornl.gov).

A number of studies have attempted to validate satellite-based albedo products by directly
comparing them for specific spatially representative tower albedometer measurement sites [12,13].
These studies assume that the tower-measured albedo over a limited footprint (tens to a few hundred
metres) can represent the satellite-measured albedo at coarse resolutions (500 m–3 km), so that no
upscaling is needed. They often employ spatial autocorrelation with high resolution EO images to
assess the degree of homogeneity. However, most of the Earth’s land surface is not homogeneous in
surface reflectivity. This direct “point-to-pixel” scaling is not always applicable, as albedo measured at
tower albedometer FoV can occasionally have stronger correlations with adjacent satellite pixels over
the closest pixel if we have two strongly contrasting surface albedos, due to having cropland adjoining
forest (Said Kharbouche, private communication, 2017). To overcome this limitation, a method is needed
which is able to upscale tower-measured albedo to satellite spatial resolutions over both homogeneous
and heterogeneous sites. Song et al. [14] developed a framework for upscaling surface albedo from
ground level to coarse satellite scales using a combination of downscaled MODIS BRDF climatology
and high-resolution EO. This method has two major components, one deriving high-resolution albedo
products from the MODIS/high-resolution Earth Observation (HR-EO) combination, and the other
using derived high-resolution albedo to fill the gaps between tower FoV and coarse satellite scales.
This method makes it possible to validate satellite albedo products using upscaled tower-measured
albedo over both homogeneous and heterogeneous sites, and has been demonstrated over 20 Ground
Based Observation for Validation (GbOV) tower sites covering different landscapes. In this work,
we have further developed this processing method by employing a novel Sensor Invariant Atmospheric
Correction (SIAC) approach to obtain high-resolution surface reflectance/albedo more accurately
including explicitly the effects of surface BRDF, and providing a traceable uncertainty estimate for
the upscaled albedo values. The SIAC atmospheric correction method developed by Yin et al. [15]
can accurately retrieve satellite-based spectral surface reflectance, along with deriving an uncertainty
estimate for every single pixel. This allows the uncertainty of tower-measured albedo to be traceable
during its propagation through high-resolution EO measurements up to coarse satellite scales. In this
paper, we aim to demonstrate that:

(1) The SIAC method has a good agreement with the Landsat 8 Surface Reflectance Code (LaSRC)
algorithm in retrieving Landsat-8 surface reflectance. We also show that the SIAC method has
better performance than the Sen2cor tool in retrieving Sentinel-2 surface reflectance.

(2) a streamlined version of SIAC, which includes a representation of anisotropy or surface
directional/structural/topography dependence into the upscaling framework, improves the
accuracy of upscaled tower albedo values.

(3) The upscaled albedo products, including direct hemispherical reflectance (DHR) and
bi-hemispherical reflectance (BHR) for three different global networks are examined for the
first time over heterogeneous sites selected from the GbOV tower stations in addition to
homogeneous sites.

2. Materials and Methods

2.1. Ground Measurements

In [14], Song et al. compared space-based albedo measurements against tower measurements
between the year 2012 and 2016 at 20 GbOV tower sites selected from the FLUXNET, SURFRAD

fluxnet.ornl.gov
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and BSRN networks. In this study, all the available tower measurements are extended to cover the
years 2017 and 2018, except for the DE-GEB, US-BAO, US-BRW and SPO sites, which have been
replaced by the NL-CAB, NM-GOB, NO-NYA and DOM sites. The original site list for 2012-2016 can
be found in [14]. The new sites are now located over 6 continents as follows: Europe, North America,
South America, Africa, Australia, and Antarctic, as shown in Figure 1. Key characteristics of the new
20 sites are listed in Table 1, including geographic coordinates, associated networks, footprint area,
land cover types, and time range of the processed tower albedo data. Figure 2 shows an example of
the 42m tower at the Hainich FLUXNET tower station (DE-HAI), and configuration of the albedometer.
The albedometer is located at the extreme right with one part facing upwards and the other part facing
downwards. Figure 3 also shows a pyranometer for measuring diffuse solar radiation.

Figure 1. Geographical distribution of selected sites (Google Earth).
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Table 1. List of tower sites with key characteristics: acronyms, geographical coordinates, networks, footprints and land cover types defined by International
Geosphere-Biosphere Programme (IGBP).

Station Acronym Latitude (◦) Longitude (◦) Network Footprint Land Classification (IGBP) Time Range

Ny-Ålesund** NO-NYA 78.925 11.93 BSRN
(http://bsrn.awi.de) 25 m Snow and ice 2017–2018

Concordia Station* DOM -75.1 123.383 BSRN 46 m Snow and Ice 2017–2018

Cabauw NL-CAB 51.971 4.927 BSRN 46 m Grasslands 2016–2018

Gobabeb* NM-GOB -23.519 15.083 BSRN 46 m Desert 2016–2018

Niwot Ridge# US-NR1 40.033 −105.546
FLUXNET

(https://FLUXNET.
ornl.gov)

158 m Evergreen Needleleaf 2013–2018

ARM Southern Great
Plains US-ARM 36.606 −97.489 FLUXNET 25 m Croplands 2012–2018

Hainich* DE-HAI 51.070 10.450 FLUXNET 265 m Mixed Forest 2012–2018

Grignon FR-GRI 48.844 1.952 FLUXNET 67 m Croplands 2012–2018

Guyaflux*# GF-GUY 5.279 –52.925 FLUXNET 290 m Evergreen Broadleaf 2012–2018

Brasschaat# BE-BRA 51.309 4.521 FLUXNET 240 m Mixed Forest 2012–2018

Renon IT-REN 46.587 11.434 FLUXNET 152 m Evergreen Needleleaf 2012–2017

Tumbarumba* AU-TUM −35.657 148.152 FLUXNET 505 m Evergreen Broadleaf 2012–2018

Calperum # AU-CPR −34.003 140.588 FLUXNET 215 m Closed Shrublands 2013–2018

Sioux Falls US-SXF 43.730 −96.620

SURFRAD
(https://www.esrl.

noaa.gov/gmd/
grad/surfrad/)

126 m Croplands 2012–2018

Bondville US-BON 40.052 −88.373 SURFRAD 126 m Croplands 2012–2018

Desert Rock * US-DRA 36.624 −116.019 SURFRAD 126 m Open Shrublands 2012–2018

Fort Peck * US-FPK 48.308 −105.102 SURFRAD 126 m Grasslands 2012–2018

Goodwin Creek US-GCM 34.255 −89.873 SURFRAD 126 m Deciduous Broadleaf 2012–2018

Penn State US-PSU 40.720 −77.931 SURFRAD 126 m Deciduous Broadleaf 2012–2018

Table Mountain * US-TBL 40.125 −105.237 SURFRAD 126 m Bare soil and Rocks 2012–2018

Sites marked with * have been claimed to be spatially representative, which is sometimes referred to as homogeneous by [16]. ** NO-NYA is spatially representative during snow
covered periods, but heterogeneous during the snow melt season. N.B. Sites marked with # do not have diffuse radiation measurements that cover the entire time period, so
a method to model this taken from [17] is used to estimate diffuse radiation. Further details of albedometers can be found in the Algorithm Theoretical Basis Documents (ATBD)
(https://gbov.acri.fr/public/docs/products/2019-11/GBOV-ATBD-RM1-LP1-LP2_v1.3-Energy.pdf).

https://FLUXNET.ornl.gov
https://FLUXNET.ornl.gov
https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://gbov.acri.fr/public/docs/products/2019-11/GBOV-ATBD-RM1-LP1-LP2_v1.3-Energy.pdf
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Figure 2. Photos taken at the Hainich FLUXNET tower site, and configuration of the albedometer (and
AErosol RObotic NETwork (AERONET) CIMEL sun photometer. Courtesy of Frank Tindemann (left)
and Lukas Siebicke (right), Universität Göttingen.

Figure 3. Example of pyranometer for measuring diffuse radiation. An accurate sun-tracker is installed
to shield the pyranometer from direct solar beam. Photo is courtesy of surface radiation budget network
(SURFRAD) US-FPK site.
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Figure 4 shows the time series of raw measurements for the newly added NL-CAB site. It includes
three key variables: incoming shortwave radiation, outgoing shortwave radiation and diffuse shortwave
radiation, which are essential for the BRDF angular modelling and surface albedo calculations.

Figure 4. Time series of raw measurements at the NL-CAB tower site between 1 January, 2016 and 31
December, 2018. Incoming shortwave (SW_IN), outgoing shortwave (SW_OUT) and incoming diffuse
shortwave radiation (SW_DIF) are represented by red, green and blue lines, respectively.

The raw data displayed in Figure 4 include a number of invalid measurements, e.g.,
radiation measurements with negative or missing values. The raw measurements need to be filtered
before they can be used to calculate surface DHR and BHR. Figure 5 shows a comparison of reflectance
variations between unfiltered and filtered albedometer measurements. This step filtered out all the
SW_IN, SW_OUT and SW_DIF with radiation values smaller than 30 W/m2. This threshold is obtained
based on empirical experiments. In addition, measurements with a diffuse ratio (SW_DIF/SW_IN) out
of the range [0, 1] are also filtered out. These filtered reflectances are then used to calculate surface
DHR and BHR using the tower-based albedo estimation method introduced in [14]. This method uses
a threshold of β (ratio of diffuse radiation to total incoming radiation) to extract only reflectances with
a very small diffuse ratio to calculate black-sky-albedo (DHR, β<0.1), and only extract reflectances
with a very large diffuse ratio in calculating white-sky-albedo (BHRs, β>0.9). This method has been
demonstrated to work well over different landscapes, and is therefore not discussed further here [14].
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Figure 5. Comparison of unfiltered and filtered reflectance variations at the NL-CAB sites between the
years 2016 and 2018.

2.2. Satellite Albedo

In this work, three different satellite albedo products are used to compare with tower-measured
albedo values over the GbOV stations. They are the Copernicus Global Land Service (CGLS) albedo
products at 1-km resolution, MODIS albedo products at 500 m resolution and MISR albedo products at
1.1 km resolution.

The CGLS albedo products are solely derived from the SPOT/VEGETATION instrument up
until 2014, and since from the PROBA-V sensors [18]. The CGLS albedo products are updated
every 10 days using a 30-day time window. The MODIS MCD43A3 products provide a collection of
500-m albedo data in the MODIS band 1-7, and the visible, near infrared and shortwave bands [3].
The MODIS 500-m albedo products are generated on a daily basis with a moving 16-day time window.
The MISR instrument provides simultaneous albedo products that are retrieved from its multi-angular
measurements [19]. The MISR albedo products are derived over four narrow spectral bands: blue
(446 ± 21 nm), green (558 ± 15 nm), red (672 ± 11 nm) and near infrared (866 ± 20 nm). To obtain
the broadband shortwave albedo, a narrow-to-broadband conversion using the following coefficients
is needed:

αMISR = 0.126·α2 + 0.343·α3 + 0.415·α4 + 0.0037 (1)

where α2, α3 and α4 represent MISR spectral albedos at band 2, 3 and 4, respectively where αMISR is
the derived broadband shortwave albedo [20].
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2.3. The Sensor Invariant Atmospheric Correction (SIAC) method

SIAC, is a sensor agnostic approach to atmospheric correction, and was developed by Yin et al. [15].
It aims to provide consistent estimates of surface reflectance from different space-based high-resolution
optical sensors. The basic idea of the SIAC method is to use the coarse-resolution spectral BRDF (500-m
MODIS BRDF) to describe the surface anisotropy, and the Copernicus Atmospheric Monitoring Service
(CAMS) 4.4 km data as a prior estimate of atmospheric composition. To retrieve the surface reflectance,
an inverse problem needs to be solved using the following steps:

(1) MODIS MCD43A3 datasets provide 500-m, daily resolution spectral BRDF kernels, which can be
used to derive the surface reflectance at the solar and viewing geometries that are consistent with
the high-resolution satellite.

(2) As the spectral bands are different between the coarse-resolution BRDF (500-m MODIS) and
high-resolution satellites (20-m Sentinel-2 or 60-m Landsat-8), a linear transformation is performed
to convert the coarse-resolution surface reflectance to the target EO spectral bands.

(3) Due to the large differences in the spatial resolution between the MODIS and high-resolution
EO, the surface reflectance from MODIS and top-of-atmosphere reflectance from high-resolution
cannot be compared directly even when they are strongly correlated. Therefore, a point spread
function (PSF) is modelled in order to make the coarse-resolution MODIS and high-resolution
EO comparable.

(4) The coarse-resolution surface reflectance is mapped to the top of the atmosphere using a radiative
transfer model, which can then be compared with the TOA reflectance convolved with the
empirical PSF.

(5) An inverse problem is built to solve the aerosol optical thickness (AOT), total columnar
water vapour (TCWV) and total columnar ozone (TCO3) based on a prior distribution from
CAMS. This step also includes a spatial regularisation that smooths the spatial variation of
atmospheric composition.

(6) The final step of SIAC is to correct the target TOA reflectance from high-resolution EO using the
Lambertian surface-atmosphere coupling assumption and the atmospheric parameters inferred
from above.

Details and validation results of the spectral transformation and spatial modelling have been
presented in [15]. a flowchart in Figure 6 shows the inputs for SIAC and what processing is applied to
each of these inputs.

Figure 6. Flowchart of Sensor Invariant Atmospheric Correction (SIAC) processing chain to
produce updated atmospheric state, which is subsequently employed to generate the surface spectral
Bi-Directional Reflectance Factor (BRFs).

The main advantages that SIAC has over other atmospheric correction approaches are as follows:
1) it uses the MODIS BRDF as a physically meaningful constraint in retrieving a high-resolution
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surface bi-directional reflectance; 2) it does not rely on AErosol RObotic NETwork (AERONET)
aerosol measurements and uses CAMS data as a prior prediction. This is useful as not all the sites
investigated in this study have AERONET measurements available; 3) the SIAC method produces an
uncertainty estimation for every single high-resolution EO pixel. In this way, uncertainties caused by
the atmospheric correction can be estimated properly when the surface albedo is upscaled from the
tower to the coarse satellite resolution.

To illustrate the performance of SIAC atmospheric corrections, six 2D scatterplots are shown
in Figure 7 to illustrate an intercomparison of Landsat-8 spectral surface reflectance derived from
SIAC corrections and that derived from the LaSRC algorithm (https://github.com/USGS-EROS/espa-
surface-reflectance/tree/master/lasrc). LaSRC is the specialized software that is used to produce
Landsat-8 level-2 surface reflectance products. Surface reflectance derived from SIAC corrections
display a good correlation with LaSRC corrections, except for a small bias at higher reflectance values.
At low-reflectance values in bands 2, 3 and 4 (see Figure 7 caption for wavelengths), SIAC and LaSRC
retrievals have larger uncertainties due to higher uncertainties arising from greater scattering.

Figure 7. Intercomparison of Landsat-8 spectral surface reflectance derived from Landsat 8 Surface
Reflectance Code (LaSRC) algorithm and SIAC processing at band 2 (482 nm), band 3 (561 nm), band 4
(655 nm), band 5 (865 nm), band 6 (1609 nm) and band 7 (2200 nm). This example uses the Landsat-8
scene in a 10 km * 10 km region that centres at the US-SXF site on 15th November 2018.

To evaluate the performance of SIAC corrections in retrieving Sentinel-2 surface reflectance values,
three atmospheric correction models were used: SIAC, Sen2Cor and 6Sv. Sen2Cor (https://step.esa.int/
main/third-party-plugins-2/sen2cor/) is a processor for Sentinel-2 level-2 product generation which
includes retrieving atmospherically corrected surface reflectance. SIAC uses aerosol measurements
based on CAMS prediction. Sen2Cor uses aerosol optical thickness derived at 550nm using the DDV
(Dense Dark Vegetation) algorithm [21] based on the correlation between reflectance in the SWIR
(band 12) and VIS (red - band 4, and blue - band 2). While comparing different atmospheric correction
approaches, significant discrepancies were found between SIAC and Sen2Cor results. Therefore, the 6Sv
model which uses near-real-time Aerosol Optical Depth (AOD) measurement from AERONET in
atmospheric corrections is employed in this example as a way to provide reference values of surface

https://github.com/USGS-EROS/espa-surface-reflectance/tree/master/lasrc
https://github.com/USGS-EROS/espa-surface-reflectance/tree/master/lasrc
https://step.esa.int/main/third-party-plugins-2/sen2cor/
https://step.esa.int/main/third-party-plugins-2/sen2cor/
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reflectance. The intercomparison of surface reflectance derived from the three approaches is shown in
Figure 8. It is clearly seen that the SIAC corrections have closer agreement with reference values (6Sv
retrievals) than the Sen2Cor corrections.

Figure 8. Intercomparison of Sentinel-2 spectral surface reflectance derived from 6Sv, Sen2Cor and
SIAC atmospheric corrections at band 1 (442.7 nm), band 2 (492.4 nm), band 3 (559.8 nm), band 4 (664.6
nm), band 5 (704.1 nm) and band 6 (7 40.5 nm), band 7 (782.8 nm), band 8 (832.8 nm) and band12
(2202.4 nm). This example uses the Sentinel-2A scene in a 10 km * 10 km region that centres at the
US-SXF site on 2nd July 2017.

In Figure 9, an example of Sentinel-2 level-1 TOA reflectance and level-2 Bottom Of Atmosphere
(BOA) reflectance derived from SIAC is shown.
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Figure 9. Example of Sentinel-2A level1 Top Of Atmosphere (TOA) reflectance (RGB composition) and
BOA reflectance (RGB green-red-blue composition) derived from SIAC corrections in a 10 km * 10 km
region that centres at the US-PSU site on 9 May, 2018.

2.4. Uncertainty Estimation

To infer the uncertainties in surface albedo upscaled from in situ retrievals to coarse satellite
resolutions, there are two main uncertainty sources that need to be considered. Firstly, in situ albedo
values are retrieved based on albedometer measured raw measurements, which are downwelling,
upwelling and diffuse shortwave radiation at a time frequency ranging from 1 minute to 1 hour.
The uncertainty in raw radiation measurements is defined by the albedometer specification.
For albedometers at tower sites investigated in this study, typically they have a daily relative
uncertainty (σdaily) of 5% at the 95% confidence level. As the in situ albedo generation combines
effective raw measurements over a fixed time window (e.g. 30 days for CGLS products), the relative
uncertainty in the produced albedo can be reduced to:

σtower_albedo =

√
2 × σdaily
√

N
(2)

where N is the number of effective days in albedo calculation, and the multiplication factor 2 indicates
contributions from both downwelling and upwelling shortwave radiation.

The second major uncertainty comes from the high-resolution EO, which is used as a bridge
to fill gaps between the small footprint tower measurements and the coarser-resolution satellite
measurements [14]. The high-resolution spectral surface reflectance derived from SIAC corrections
comes with uncertainty estimations for every single pixel. This uncertainty takes into account the
effect of the atmosphere in transforming albedo values from in situ retrievals to coarse EO scales.
However, narrow-to-broadband conversion coefficients [20,22] are needed to convert uncertainties in
spectral reflectance to shortwave reflectance. Equation (3) and (4) list the calculation of shortwave
broadband uncertainties for Landsat-8 and Sentinel-2, respectively.

σL8_SW(absolute) =
√

0.3562σL(b2)
2 + 0.132σL(b4)

2 + 0.3732σL(b5)
2 + 0.0852σL(b6)

2 + 0.0722σL(b7)
2 (3)

σS2_SW(absolute) =
√

0.3562σS(b2)
2 + 0.132σS(b4)

2 + 0.3732σS(b8)
2 + 0.0852σS(b11)

2 + 0.0722σS(b12)
2

(4)
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where in Equation (2) σL(b2), σL(b4), σL(b5), σL(b6) and σL(b7) represent the Landsat-8 pixel-level surface
reflectance uncertainty in bands 2, 4, 5, 6 and 7, respectively. Similarly, in Equation (3), σS(b2), σS(b4),
σS(b8), σS(b11) and σS(b12) represent the Sentinel-2 pixel-level surface reflectance uncertainty in bands 2,
4, 8, 11 and 12, respectively. The calculated broadband reflectance uncertainty is the absolute values,
which should be converted to relative values following Equation (5) such that uncertainties from the
albedometer and high-resolution EOs can be compared.

σHREO_SW = σSW(absolute)/BRFSW (5)

where σHREO_SW is the relative uncertainty of shortwave surface albedo from high-resolution EO
observations. It is derived from dividing its absolute uncertainty by the corresponding shortwave
broadband reflectance.

Finally, the uncertainty in upscaled coarser-resolution albedo can be calculated by combining the
contribution from tower albedometer and high-resolution EO measurements as follows:

σ = σtower_albedo (6)

Figure 10 shows DHRs that are upscaled to the CGLS 1km * 1km resolution between year 2017
and 2018 with estimated uncertainty values. The tower-based albedo retrievals are upscaled at
selected dates when cloud-free high-resolution EOs are available. Similarly, the upscaled BHRs and
corresponding uncertainties are displayed in Figure 11.

Figure 10. Example of upscaled Direct Hemispherical Reflectance (DHR) and uncertainty values at the
US-GCM site.

Figure 11. Example of upscaled bi-hemispherical reflectance (BHRs) and uncertainty values at the
US-GCM site.
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3. Results

3.1. Comparison of Surface Albedo between Satellite Products, In Situ Retrievals and Upscaled Values

Song et al. [14] presented the comparison of surface albedo between satellite product and in situ
retrievals mainly at SURFRAD and BSRN sites, with only one FLUXNET site at AU-TUM (see Table 1).
In this study, albedo comparisons at all available sites in Table 1 are presented. Site-specific in situ DHR
and BHR network retrievals use the same method derscribed in [14]. The intercomparison between in
situ tower retrievals and coarse-resolution satellite products are presented in Figure 12 for DHRs and
Figure 13 for BHRs. This intercompairson includes three sites, which are DE-HAI from the FLUXNET
network where the surface type is mixed forest, NL-CAB from the BSRN network where the surface
type is grassland, and US-FPK from the SURFRAD network where the surface type is grassland as
well. Intercomparisons between all the other tower and satellite-measured albedos are presented in
the Supplementary Materials.
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Figure 12. Intercomparison of DHR values derived from in situ tower measurements and coarse-resolution satellite products at the DE-HAI, NL-CAB and US-FPK
sites. Copernicus Global Land Service (CGLS) values are depicted in the first column, moderate resolution imaging spectroradiometer (MODIS) values are depicted in
the second column and multi-angle imaging spectroradiometer (MISR) values are depicted in the third column.
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Figure 13. Intercomparison of BHR values derived from in situ tower measurements and coarse-resolution satellite products at the DE-HAI, NL-CAB and US-FPK
sites. CGLS values are depicted in the first column, MODIS values are depicted in the second column and MISR values are depicted in the third column.
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Tower-measured albedos were produced over three different time windows corresponding to
the integration period employed to generate the satellite measurements, with the following periods:
16 days for the comparison with daily MODIS albedos; 30 days every 10 days for the comparison
with CGLS albedos; and near simultaneously for the comparison with the 7 minute MISR albedos.
Generally speaking, the tower-measured albedos show good agreement with the satellite-measured
albedos throughout the 7 years (2012–2018). At the At the DE-HAI forest site, MODIS DHRs and
BHRs agree with tower-measured DHRs and BHRs in terms of absolute values and seasonal variations.
This results in a R-squared (R2) value of 0.65 between tower measured and MODIS retrieved BHRs
at DE-HAI. CGLS DHRs have a good match with tower-measured albedos between year 2012 and
2014, but are slightly overestimated between year 2015 and 2018. This may be related to the switchover
from VEGETATION to Proba-V in 2014. The R-squared (R2) value between tower measured and CGLS
retrieved BHRs is 0.68 at DE-HAI. MISR retrievals also show overestimated DHRs throughout the
period. At the US-FPK grassland, MODIS and MISR DHRs/BHRs are consistent with tower-measured
DHRs/BHRs in the snow-free season, while CGLS DGRs/BHRs are still overestimated. This results
in a R-squared (R2) value of 0.88 in MODIS retrievals and a R-squared (R2) value of 0.72 in CGLS
retrievals at US-FPK. In the snow-covered season, MODIS retrievals have better performance than
CGLS retrievals in picking up the snow, probably due to the daily sampling. An exception is the
NL-CAB grassland where there is a large difference between MODIS retrieved DHRs/BHRs and
tower-measured DHRs/BHRs. This is likely to do with an issue in MODIS BRDF modelling or residual
cloud effects over that area.

By comparing tower satellite measured albedos at the GbOV tower sites investigated in this
study, MODIS retrievals appear to have the best agreement with tower retrievals amongst the three,
except at the NL-CAB site. At the NL-CAB site, the MODIS values appear lower than the tower values
because this area has persistent cloudiness at the MODIS overpass times. The DHRs have a better
match between tower and satellite retrievals than BHRs, because tower DHRs are calculated over
a narrow time-window around local solar noon, whereas BHRs are calculated using measurements
acquired throughout the day. Moreover, the tower-based BHRs are calculated based on the assumption
that illumination from the sky is uniform from all angles when the diffuse ratio is very large (≈ 0.9).
However, this uniform illumination condition is hard to meet with real observations. This explains why
tower-measured DHRs appear to have a better agreement with satellite measurements than the BHRs.

Intercomparisons for other GbOV tower sites are included in the Supplementary Materials,
except for the DOM and NO-NYA as they are outside the 75◦N and 60◦S boundary of the CGLS
observations. We can see that the DHRs at the AU-TUM show a good agreement between tower
and MODIS retrievals from year 2012 to 2016, whereas CGLS retrievals are strongly overestimated.
CGLS also has overestimated BHR retrievals at the US-DRA while MODIS retrievals are consistent
with tower-measured values.

3.2. Comparison of Surface Albedo between Satellite Products and Upscaled Values

In [14], intercomparisons of DHRs and BHRs between upscaled tower retrievals and the three
satellite retrievals are already presented at a subset of the individual tower sites, and therefore are not
discussed further here. Statistical results showing a comparison of BHRs upscaled from the tower
using the SIAC atmospheric correction and coarse-resolution CGLS albedo products are displayed
in Figure 14 at selected GbOV tower sites with different land covers, including closed shrublands,
evergreen broadleaf, mixed forest, croplands, grasslands, bare soil and rocks. The upscaled albedo has
the same spatial scale as the coarse resolution satellite retrievals, so that they can be compared at the
per pixel level directly. Statistical analysis of upscaling tower-measured albedo to coarse resolutions
over a larger area around the tower albedometer is shown in Figures 11 and 12 from [14].
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Figure 14. Summary of albedo results for BHRs upscaled from tower to CGLS spatial scale and BHRs
from CGLS retrievals at selected tower stations with different land covers.

4. Discussion

The DHR and BHR retrievals which were produced at 20 GbOV tower stations between 2012 and
2016 [14], are extended to 2018. The original DE-GEB, US-BAO, US-BRW and SPO sites are replaced
by the NL-CAB, NM-GOB, NO-NYA and DOM in the new time period. The GbOV tower stations
cover a wide range of different land cover types including forests, croplands, grasslands, desert etc.
DHRs and BHRs derived from tower albedometer measurements at these stations were compared with
satellite retrievals including CGLS, MODIS and MISR. Among the three satellite retrievals, MODIS has
the best agreement with tower measurements. MODIS retrievals can pick up some snow, which is
most likely due to its daily sampling. MISR retrievals can occasionally pick up snow which can be
seen in the US-FPK and US-SXF. The CGLS albedo retrievals are affected by the switchover from
VEGETATION to Proba-V in 2014, and are best displayed from the US-DRA. DHR retrievals often
have better agreement between tower and satellites than BHR retrievals for two reasons: 1). DHRs are
measured at a specific time of day while BHRs are measured throughout the day; 2). The idealised
uniform illumination condition is hard to meet when measuring BHRs.

There are several sites which show anomalous behaviour. For example, the lower MODIS values
at the NL-CAB site due to persistent cloudiness at the MODIS overpass times. The supplementary
plots of tower DHR vs EO show that all the EO sometimes indicates a positive bias (BE-BRA, IT-REN)
and more often a negative bias (FR-GRI, AU-CPR, US-BON, US-PSU, US-CGM) some of which is also
reflected in the BHR plots. Snow is not well captured by CGLS and this probably relates to the 30-day
integration time period.

In [14] an assessment was shown of DHR and BHR from a larger area centred on one site (US-SXF)
in order to produce sufficient statistics. Here, a summary plot is shown of results from different land
covers, which indicate that overall there is good agreement between the CGLS and upscaled albedo
values. However, there are insufficient data points to produce a quantitative set of statistics.

A combination of coarse-resolution MODIS BRDF climatology and HR-EO surface reflectance
was used to retrieve HR surface albedos, which was subsequently used to upscale tower albedos.
The HR-EO surface reflectances were produced using the SIAC atmospheric correction method,
which includes a representation of anisotropy or surface directional/structural/topography dependence.
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The SIAC method was demonstrated to have a good agreement with the LaSRC algorithm in retrieving
Landsat-8 spectral surface reflectance, and better than the Sen2cor tool in retrieving Sentinel-2 spectral
surface reflectance. The SIAC method also produces an uncertainty estimation of retrieved spectral
surface reflectance at the HR-EO pixel level. The SIAC derived surface reflectance uncertainty along
with the albedometer radiation measurement uncertainty, are combined to provide an estimate of
upscaled albedo uncertainty in coarse resolutions.

Figure 3 in the Supplementary Materials shows the tower FoV, CGLS 1km grid and MODIS 1km
grid at individual tower sites. The albedo upscaling process uses HR-EO albedo retrievals to fill the
spatial gap between the tower FoV and coarse-resolution satellite observations. Figure 14 shows the
comparison of surface BHRs between upscaled tower measurements and CGLS retrievals over both
homogeneous and heterogeneous. This method provides direct way for comparing surface albedo
retrieved from different platforms with different spatial scales.

5. Conclusions

In this study, the method developed by Song et al. [14] for upscaling surface albedo from tower
albedometer FoV to coarse satellite resolutions is further refined and demonstrated for heterogeneous
sites in addition to homogenous sites. The new upscaling method uses high-resolution EO surface
reflectance measurements (Landsat-8 and Sentinel-2) as a resolution bridge to fill the gaps between
tower albedometer FoV and coarse satellite spatial scales, where high-resolution EO surface reflectances
are retrieved using the novel SIAC atmospheric correction approach. The tower derived albedos as well
as the upscaled albedos, are compared against three satellite observations (CGLS, MODIS and MISR)
at 20 GbOV sites between year 2016 and 2018. Uncertainties in upscaled albedos are estimated by
considering uncertainties from both the tower albedometer raw measurements and SIAC atmospheric
corrections. The upscaled albedo has the largest absolute uncertainty of about 0.02.

The GbOV tower sites presented in this study have different types of land covers, and include
both homogeneous and heterogeneous landscapes. Experimental results demonstrate that the method
proposed in this paper can provide a way to validate satellite albedo retrievals using tower albedometer
measurements over both homogeneous and heterogeneous landscapes. This overcomes the previous
limitation, such as those recommended by the CEOS-LPV (Land Product Validation) protocol that
satellite albedo retrievals can only be validated by in situ measurements only over homogeneous
surfaces. In addition, we demonstrate that the uncertainties of upscaled albedos can be traced from
the in situ instrument through to the upscaled satellite measurements through the SIAC atmospheric
correction providing uncertainties of retrieved surface reflectances at the per pixel level. This paper
also demonstrates the method to generate high-resolution surface albedo based on 1-km MODIS BRDF
climatology and SIAC derived high-resolution spectral surface reflectances. In future work, we plan to
study how accurate high-resolution (≤20 m) albedo can be retrieved based on this MODIS BRDF and
high-resolution EO combination for Sentinel-2 MSI.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/5/833/s1.
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for Biogeochemistry, National Science Foundation, University of Tuscia, Universiteé Laval and Environment
Canada and US Department of Energy and the database development and technical support from Berkeley Water
Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory,
University of California-Berkeley, University of Virginia. Nicola Arriga acknowledges support and funding
received from ICOS-Belgium.
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and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project,
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Abbreviations

The following abbreviations are used in this manuscript:

Aerosol Optical Depth AOD
AErosol RObotic NETwork AERONET
Baseline Surface Radiation Network BSRN
Bi-Hemispherical Reflectance BHR
Bi-Directional Reflectance Factor BRF
Bidirectional Reflectance Distribution Function BRDF
Bottom Of Atmosphere BOA
Copernicus Global Land Service CGLS
Dense Dark Vegetation DDV
Directional Hemispherical Reflectance DHR
Earth Observing System EOS
Field-of-View FoV
Ground Based Observation for Validation GbOV
International Geosphere-Biosphere Programme IGBP
Landsat 8 Surface Reflectance Code LaSRC
Moderate Resolution Imaging Spectroradiometer MODIS
Multi-Angle Imaging Spectroradiometer MISR
Point Spread Function PSF
Surface Radiation Budget Network SURFRAD
Top Of Atmosphere TOA
World Climate Research Programme WCRP
World Meteorological Organization WMO
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