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1. Abstract 8 

Polyurethanes (PU) are a family of versatile synthetic polymers intended for diverse applications. 9 
Biological degradation of PU is a blooming research domain as it contributes to the design of eco-10 
friendly materials sensitive to biodegradation phenomena and the development of green 11 
recycling processes. In this field, an increasing number of studies deal with the discovery and 12 
characterization of enzymes and microorganisms able to degrade PU chains. The synthesis of 13 
short lifespan PU material sensitive to biological degradation is also of growing interest. 14 
Measurement of PU degradation can be performed by a wide range of analytical tools depending 15 
on the architecture of the materials and the biological entities. Recent developments of these 16 
analytical techniques allowed for a better understanding of the mechanisms involved in PU 17 
biodegradation. Here, we reviewed the evaluation of biological PU degradation, including the 18 
required analytics. Advantages, drawbacks, specific uses, and results of these analytics are largely 19 
discussed to provide a critical overview and support future studies. 20 

Keywords: Microbial degradation, enzymatic degradation, polyurethanes, technical review 21 

2. Introduction 22 

In 2019, the International Union of Pure and Applied Chemistry (IUPAC) published a list of ten 23 
emerging technologies in Chemistry with the potential to make our planet more sustainable. 24 
Among them, technologies permitting the transformation of plastic material into monomers are 25 
highlighted. These recycling technologies will help reduce plastic waste and save fossil resources. 26 
Despite comfort and incomparable uses to our everyday life, plastic materials are a cause of global 27 
and increasing pollution resulting from inadequate behaviors of both producers and users. The 28 
massive production involves a polluting exploitation of fossil resources and their poor waste 29 
management induces uncontrolled dissemination in the environment. In 2010, more than 275 30 
million metric tons of plastic waste were generated in almost 200 coastal countries, out of which 31 
an estimated 5 to 13 million metric tons reached the oceans where plastic waste accumulate 32 
(Jambeck et al., 2015). With the problematic of the nano- or microplastic debris, ocean garbage 33 
patches are one of the major environmental concerns of this century (Cozar et al., 2014; Eriksen 34 
et al., 2013; Law et al., 2010). Even if some very minor studies still question the actual impact of 35 
plastic waste (Duis and Coors, 2016), most are warnings of irrevocable environmental damages 36 
(Clukey et al., 2018; Darmon et al., 2017; Galloway and Lewis, 2016). Furthermore, by entering 37 
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the food chain, plastic materials finally attain human beings, thereby causing health concerns 38 
(Barboza et al., 2018; Bouwmeester et al., 2015; Chae and An, 2017). 39 

Among the vast families of resistant plastic materials, we can find the polyurethanes (PUs). Low-40 
density and easily dispersible foams (soft to rigid) represent around 70% of the PU production. 41 
The presence of PUs as pollutants in marine ecosystems has been largely attested (Frère et al., 42 
2016; Reddy et al., 2006). In 2016, Turner et al. revealed that over the 70 foamed plastics 43 
fragments collected on a Britain beach, 39 were identified as PU (Figure 1), thus pointing out the 44 
significant role of PU in plastic pollution (Turner and Lau, 2016).  45 

 46 

Figure 1 –Foamed plastic debris collected on a Britain beach, pieces a, b d, e and f are PU (Turner and Lau, 2016) 47 

 48 

First synthesized in the 1930s by the German chemist Otto Bayer, PU products were 49 
commercialized about 10 years later (Bayer, 1948). The use of PU spread during World War II, 50 
where it replaced natural rubber for elastomer production. Rapidly, other applications emerged 51 
in aviation and textile, which were flourishing markets at the time. Diversification of PU properties 52 
allowed to reach other numerous markets. In 2016, 18 million tons of PU were produced 53 
worldwide, representing 5.3% of global plastic production (Furtwengler et al., 2018a; 54 
PlasticsEurope, 2017). PU rank at the 6th most produced synthetic polymers. About 22 million tons 55 
are expected to be produced in 2020 (Akindoyo et al., 2016). 56 

In 2014, the PU foam market was valued at $46.8 billion and is expected to reach $72.2 billion by 57 
2020 (Pillai et al., 2016). Flexible and rigid foams represent respectively 32% and 36% of the global 58 
PU production. Flexible foams, renowned for the comfort they provide, are used for the 59 
cushioning of furniture, bedding or automotive seats. In the construction area, rigid foams are 60 
preferred for thermal insulation and their use increases in agreement with a growing demand for 61 
energetically efficient buildings. PU are also widely used as coatings, adhesives, sealants and 62 
elastomers (CASE). PU coatings provide a protection layer against weather, abrasion and 63 
corrosion. Elastomers are both elastic and flexible and can adopt any desired shape, such as 64 
wheels for rollerblades. Biocompatibility of certain types of polyurethanes make them polymers 65 
of choice for medical application, for instance, cardiovascular devices or orthopedic prosthesis 66 
(Gunatillake et al., 2011; Zhou et al., 2012). The common thread between most of these PU 67 
materials is that they are mostly intended for long-term applications. They are mainly designed 68 
to resist environmental factors such as microbial degradation, abrasion, hydrolytic (moisture) or 69 
UV degradation.  70 
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Biodegradation is generally defined as the decomposition/degradation of materials by the means 71 
of biological entities such as microorganisms or enzymes. This process is used for numerous 72 
industrial applications such as waste water treatment (Watanabe, 2001) or depollution of 73 
contaminated site by, for instance, polycyclic aromatic hydrocarbons (Shuttleworth and Cerniglia, 74 
1995). Polymer degradation by microorganisms is performed through several steps (Figure 2). 75 
First, materials are fragmented into pieces thanks to abiotic and biotic factors such as UV, 76 
hydrolysis, abrasion or pressure exerted by filamentous microorganisms. Growth of filaments into 77 
polymer pores provokes cracks. Then, macromolecules are cleaved by enzymatic hydrolysis 78 
and/or oxidation, leading to the release of low molar mass molecules such as oligomers and 79 
monomers. These molecules are finally assimilated and mineralized by microorganisms to 80 
promote microbial growth (Lucas et al., 2008; Shah et al., 2008b). A countless number of 81 
mineralization paths exists in nature. The step of enzymatic depolymerization or enzymatic 82 
degradation can be reproduced or mimicked in vitro, independently of the microbial degradation. 83 
Interestingly, the released molecules resulting from enzymatic depolymerization of polymers 84 
could be turned into building blocks and high value products for the chemistry market (Wierckx 85 
et al., 2015).  86 

 87 

Figure 2 – Polymer biodegradation process 88 

 89 

PU are not biodegradable polymers (Wierckx et al., 2018). Even if some PU are partly sensitive to 90 
biological degradation, they do not answer, for instance, the requirements of the European norm 91 
EN 13432 defining biodegradable and compostable materials (Avérous and Pollet, 2012; Bastioli, 92 
2005). This norm considers a material as biodegradable if the degradation reaches 90% after 6 93 
months, under composting conditions. The non-toxicity of the degradation products is also a 94 
requirement of this norm to declare a material as biodegradable or compostable. Biodegradation 95 
of PU has been studied since the 1960s. The first scientific publications on this topic aimed to 96 
evaluate the microbial degradation susceptibility of PU formulations to promote the development 97 
of highly resistant materials (Cooney, 1969; Darby and Kaplan, 1968; Edmonds and Cooney, 1968; 98 
Kanavel et al., 1966; Kaplan et al., 1968). Today, this approach is reversed to address the PU 99 
materials end-of-life issues. Due to increased environmental concerns, sensitivity to microbial 100 
degradation has become a desired feature to reduce the environmental footprint of PU materials, 101 
mainly at their ends of life (Prieto, 2016). Meanwhile, the development of bioresorbable PU 102 
materials for the biomedical industry raised interest (Pavlova and Draganova, 1993; Špírková et 103 
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al., 2017). Currently, PU biodegradation assessments are focused on two main purposes: (i) 104 
biodegradation susceptibility of new eco-materials or materials intended for biomedical 105 
purposes, thus focusing on the polymer synthesis and (ii) bioremediation or biological recycling 106 
of PU, thus focusing on the biological entities capable of degradation.  107 

Techniques used to evaluate the biodegradation of PU are diverse, depending on the type of PU 108 
and the degrading entity. Furthermore, conflicting results and conclusions are found in the 109 
scientific literature, often due to the difficulty in interpreting the analytical results. Nevertheless, 110 
significant advances have recently been made on the evaluation of PU biodegradation and 111 
consequently on the understanding of degradation mechanisms.  112 

Review articles recently published on PU biodegradation have mainly focused on the degradation 113 
by microorganisms (Mahajan and Gupta, 2015), enzymatic degradation (Loredo-Treviño et al., 114 
2011) or PU biodegradation for recycling (Cregut et al., 2013). Here, we reviewed 115 
comprehensively PU biodegradation including used analytics. For a full understanding of the 116 
different approaches, a first part is dedicated to the diversity of PU in term of compositions, 117 
architectures and corresponding waste management. Secondly, biological entities 118 
(microorganisms, enzymes) able to degrade PU and their degradation mechanisms, if known, are 119 
reviewed. Finally, analytical techniques used to assess PU biodegradation are gathered. Their 120 
applications, advantages and drawbacks are fully discussed.  121 

 122 

3. Polyurethane structure and biological degradation susceptibility 123 

relationships 124 

3.1. Diversity of the compositions and architectures of PU 125 

Chemical composition and macromolecular architectures are of prime importance for the 126 
biodegradation of polymers (Kim and Kim, 1998). The nature of chemical bonds, crystallinity and 127 
molar mass are key parameters influencing the polymer susceptibility to biological attacks (Zeng 128 
et al., 2016). PUs are characterized by the urethane or carbamate linkage, generally obtained by 129 
addition of an isocyanate to a hydroxyl group (Figure 3). For instance, in thermoplastic PU (TPU) 130 
synthesis, an excess of polyisocyanate reacts with a polyol, principally long polyester- or 131 
polyether-based polyols, with a controlled functionality close to 2. A linear prepolymer with 132 
isocyanate end groups is formed, followed by addition of a chain extender, usually a short diol, 133 
obtain high molar mass polymers. Molar mass is a parameter influencing the biological 134 
degradation susceptibility of polymers. It has been shown that for polymers with the same 135 
chemical structures and different molar mass, the higher the molar mass, the lower the biological 136 
degradation susceptibility (Philip et al., 2007; Zheng et al., 2005). 137 

 138 
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 139 

Figure 3 - Polyaddition of an isocyanate and a hydroxyl group to form a urethane bond 140 

 141 

The most frequently used isocyanates are bifunctional aromatic molecules such as 4,4’-methylene 142 
diphenyl isocyanate (4,4’-MDI) or toluene diisocyanate (2,4-TDI) that give, respectively, a rigid 143 
and a more flexible polymer backbone (Table 1) (Delebecq et al., 2013). Due to its chemical 144 
structure presenting two aromatic rings, MDI is the most used isocyanate for rigid foams, one of 145 
the most prevalent PU-based product (Sabbioni et al., 2012). Aliphatic isocyanates are also of 146 
interest such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), lysine 147 
diisocyanate (LDI) or 4,4'-methylene dicyclohexyl diisocyanate (H12MDI) (Table 1). They are 148 
preferred for medical devices because of the mutagenicity of diamines derived from aromatic 149 
diisocyanate hydrolysis (Darby et al., 1978). For the preparation of waterborne polyurethane 150 
dispersion, aliphatic isocyanates are chosen due to the high reactivity of aromatic isocyanates 151 
with water, making aromatic isocyanates hard to handle in these particular formulations (Noble, 152 
1997). Finally, in the frame of sustainable PUs development, non-isocyanate polyurethane (NIPU) 153 
is of growing interest. Indeed, isocyanates derived from phosgene are extremely toxic. NIPU can 154 
be obtained by reaction between amines and cyclic carbonates to form polyhydroxy-urethanes, 155 
rendering the process of PU synthesis more environment-friendly (Carré et al., 2014; Carré et al., 156 
2015).The high reactivity of isocyanates makes them unstable in water. Consequently, even if free 157 
isocyanates remain entrapped in the polymer after its synthesis, they will immediately react with 158 
water molecules from the aqueous media. Therefore, no isocyanates can be found either before 159 
or after degradation. 160 

  161 



6 
 

Table 1 – Structure of the some common biobased and fossil-based isocyanates  162 

IUPAC name Abbrev. Type Structure 
Potentially 
biobased 

Reference 

1-isocyanato-4-[(4-
isocyanatophenyl)methyl] 

benzene 
4, 4’-MDI Aromatic 

 No 
(Shah et 
al., 2016)  

2,4-diisocyanato-1-methyl-
benzene 

2, 4-TDI Aromatic 

 

No 

(Spontón 
et al., 
2013) 

1-Isocyanato-4-[(4-
isocyanatocyclohexyl) 

methyl]cyclohexan 
H12MDI 

Aliphatic 
cyclic 

 No 
(Brzeska et 
al., 2015) 

Ethyl Ester L-Lysine 
Diisocyanate 

LDI 
Aliphatic 

linear 

 

Yes 
(Zhou et 
al., 2012) 

5-isocyanato-1-
(isocyanatomethyl)-1,3,3-

trimethyl-cyclohexane 
IPDI 

Aliphatic 
cyclic 

 

No 
(Pereira et 
al., 2012) 

1,6-diisocyanatohexane HDI 
Aliphatic 

linear  

No 
(Tang et 
al., 2001a) 

Dimer fatty acid-based 
diisocyanate 

DDI 
Aliphatic 

cyclic 

 
Yes 

(Charlon 
et al., 
2014) 

 163 

Common polyols are polyether, polyester or, more rarely, polycarbonates. Higher flexibility of 164 
polyether polyols makes them more convenient for polyurethane production (Krasowska et al., 165 
2012). A non-exhaustive list of polyols with their structures is available in   166 
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Table 2. Polyols ordinarily used are fossil-based molecules, but an increasing number of studies 167 
deal with bio-based polyols, on agreement with green chemistry principles. Polyols from vegetal 168 
sources such as castor oil (Hablot et al., 2008; Trovati et al., 2010), starch (Duarah et al., 2016) or 169 
aromatic biopolymers such as tannins or lignin (Ignat et al., 2011; Laurichesse et al., 2014) are 170 
increasingly incorporated in PU formulations. Based on short diols such as 1,4-butanediol, 171 
ethylene glycol or 1,6-hexanediol, (Akindoyo et al., 2016) chain extenders are used to obtain high-172 
molar mass polymers. Low molar mass diamines can also be used, such as ethylene diamine (Tang 173 
et al., 1997), thus generating urea instead of urethane bonds.  174 

 175 

  176 
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Table 2 – Some biobased and fossil-based polyols used for PU synthesis  177 

Polymer name Abbrev. Structure 
Potentially 
biobased Reference 

Polyester 

 

 

 

Poly(caprolactone) 

PCL 

 

No 

(Yeganeh and 
Hojati-Talemi, 
2007) 

Poly(lactic acid) PLA 
 

Yes 
(Izadi-Vasafi 
et al., 2017) 

Poly(hydroxyalkanoates) PHA  
 

Yes 
(Debuissy et 
al., 2017) 

Poly(butylene succinate) PBS  Yes 
(Li et al., 
2015) 

Poly(butylene adipate) PBA  Yes 
(Shah et al., 
2013b) 

Polyether 
 

 

 

Poly(ethylene glycol)  PEG  No 
(Zhang et al., 
2013) 

Poly(propylene glycol) PPG  No 

(Chattopadhy
ay et al., 
2008) 

Poly(tetramethylene glycol) PTMEG 
 

No 
(Wiggins et 
al., 2003) 

Polycarbonate 

 

 

 

Poly(propylene carbonate) PPC 

 

No 
(Chen et al., 
2016) 

Poly(1,6-hexyl 1,2-ethyl carbonate) PHEC  No 
(Christenson 
et al., 2004) 

 178 
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PUs can be thermoplastics or thermosets. Thermoplastics are linear or slightly cross-179 
linked/branched structures. Isocyanates, polyols and chain extenders used for TPU synthesis have 180 
only two functional groups (diols or diisocyanates). Thermoplastics can be soluble in organic 181 
solvent and can be melted, or present a liquid-like behavior with increased temperature. TPUs 182 
are commonly described by two types of segments, hard and soft segments. The segments are 183 
generally organized with a specific micro-segregation which can lead to micro-crystalline phases. 184 
The hard segment (HS) is a block segment with low mobility mainly formed by the isocyanate and 185 
the short-chain extender. By contrast, the soft segment (SS) is mainly based on the long polyol 186 
part (Figure 4a). TPUs are often semi-crystalline structures (Figure 4b). HS content and chemistry 187 
influenced the biodegradation susceptibility of a polycarbonate PU (Tang et al., 2001a, b). 188 
Interactions between enzymes and mobile SS are higher than with the HS. Consequently, the 189 
higher the HS content, the lower the biological degradation susceptibility.  190 

 191 

Figure 4 – (a) Schematic representation of a semi-crystalline polymer and (b) linear polyurethane structure 192 

 193 

Thermosets are highly cross-linked polymers with 3D structures brought by molecules with a 194 
functionality higher than 2. Due to their architecture, thermosets are not soluble, do not melt and 195 
are denatured at high temperature, and thus cannot be reshaped by heating, unlike 196 
thermoplastics. PU foams are thermoset materials. The alveolar structures of these complex and 197 
multicomponent systems are obtained thanks to physical or chemical blowing with air, carbon 198 
dioxide, hydrocarbons such as isopentane or other gaseous substances. Foams are structured by 199 
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struts and walls defining cell cavities. Cells can be closed (closed-cell foams, mainly rigid e.g. 200 
thermal insulation) or open (open-cell foams, mainly soft e.g. damping) (Gautam et al., 2007a). 201 
Side reactions during foaming induce the formation of various reversible and irreversible bonds 202 
such as urea or isocyanurate moieties (Furtwengler and Avérous, 2018). Isocyanurate linkage is 203 
obtained by isocyanate trimerization. Polyisocyanurate foams are increasingly produced because 204 
of their better properties such as fire resistance and thermal stability (Arbenz et al., 2016; 205 
Furtwengler et al., 2018b). It is then important to consider the bond nature when dealing with 206 
foam degradation. Because of the variety of bonds, it is difficult to anticipate and know if the 207 
urethane bond was degraded. Also, commercial foams are supplemented with several additives 208 
such as fire retardants, antioxidant, processing aids, and anti-microbial compounds (mainly 209 
fungicides) that can prevent biodegradation. 210 

Due to the nanometric size of the particles and their hydrophilicity, waterborne PU dispersions 211 
(WPUDs) are particularly suitable for biological assays (Figure 5a). To provide hydrophilicity, 212 
WPUDs are synthesized using an emulsifier, often the 2,2-dimethylol propionic acid. This 213 
molecule contains two hydroxyl groups which react with the isocyanates to form urethane linkage 214 
(Figure 5b). The hydroxyl group of the carboxylic acid does not react with isocyanate because of 215 
steric hindrance and the lower reactivity (Coutinho et al., 2001). Hydrophilic carboxylic acid then 216 
forms a stabilizing top-layer around the hydrophobic polymer (Zhang et al., 2011). Systems 217 
containing acrylic polyols are readily dispersed in water (Ionescu, 2005). Acrylic polyols are thus 218 
widely used in WPUD formulations. These polyols provide strength and resistance to coatings 219 
(Akindoyo et al., 2016). Acrylic polyols are generally based on hydroxyethyl methacrylate or 220 
hydroxyethyl acrylate (Figure 5c). The hydroxyl groups of the lateral chains then react with 221 
isocyanate for urethane formation. 222 

 223 

Figure 5 – (a) Schematic structure of a polymer particle, (b) structure of the 2,2-dimethylol propionic acid and (c) 224 
structure of the hydroxyethyl methacrylate 225 

 226 

3.2. PU waste disposal 227 

The diversity of PUs macromolecular structures and chemistry is a clear obstacle for efficient 228 
waste management. To appreciate the importance of PU biodegradation, it is necessary to 229 
analyze the current PU waste disposal. PU waste is made of post-consumer products as well as 230 
PU production waste, mostly from foam. Indeed, scrap from slabstock foam can reach up to 10% 231 
of the production (Simon et al., 2018). In France, scrap PUs were estimated at 13 kTons in 2011 232 
while end-of-life PU volume is about 198 kTons (Boujard et al., 2014). This source of PU waste 233 
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mainly arises from construction, furniture, bedding, automotive, shoes and home appliances. 234 
Efficient collection and product dismantling are required to recycle these materials, thus limiting 235 
their valorization. 236 

PU wastes are mainly treated by three different methods: landfilling, incineration (which can also 237 
be considered as quaternary recycling (Ignatyev et al., 2014)) and conventional recycling. Landfill 238 
discharge is often the main option but is gradually decreasing, especially in Europe, since it 239 
requires large land areas and no value is brought from the waste. European Union aims at 240 
reducing municipal waste landfilling to a maximum of 10% by 2030 (Castillo-Gimenez et al., 2019; 241 
Makarichi et al., 2018). Landfilling and the absence of waste management lead generally to 242 
pollution (Jambeck et al., 2015).  243 

Incineration presents the advantage of being a mature technique, practiced for several decades. 244 
Energy is recovered by burning waste and can totally or partly offset the energy spent in the 245 
heating process. Even if some CO2 emission exists and may cause greenhouse effect and 246 
contribute to global warming, new generations of plants are equipped with dry and wet air 247 
pollution control system to make this process as clean as possible (Brunner and Rechberger, 2015; 248 
Makarichi et al., 2018). Because of the low value recovered it is hardly considered as recycling. It 249 
is a proper solution to reduce landfill volumes, yet incineration is not a satisfying strategy since 250 
the richness from the chemical architecture is fully lost.  251 

Depending on the nature (thermoplastics vs. thermosets), recycling processes differ. TPUs can be 252 
heated and remolded therefore making the physical recycling process easier. However, it is 253 
estimated that only 1% of PU are recycled thanks to physical methods (Behrendt and Naber, 254 
2009). The recycling of PU foams is more challenging since foams cannot be remolded. The main 255 
path for foam recycling is regrinding. In 2002, more than 380 kTons were used for carpet underlay 256 
(Zia et al., 2007).  257 

Chemical recycling can address both thermoplastic and thermoset architectures (Simón et al., 258 
2016; Wang et al., 2011). Glycolysis appears as the most promising technique (Simon et al., 2018). 259 
Glycolysis is a transesterification reaction. The ester group of the urethane bond is interchanged 260 
by the hydroxyl group of a diol (glycol) added in large excess (Simón et al., 2013). Simón et al., 261 
developed a glycolysis process allowing polyether polyol recovery from high resilience PU foams 262 
(Simón et al., 2016). These polyols can then serve as building blocks for the synthesis of second-263 
generation polymers. The major limits of chemical recycling are the processing temperature that 264 
leads to high energy consumption (in the example mentioned above, the glycolysis temperature 265 
is 190°C) and the side chemical reactions occurring on the urethane bond during the chemical 266 
reactions (Gadhave et al., 2019). 267 

Biological recycling is a growing route with high potential that might answer the need for PU 268 
recycling in the coming years. This is a soft process that can be implemented at low temperatures 269 
(less than 70°C) (Mueller, 2006; Valerio, 2010). This process is catalyzed by biological entities, 270 
namely enzymes. The resulting degradation products may then be valorized. Efficient enzymatic 271 
depolymerization of poly(ethylene terephthalate) (PET) has been demonstrated at 60°C leading 272 
to the release of valuable building blocks such as terephthalic acid and mono(2-hydroxyethyl)-273 
terephthalate (Gamerith et al., 2017). This result, based on PET, can be considered as the first 274 
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benchmark for PU.  For instance, the company Carbios (France) is starting the biological recycling 275 
of PET for the synthesis of second-generation polymers.  276 

 277 

4. Actors of the PU biodegradation: Biological entities and associated 278 

mechanisms 279 

4.1. Microorganisms 280 

Biodegradation involving microorganisms can be performed by a microbial community or a single 281 
strain (Figure 6). Microorganisms can form biofilms on the polymer surface by adhesion (Sivan, 282 
2011). Once colonized, the material constitutes a source of carbon and nitrogen thus promoting 283 
microbial growth.  284 

 285 

Figure 6 – Different paths for microbial PU degradation 286 

 287 

4.1.1. PU degradation by microbial communities 288 

A microbial community is a group of microorganisms sharing a common living place. These 289 
microorganisms interact in different ways such as mutualism, predation or competition (Faust 290 
and Raes, 2012). Mutualism, also called symbiosis, may occur during the microbial degradation of 291 
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xenobiotic, such as synthetic polymers, leading to an improved degradation (Tsoi et al., 2019; 292 
Vaclavkova et al., 2007). Comparison of degradation skills of a strain of fungi (Aspergillus niger) 293 
and a strain of bacteria (Pseudomonas aeruginosa) revealed a slightly higher TPU degradation 294 
with the bacteria but, above all, an impressive synergistic effect was observed when the polymer 295 
was incubated with both strains (Fernandes et al., 2016). Weight losses were approximately 296 
doubled for polyester TPU incubated with both microorganisms compared to single strain 297 
incubation. PU substrates degraded by communities range from simple structures such as 298 
thermoplastic polyester PU (Genovese et al., 2016) to recalcitrant material such as polyether PU 299 
foam (Ge et al., 2000). As PU are recalcitrant material, degradation experiments by microbial 300 
communities are often performed on a long time scale going from 28 days (Bentham et al., 1987) 301 
to two years of incubation (Seal and Pantke, 1988). The predominant systems for studying PU 302 
degradation have been composting and soil burial (Table 3 – PU degradation by microbial 303 
communities and associated PU substrates. These ecosystems are rich in degrading 304 
microorganisms. Other strategies to obtain communities that are more acclimated to PU are also 305 
developed. For instance, Cregut et al., selected microbial communities from the soil of a PU foam 306 
industrial plant (Cregut et al., 2014). 307 

 308 

Table 3 – PU degradation by microbial communities and associated PU substrates 309 

Microbial communities PU substrates Time of incubation Reference 

Composting Polyester PU foam 50 days (Gómez et al., 2014) 

 Thermoplastic polyester PU 90 days (Genovese et al., 
2016; Kucharczyk et 
al., 2016)  

  12 weeks (Zafar et al., 2013) 

  24 months (Krasowska et al., 
2012) 

 Thermoset polyester PU 90 days (Das et al., 2017) 

Microbial communities from Garbage 
Landfill Leakage Water 

Polyester PU foam  3 months (Filip, 1978) 

 
Polyether PU foam  3 months (Filip, 1978) 

Microbial communities from sewage 
water of a latex rubber factory 

Polyester PU foam 60 days (Rattanapan et al., 
2016) 

Microbial communities from soil of a 
PU foam industrial plant 

Polyether PU foam 28 days (Cregut et al., 2014) 

Mixed culture of Aspergillus niger and 
Pseudomonas aeruginosa 

Thermoplastic polyester PU 30 days (Fernandes et al., 
2016) 

Soil burial Polyester PU 383 days (Aranguren et al., 
2012) 

  24 months (Seal and Pantke, 
1988) 

 Polyester PU foam 28 days (Bentham et al., 1987) 

  320 days (Gómez et al., 2014) 

 Polyether PU foam 6 months (Ge et al., 2000) 
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 Polyether PU foam 12 months (Zhang et al., 2013) 

 PU coating 12 months (Lu et al., 2016) 

 Thermoplastic polyester PU 44 days (Barratt et al., 2003) 

  12 weeks (Zafar et al., 2013) 

  16 weeks (Huang et al., 2016) 

  140 days (Umare and 
Chandure, 2008) 

  5 months (Cosgrove et al., 2007) 

  6 months (Fernandes et al., 
2016) 

 Thermoplastic polyester PU 12 months (Oprea et al., 2016; 
Tajau et al., 2016) 

 Thermoplastic polyether PU 12 months (Oprea et al., 2016) 

Soil microbial communities, 
bioaugmentation with PU-degrading 
fungi 

Thermoplastic polyester PU 4 weeks (Cosgrove et al., 2010) 

Vermiculite inoculated with 
degrading microorganisms, notably 
Pseudomonas aeruginosa and 
Achromobacter marplatensis 

Polyester PU 383 days (Aranguren et al., 
2012) 

 310 

4.1.2. Single-strain degradation  311 

Single species of bacteria and fungi can be isolated and identified using molecular tools. These 312 
isolated strains are then used alone for PU degradation assays (Khan et al., 2017; Nair and Kumar, 313 
2007). Another approach is to establish a collection of microorganisms and to screen it for the 314 
identification of PU-degrading strain. For instance, Russell et al. collected endophytic fungi from 315 
wood of the Ecuadorian Amazonian rainforest (Russell et al., 2011). Equatorial are hot and humid 316 
environments, and above-all, well-known for the tremendous richness of their biodiversity. PU 317 
debris were sampled in e.g., dump-site for isolation of already adapted microorganisms (Álvarez-318 
Barragán et al., 2016; Oceguera-Cervantes et al., 2007).  319 

Bacteria 320 

Bacteria are mainly studied for the degradation of TPU and coatings (Table 4). Only a few 321 
publications described the bacterial degradation of polyester-based PU foams, notably by 322 
Pseudomonas aeruginosa (Cooney, 1969; Gautam et al., 2007c; Hedrick and Crum, 1968; Kay et 323 
al., 1991) or by a strain of Corynebacterium (Kay et al., 1991). Pseudomonas is the most studied 324 
genus. The strain of P. aeruginosa ATCC 13388 is the only recommended strain by the ASTM for 325 
testing material resistance to bacterial degradation (ASTM code G22-76: Standard Practice for 326 
Determining Resistance of Plastics to Bacteria) (Gu and Gu, 2005; Kay et al., 1991). Other 327 
Pseudomonas species such as P. chlorographis or P. putida were described as PU-degrading 328 
entities (Gautam et al., 2007c; Peng et al., 2014). Furthermore, Pseudomonas strains are known 329 
to be of high interest in white biotechnology (Wierckx et al., 2015).  330 

Table 4 – PU-degrading bacteria and associated PU substrates 331 

Species and/or strains PU substrates References 
Acinetobacter gerneri P7 Polyester PU coating (Impranil) (Howard et al., 2012) 
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Alicycliphilus sp. BQ1 Polyester PU coating (Oceguera-Cervantes et al., 2007) 

Alicycliphilus sp. BQ8 Polyester PU coating (Oceguera-Cervantes et al., 2007) 
 

Polyester PU foam (Pérez-Lara et al., 2016) 

Arthrobacter sp.  Thermoplastic polyester PU (Shah et al., 2008a) 

Arthrobacter calcoaceticus ATCC 31012 Polyester PU coating (El-Sayed et al., 1996) 

Arthrobacter calcoaceticus NAV-2 Polyester PU coating (El-Sayed et al., 1996) 

Arthrobacter globiformis Polyester PU coating (El-Sayed et al., 1996) 

Bacillus sp. Polyester PU coating (Impranil) (Ii et al., 1998) 

 Thermoplastic polyester PU (Shah et al., 2008a) 

Bacillus amyloliquefaciens Thermoplastic poly(ether urea) PU (Rafiemanzelat et al., 2015) 

Bacillus pumilus NMSN-1d Polyester PU coating (Impranil) (Nair and Kumar, 2007) 

Bacillus subtilis MZA-75 Thermoplastic polyester PU (Shah et al., 2016) 

  (Shah et al., 2013b) 

Chryseobacterium meningosepticum Polyester PU foam (Cangemi et al., 2008) 

Comamonas acidovorans TB-35 Thermoplastic polyester PU (Akutsu et al., 1998; Nakajima-Kambe et al., 
1997; Nakajima‐Kambe et al., 1995)  

Thermoplastic polyether PU (Nakajima‐Kambe et al., 1995) 

Corynebacterium sp. Thermoplastic polyester PU (Kay et al., 1993) 

  (Shah et al., 2008a) 

 Polyester PU foam (Kay et al., 1991) 

Escherichia coli Thermoplastic poly(ether urea) PU (Rafiemanzelat et al., 2013) 

Micrococcus sp. Thermoplastic polyester PU (Shah et al., 2008a) 
 

Thermoplastic poly(ether urea) PU (Rafiemanzelat et al., 2013) 

Pseudomonas sp.  Polyester PU foam (Spontón et al., 2013) 

 Thermoplastic polyester PU (Shah et al., 2008a) 

Pseudomonas aeruginosa Thermoset poly(amido amine) PU (Gogoi and Karak, 2015) 

 Thermoset polyester PU (Duarah et al., 2016) 

 Polyester PU coating (Impranil) (Mukherjee et al., 2011) 

 Thermoset poly(ester amide) PU (Gogoi and Karak, 2017) 

 Polyester PU foam (Cooney, 1969; Edmonds and Cooney, 1968) 

Pseudomonas aeruginosa ATCC 13388 Polyester PU foam (Kay et al., 1991) 

Pseudomonas aeruginosa ATCC 9027  Thermoplastic polyester PU (Fernandes et al., 2016) 

Pseudomonas aeruginosa MTCC 7814 Thermoset polyester PU (Bayan and Karak, 2017; Gogoi and Karak, 
2014) 

Pseudomonas aeruginosa MZA-85 Thermoplastic polyester PU (Shah et al., 2016; Shah et al., 2013a) 

Pseudomonas aeruginosa NAV-6 Polyester PU coating (El-Sayed et al., 1996) 

Pseudomonas cepacia Polyester PU coating (El-Sayed et al., 1996) 

Pseudomonas chlororaphis ATCC 55729 Polyester PU foam (Gautam et al., 2007c) 

Pseudomonas fluorescens Polyether PU coating (Crookes-Goodson et al., 2013) 

 Polyester PU coating (Impranil) (Howard and Blake, 1998; Vega et al., 1999) 

Pseudomonas protegens Pf-5 Polyester PU coating (Impranil) (Biffinger et al., 2014) 

 Thermoplastic polyether PU  (Barlow et al., 2016) 

Pseudomonas putida Polyester PU coating (Impranil) (Peng et al., 2014) 

Pseudomonas putida ATCC 17484 Polyester PU coating (El-Sayed et al., 1996) 
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Rhodococcus equi strain TB-60 Model urethane molecule (toluene-2,4-
dicarbamic acid dibutyl ester) 

(Akutsu-Shigeno et al., 2006) 

Staphylococcus aureus Poly(ether urea) PU (Rafiemanzelat et al., 2013) 
 

Undefined PU (Curia et al., 2014) 

Staphylococcus epidermidis strain KH 11 Thermoplastic polyether PU  (Jansen et al., 1991) 

 332 

Fungi  333 

It is possible to appraise only the fungal activity of a consortium or isolate only fungal strain by 334 
adding antibacterial molecules which prevent bacterial growth. For instance, 50 µg/mL of 335 
chloramphenicol can be added to the medium to prevent bacterial growth and therefore perform 336 
analysis only on fungal strains (Zafar et al., 2013). Microorganisms from the fungi kingdom 337 
described as PU degrading entities are almost only filamentous fungi. Strains belonging to the 338 
genus of Alternaria (Magnin et al., 2018; Matsumiya et al., 2010; Oprea et al., 2018), Aspergillus 339 
(Khan et al., 2017; Magnin et al., 2018; Mathur and Prasad, 2012; Osman et al., 2018) and 340 
Cladosporium (Álvarez-Barragán et al., 2016) are frequently isolated for PU degradation (Table 5). 341 
Only one study on yeast was found, describing the growth of Cryptococcus sp. MTCC 5455 on fish 342 
waste to produce a lipase with activity on PU (Thirunavukarasu et al., 2015). Five strains are 343 
recommended by the American Society for Testing and Materials (ASTM) to evaluate the fungal 344 
resistance of a material: Aspergillus niger ATCC 9642, Aureobasidium pullulans ATCC15233, 345 
Chaetomium globosum ATCC6205, Gliocladium virens ATCC9645, Penicillum pinophilum 346 
ATCC11797 (ASTM code: G21 - 90 Standard Practice for Determining Resistance of Synthetic 347 
Polymetric Materials to Fungi) (Gu and Gu, 2005). Oprea et al. who developed new bio-based 348 
materials and tested their fungal degradation susceptibility with the strain of Chaetomium 349 
globosum (Oprea, 2010; Oprea and Doroftei, 2011; Oprea et al., 2016). Only a few studies are 350 
based on this norm and mentioned these strains. However, using such reference fungal strains 351 
would allow better reproducibility and comparison of results in-between studies.  352 

A review on the biodegradation of fossil-based polymers interestingly shows the significant 353 
importance of the abiotic effect of fungal biodegradation (Lucas et al., 2008). The formation of 354 
filaments exerts physical pressure leading to polymer breaking. Filament apices penetrate in the 355 
material increasing the size of pores and provoking cracks. For instance, rifts under the form of a 356 
fungal filament network were observed by microscopy on the surface of a TPU incubated two 357 
months with a strain of Penicillium brasilianum (Magnin et al., 2018). Fungal degradation has been 358 
demonstrated on both polyester- and polyether-based PU, on TPU, foams and coatings. However, 359 
mechanisms of degradation have not been fully elucidated. The importance of each biotic and 360 
abiotic steps in fungal degradation still needs to be clarified. 361 

  362 
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Table 5 – PU-degrading fungi and associated PU substrates 363 

Species and/or strain PU substrates Reference 

Alternaria sp.  Thermoplastic polyester PU (Magnin et al., 2018) 

Alternaria Solani Number Ss.1-3 Thermoplastic polyester PU (Ibrahim N. Ibrahim, 2009) 

Alternaria sp. strain PURDK2 Polyether PU foam (Matsumiya et al., 2010) 

Alternaria tenuissima  Thermoplastic polyether PU (Oprea et al., 2018) 

Aspergillus sp. Polyester PU foam (Cangemi et al., 2006; Cangemi et 
al., 2008) 

Aspergillus flavus Thermoplastic polyester PU (Mathur and Prasad, 2012) 

Aspergillus fumigatus Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

 Thermoplastic polyester PU (Osman et al., 2018) 

Aspergillus niger  Polyether PU foam (Filip, 1979) 

Aspergillus niger ATCC 9642 Thermoplastic polyester PU (Kanavel et al., 1966) 

Aspergillus section flavi Thermoplastic polyester PU (Magnin et al., 2018) 

Aspergillus tubingensis Thermoplastic polyester PU (Khan et al., 2017) 

Aureobasidium pullulans Polyester PU coating (Impranil) (Crabbe et al., 1994) 

Chaetomium globosum Thermoset polyester PU (Oprea and Doroftei, 2011) 
 

Thermoplastic polyester PU (Oprea et al., 2016) 

Cladosporium sp. Polyester PU coating (Impranil) (Crabbe et al., 1994) 

 Polyether PU foam (Cooney, 1969; Edmonds and 
Cooney, 1968) 

Cladosporium  tenuissimum Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

Cladosporium asperulatum Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

Cladosporium herbarum Polyether PU foam (Filip, 1979) 

Cladosporium montecillanum Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

Cladosporium pseudocladosporioides Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

Cryptococcus laurentii Polyester PU coating (Impranil) (Zicht, 2017) 

Curvularia senegalensis Polyester PU coating (Impranil) (Crabbe et al., 1994) 

Exophiala jeanselmei Model urethane molecule (N-
tolylcarbamate) 

(Owen et al., 1996) 

Fusarium solani Polyester PU coating (Impranil) (Crabbe et al., 1994)  

Gliocladium roseum Thermoplastic polyester PU (Shuttleworth and Seal, 1986) 

Penicillium chrysogenum Polyester PU coating (Impranil) (Álvarez-Barragán et al., 2016) 
 

Polyether PU foam (Álvarez-Barragán et al., 2016) 

Penicillium section lanata-divaricata Thermoplastic polyester PU (Magnin et al., 2018) 

Pestalotiopsis microspora Polyester PU coating (Impranil) (Russell et al., 2011) 

 364 
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4.2. Enzymes 365 

Enzymes are biological catalysts (biocatalysts). Enzymes identified as PU degrading entities 366 
originate from microorganisms but also mammalian cells such as lipase porcine pancreas (Ng et 367 
al., 2017) or from plants such as papain from Carica papaya (Ferris et al., 2010). Enzymes used for 368 
PU degradation assays are either commercial enzymes or enzymes over-expressed in 369 
heterologous microorganisms. In this latter case, they correspond to enzymes identified in PU-370 
degrading microorganisms for which the encoding genes were cloned into model organism. 371 
Enzymes are then over-expressed and even purified in some cases. Enzymes are mainly described 372 
for the depolymerization of TPU or coatings (Table 6 – PU-degrading enzymes and associated PU 373 
substrates). As far as we know, only one publication has addressed the enzymatic degradation of 374 
foams (Ng et al., 2017) all other studies involved degradation by microorganisms. A set of 375 
different poly(ester ether) PU foam containing PCL, PEG and polyester from palm oil was studied 376 
by enzymatic degradation. A maximal weight loss of 70% was measured after 28 days of 377 
incubation with lipase from porcine pancreas for a polymer with 7.7% of PCL, 34.8% of PEG and 378 
7.5% of polyester from palm oil. 379 

Table 6 – PU-degrading enzymes and associated PU substrates 380 

EC number Enzyme name in the 
publication 

Type of PU Reference 

EC 1.10.3.2 Laccase Thermoplastic polyester PU (Ignat et al., 2011) 

EC 1.11.1.7 Fungal peroxidase  Thermoplastic polyester PU (Ignat et al., 2011) 

EC 3 Tcur0390 (Thermomonospora 
curvata DSM43183 hydrolase) 

Thermoplastic polyester PU (Schmidt, J. et al., 2017) 

 
Tcur1278  (Thermomonospora 
curvata DSM43183 hydrolase) 

Thermoplastic polyester PU (Schmidt, J. et al., 2017) 

EC 3.1 Bacillus subtilis esterase  Polyester PU (Impranil) (Rowe and Howard, 2002) 
 

Comamonas acidovorans TB-
35 esterase 

Polyester PU (Impranil) (Allen et al., 1999) 

 
Curvularia senegalensis 
esterase 

Polyester PU (Impranil) (Crabbe et al., 1994) 

 
E3576 (esterase) Polyester PU Impranil (Magnin et al., 2019) 

  
Thermoplastic polyester PU (Magnin et al., 2019) 

 
Pseudomonas fluorescens 
esterase 

Polyester PU (Impranil) (Biffinger et al., 2015) 

 
PudA (Comamonas 
acidovorans TB-35 esterase) 

Thermoplastic polyester PU (Akutsu et al., 1998; Nomura et 
al., 1998)  

PulA (Pseudomonas 
fluorescens esterase) 

Polyester PU (Impranil) (Ruiz and Howard, 1999) 

EC 3.1.1 Cryptococcus sp. MTCC 5455 
lipase 

Thermoplastic polyester PU (Thirunavukarasu et al., 2015) 

 
Lipase Thermoplastic poly(ester ether) PU (Feng et al., 2017)  

 
Lipase AK Thermoplastic polyester PU (Zhou et al., 2012) 

  
Thermoset poly(ester ether) PU (Jiang et al., 2007) 

 
Lipase PS Thermoplastic polycarbonate PU (Chen et al., 2016) 

  
Thermoplastic polyester PU (Xu et al., 2014) 

 
Lipolase 100L Polyester PU coating (Pilch-Pitera, 2012) 

 
Novozym 51,032 Polyester PU coating (Pilch-Pitera, 2012) 
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Novozym 735 Polyester PU coating (Pilch-Pitera, 2012) 

 
Palatase 20,000 Polyester PU coating (Pilch-Pitera, 2012) 

 
Pseudomonas cepacia lipase Thermoplastic poly(ester ether) PU (Zhou and Xie, 2017) 

  
Thermoset polyester PU (Schöne et al., 2016) 

 
Pseudomonas sp. lipase Polyester PU (Impranil) (Biffinger et al., 2015) 

  
Thermoplastic polyester PU (Daemi et al., 2016) 

 
PueA (Ps chlororaphis lipase) Polyester PU (Impranil) (Howard et al., 2007; Hung et 

al., 2016; Langlois and Howard, 
2002; Ruiz et al., 1999; Stern 
and Howard, 2000)  

PueB (Pseudomonas 
chlororaphis lipase) 

Polyester PU (Impranil) (Howard et al., 2007; Howard et 
al., 2001; Hung et al., 2016; Ruiz 
et al., 1999)  

Rhizopus arrhizus lipase Thermoplastic polyester PU Tokiwa (Tokiwa et al., 1988) 
 

Rhizopus delemar lipase Thermoplastic polyester PU Tokiwa (Tokiwa et al., 1988) 
 

Thermomyces lanuginosus 
lipase 

Thermoplastic poly(ester urea) PU (Fang et al., 2014) 

  
Thermoset polyester PU (Wu et al., 2016) 

EC 3.1.1.1 Esterase Thermoplastic polyether PU (Smith et al., 1987) 
 

Porcine liver esterase Thermoplastic polyester PU (Li and Yang, 2006) 

EC 3.1.1.3 Candida antarctica lipase Thermoplastic polyester PU (Takamoto et al., 2001) 
  

Polyester PU coating (Liu et al., 2016) 
 

Candida cylindracea lipase Thermoplastic polyester PU (Kim and Kim, 1998) 
 

Candida rugosa lipase Thermoplastic polyester PU (Li et al., 2015) 
  

Polyester PU (Impranil) (Gautam et al., 2007b) 
 

Porcine pancreas lipase Polyester PU foam (Ng et al., 2017) 
  

Thermoplastic poly(ester ether) PU (Brzeska et al., 2015) 
  

Thermoplastic polyester PU (Brzeska et al., 2015) 
  

Thermoplastic polyether PU (Ferris et al., 2010) 

EC 3.1.1.13 Cholesterol esterase Thermoplastic poly(ester urea) PU (Santerre et al., 1993; Santerre 
et al., 1994; Wang et al., 1997a)   

Thermoplastic poly(ether urea) PU (Santerre et al., 1994) 
  

Thermoplastic polycarbonate PU (Christenson et al., 2006; Tang 
et al., 2001a, b; Tang et al., 
2003)   

Thermoplastic polyester PU (Woo et al., 2000) 
  

Thermoplastic polyether PU (Christenson et al., 2006) 

EC 3.1.1.74 LC cutinase (LCC) Thermoplastic polyester PU (Schmidt, J. et al., 2017) 
 

TfCut 2 (Thermobifida fusca 
KW3 cutinase) 

Thermoplastic polyester PU (Schmidt, J. et al., 2017) 

  
Thermoset polyester PU (Wu et al., 2016) 

EC 3.4 Bacillus sp. Protease Polyester PU (Impranil) (Biffinger et al., 2015) 

EC 3.4.11.1 Leucine aminopeptidase Thermoplastic polyester PU (Ratner et al., 1988) 
  

Thermoplastic polyether PU (Ratner et al., 1988) 

EC 3.4.14.1 Cathepsin C Thermoplastic polyether PU (Smith et al., 1987) 

EC 3.4.21.1 Chymotrypsin Thermoplastic poly(ester ether) PU (Ciardelli et al., 2004) 
  

Thermoplastic poly(ester urea) PU (Elliott et al., 2002) 
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Thermoplastic polyester PU (Ratner et al., 1988; Yamamoto 

et al., 2007)   
Thermoplastic polyether PU (Campinez et al., 2013; Ferris et 

al., 2010; Ratner et al., 1988; 
Smith et al., 1987) 

EC 3.4.21.36   Porcine pancreatic elastase Thermoplastic poly(ester urea) PU (Guan et al., 2008; Labow et al., 
1996)   

Thermoplastic poly(ether urea) PU (Labow et al., 1996) 

EC 3.4.21.62 Subtilisin  Thermoplastic polyamide PU (Huang et al., 2016) 

EC 3.4.21.64 Protease K Thermoplastic polyester PU (Dogan et al., 2017; Yamamoto 
et al., 2007) 

EC 3.4.22.2 Papain Thermoplastic poly(ether urea) PU (Zhao et al., 1987) 
  

Thermoplastic polyester PU (Ratner et al., 1988; Yamamoto 
et al., 2007)   

Thermoplastic polyether PU (Campinez et al., 2013; Ferris et 
al., 2010; Phua et al., 1987; 
Ratner et al., 1988; Smith et al., 
1987)   

poly(ether urethane urea) elastomer (Marchant et al., 1987) 

EC 3.4.22.3 Ficin Thermoplastic polyester PU (Yamamoto et al., 2007) 
  

Thermoplastic polyether PU (Smith et al., 1987) 

EC 3.4.4.24 Bromelain Thermoplastic polyester PU (Smith et al., 1987; Yamamoto 
et al., 2007) 

EC 3.4.21.37 Human neutrophil elastase   Thermoplastic poly(ester urea) PU (Labow et al., 1996) 

  Thermoplastic poly(ether urea) PU (Labow et al., 1996) 

EC 3.4.24  Collagenase Thermoplastic polyester PU (Zhang et al., 1994) 
  

Thermoplastic polyether PU (Mendoza-Novelo et al., 2013) 

EC 3.5.1.4 E4143 (amidase) Thermoplastic polyester PU (Magnin et al., 2019) 
 

Nocardia farcinica 
polyamidase 

Thermoplastic polyester PU (Gamerith et al., 2016) 

EC 3.5.1.5 Urease Thermoplastic polyether PU (Phua et al., 1987) 

No EC number  Pancreatine (enzyme mixture) Thermoplastic polyester PU (Zhang et al., 1994) 

 381 

Enzymatic degradation assays on PU using oxidase enzymes (Enzyme Classification 1, EC 1) e.g., 382 
fungal peroxidase (EC 1.11.1.7) and laccase (E.C. 1.10.3.2) have been performed with success on 383 
a polyester PU (Ignat et al., 2011). All the other assays dealing with enzymatic degradation of PU 384 
relies on hydrolytic enzymes (EC 3). Several hydrolytic mechanisms have indeed been highlighted 385 
for PU degradation. The most common is the hydrolysis of the polyester moieties of polyester-386 
based PU by esterases (EC 3.1). Ester hydrolysis leads to the release of a carboxylic acid and an 387 
alcohol (Figure 7a). Other esterases such as lipases (EC 3.1.1) (Fang et al., 2014; Schöne et al., 388 
2016), cutinases (EC 3.1.1.74) (Schmidt, J. et al., 2017; Yang et al., 2013) or unspecific esterases 389 
(EC 3.1) (Kang et al., 2011) have been described as polyester PU degrading enzymes. Esterase has 390 
also been described as hydrolyzing the urethane linkage. Some of these studies refer to a 391 
mechanism resulting in carbamic acid and alcohol chain-ends after hydrolysis (Mahajan and 392 
Gupta, 2015; Wei and Zimmermann, 2017). However, this mechanism does not seem conceivable 393 
because of the instability of the carbamic acid which immediately breaks down into an amine with 394 
the release of a molecule of carbon dioxide (Ionescu, 2005; Ozaki, 1972) (Figure 7b). Moreover, 395 
most of the assays involving esterases concern polyester-based PU and do not allow 396 
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differentiation between ester and urethane bond hydrolysis. To evaluate the urethane bond 397 
hydrolysis by an esterase, assays must be performed on substrates that do not contain ester 398 
bonds. Publications describing slight esterase activity on polyether PU and showing the potential 399 
ability of esterase to hydrolyze the urethane bond are scarce (Santerre et al., 1994; Smith et al., 400 
1987). A cholesterol lipase was reported to display activity on a PU based on triethylene glycol 401 
and 1,4-di-S-benzyl-D,L-dithiothreitol (Ferris et al., 2010). Urease (EC 3.5.1.5) also showed activity 402 
on poly(ether urea) PU (Phua et al., 1987) but the degradation is mainly attributed to the urea 403 
bond hydrolysis (Figure 7c). Amidases (EC 3.5.1.4) and proteases hydrolyze amide or peptidic 404 
bonds leading to the release of a carboxylic acid and an amine (Figure 7d). These enzymes 405 
appeared to be also efficient for the hydrolysis of the urethane bond leading to the release of an 406 
amine, an alcohol and a carbon dioxide molecule (Figure 7e). Proteases such as papain (EC 407 
3.4.22.2) (Campinez et al., 2013; Ferris et al., 2010; Marchant et al., 1987; Yamamoto et al., 2007), 408 
bromelain (EC 3.4.22.32/33) (Yamamoto et al., 2007), ficain (EC 3.4.22.3) (Yamamoto et al., 2007) 409 
and chymotrypsin EC 3.4.21.1 (Ciardelli et al., 2004; Elliott et al., 2002; Ferris et al., 2010) are also 410 
described for the degradation of PU. Recently, an amidase drew attention. This enzyme was 411 
isolated from Nocardia farcinica with the specificity of being able to hydrolyze polyamides (Guo 412 
et al., 2014) but also both the ester and amide bonds of non-water soluble model substrates 413 
(Heumann et al., 2009) and polyester-based PUs (Gamerith et al., 2016). Even if esterase is the 414 
main class of enzyme describes for PU degradation, others such as amidase or oxidase are rising 415 
interest for the full degradation of PU material. 416 

 417 
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Figure 7 – Main mechanisms of enzymatic degradation of PU 418 

 419 

An alternative strategy aiming at discovering efficient PU-degrading enzymes was recently 420 
published. Metagenomics tools allowing to screen bovine rumen microbiota were developed to 421 
select enzymes with activity towards carbamate insecticides and PUs (Ufarte et al., 2017). The 422 
main advantage of this strategy is the possibility of studying enzymes from uncultivable 423 
microorganisms that are predominant in microbial communities, and thus having potential access 424 
to new degrading enzymes.  425 

To date, PU depolymerization using enzymes is not efficient enough for the development of 426 
recycling processes. Recent publications on this topic aimed to improve the efficiency of the 427 
depolymerization reactions. Complementary activities of enzymes presented above justify testing 428 
cocktail of enzymes with different activities. A mixture of an esterase and an amidase revealed a 429 
synergistic effect between these two enzymes for the degradation of a polyester PU. 430 
Corresponding product analysis showed that hydrolysis of ester moieties from the SS by the 431 
esterase released low molar mass molecules containing urethane bonds that are then hydrolyzed 432 
by the amidase (Magnin et al., 2019). Another strategy for enzymatic depolymerization 433 
improvement is to use protein engineering. This approach already proved itself on PET-degrading 434 
enzymes. As an example, decreased inhibitor sensitivity of a PET-degrading cutinase has been 435 
successfully achieved by amino-acid modification into the catalytic site (Wei et al., 2016). 436 
Thermostability is also a key parameter for polymer degradation (Kawai et al., 2014). Ribitsch et 437 
al., fused a PET-degrading enzyme (a cutinase from Thermomyces cellullosylitica) with a binding 438 
module of a PHA depolymerase from Alcaligenes faecalis (Ribitsch et al., 2013) to improve 439 
enzyme/polymer interactions. This binding domain was recently added to the amidase from 440 
Nocardia farcinica to improve the degradation of polyester PU pellets (Gamerith et al., 2016). 441 
These improvements will help reaching efficient depolymerization processes for PU biorecycling. 442 

5. Analytical solutions for the measurement of polyurethane 443 

biodegradation 444 

The great diversity of PU structures and biological entities gives rise to numerous analytical 445 
approaches to evaluate PU biological degradation. The methods have evolved lately with 446 
powerful tools for a better understanding of the mechanisms of PU biodegradation. This chapter 447 
offers an overview of the different techniques. The implementation of tools using urethane-based 448 
model molecules is first addressed. Then, the degradation of more complex substrates, such as 449 
TPU and PU foams, is presented.  450 

5.1. Biological degradation of urethane-based model molecules 451 

For the development of bioremediation or biological recycling processes, degradation of model 452 
molecules is generally the first step as it allows easy identification of efficient degrading entities. 453 
Urethane-based model molecules are readily hydrolysable and generally propose a simplified 454 
hydrolysis detection. These model molecules can be either low molar mass molecules or 455 
hydrophilic PU dispersion.  456 
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5.1.1. Analysis of low molar mass molecules 457 

To cover the degradation of different PU structures, tracking the urethane bond hydrolysis 458 
appears as a relevant solution. Low molar mass molecules containing a single urethane linkage 459 
can be designed for this purpose. Urethane-based molecules are not soluble in water. Pre-dilution 460 
in organic solvents such as ethanol (Akutsu-Shigeno et al., 2006) or DMSO (Gamerith et al., 2016) 461 
is thus required. 462 

Low molar mass N-tolylcarbamate molecules correspond to toluene with urethane linkage on one 463 
or two carbons of the aromatic ring bound to ethanol moieties (Owen et al., 1996). In Owen et 464 
al., aromatic amines resulting from the N-tolylcarbamate hydrolysis were extracted in chloroform 465 
and quantified by Gas Chromatography coupled with Mass Spectrometry (GC/MS). This assay 466 
revealed that the degrading activity of the Exophiala jeanselmei strain REN-11A depends on the 467 
position of the urethane(s) around the aromatic ring. Toluene-2,4- and -2,6-dicarbamic acid 468 
diethyl ester were the most readily biodegradable molecules (Figure 8). 469 

 470 

Figure 8 – Hydrolysis of (a) the toluene-2,6-dicarbamic acid diethyl ester into 2,6-toluene diamine and propanol and 471 
(b) the toluene-2,4-dicarbamic acid diethyl ester into 2,4-toluene diamine and propanol 472 

 473 

Akutsu-Shigeno et al., also described a set of molecules bearing a single urethane bond formed 474 
by reacting a di-isocyanate (2,4-TDI, 4,4’-MDI and HDI) with butanol (Akutsu-Shigeno et al., 2006). 475 
These compounds were degraded by both Rhodococcus equi strain TB-60 and a purified urethane-476 
degrading enzyme secreted by this bacterium. Degradation products were extracted with ethyl 477 
acetate and analyzed by GC/MS except for the HDI-based model molecules which degradation 478 
products were extracted with toluene under alkaline conditions. Because of the difficulties to 479 
detect aliphatic amines in GC/MS, amines coming from HDI-based molecules hydrolysis were 480 
derivatized using heptafluorobutyric acid anhydride following the method of Skarping et al. 481 
(Skarping et al., 1988). 482 

Coupling a 96-wells microplate assay with HPLC analysis was proposed for the development of a 483 
medium-throughput screening (Magnin et al., 2019). A model molecule based on p-484 
Toluenesulfonyl isocyanate was synthesized for this microplate assay (Figure 9). Both the 485 
substrate and the degradation products were analyzed by HPLC. Finally, 55 enzymes were 486 
screened resulting in the identification of two amidases able to hydrolyze the urethane bond.  487 
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 488 

Figure 9 – Hydrolysis of p-Toluenesulfonyl isocyanate model substrate (Magnin et al., 2019) 489 

 490 

To avoid the setup of complex analytical procedures such as GC/MS, Gamerith et al., proposed 491 
the synthesis of a model molecule based on 4-nitrophenol (Gamerith et al., 2016). Molecules 492 
based on this aromatic compound are well known as model substrates for enzymes such as 493 
esterase (4-nitrophenyl acetate) or amidase (4-nitroacetanilide). 1-methoxypropan-2-yl (4-494 
nitrophenyl) carbamate was synthesized (Figure 10) and the subsequent hydrolysis leads to the 495 
release of 4-nitroaniline that can be tracked and quantified by UV-vis absorbance measurements 496 
at 405 nm. 497 

 498 

Figure 10 - Hydrolysis of the 1-methoxypropan-2-yl (4-nitrophenyl) carbamate leading to 4-nitroaniline and 1-499 
methoxy-2-propanol (Gamerith et al., 2016) 500 

 501 

The use of low molar mass urethane substrates is a good way to identify efficient degrading 502 
entities. However, the low steric hindrance of these molecules makes them far from being 503 
representative of actual PU materials which often present organized and crystalline structures 504 
and are much more hydrophobic. Activity assays on real and complex polymers must then be 505 
performed with the identified degrading entities. 506 

5.1.2. Waterborne polyurethane dispersions as a PU-based model 507 

WPUD are particularly suitable to assess the degradation ability of enzymes and microorganisms 508 
thanks to the polymer particles nanometric size and homogeneity in water. Indeed, their specific 509 
surface is higher than for previously described polymers, thus maximizing interactions between 510 
the degrading entity and the polymer. Moreover, all biodegradation reactions occur in aqueous 511 
media. The most famous WPUD is the Impranil-DLN®, commercialized by Covestro (Germany) for 512 
textile coating applications. Particle size is estimated to range between 0.1 to 0.2 µm (Biffinger et 513 
al., 2015). This dispersion appears as a white, milky suspension containing 40% of polymer. The 514 
exact composition and structure of Impranil-DLN® are not precisely known. A tentative structure 515 
has been proposed by Biffinger et al. based on polyhexane/neopentyl adipate polyester and HDI 516 
(Figure 11). Diethylene glycol is also a component of Impranil-DLN® (Gautam et al., 2007b). 517 

 518 
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 519 

Figure 11 – Impranil-DLN® tentative structure adapted from Biffinger et al., 2015 (Biffinger et al., 2015) 520 

 521 

Impranil-DLN® has been widely studied as a PU-based model since it presents the particularity to 522 
become translucent when hydrolyzed as a result of water-soluble molecules being released in the 523 
medium. Impranil-DLN® was used as “polyurethane biodegradation benchmark” for the first time 524 
in 1994 (Crabbe et al., 1994). Screening of soil fungi was performed on a plate where Impranil-525 
DLN® was mixed with an agar medium. Fungi were allowed to grow on it and a transparent halo 526 
appeared after a few days when the microorganism was producing degrading enzymes. This agar 527 
plate technique has subsequently been used intensively (Howard et al., 2001; Peng et al., 2014; 528 
Rowe and Howard, 2002; Vega et al., 1999) (Figure 12a & b). Impranil-DLN® is also suitable for 529 
assays in liquid media for both microorganisms (Álvarez-Barragán et al., 2016; Russell et al., 2011) 530 
(Figure 12c) and enzymes (Gautam et al., 2007b; Schmidt, J. et al., 2017). 531 

 532 

Figure 12 – Hydrolysis of Impranil-DLN®. Degradation assay in agar plate (a) negative control and (b) Pleosporales 533 
sp. strain E2705B after two weeks of incubation. (c) Assay in liquid media. Adapted from Russel et al. (Russell et al., 534 

2011) 535 

 536 

As the exact polymer structure is unknown, it is difficult to appraise the mechanism of 537 
degradation. Biffinger et al., used NMR and FT-IR to offer quantitative analysis of alcohol and 538 
carboxylic acid release after the ester bond cleavage (Biffinger et al., 2015). They also highlighted 539 
that polymer aggregation can occur when incubated with enzymes without any measurable 540 
degradation. Observation of the polymer is thus not sufficient to conclude on enzymatic 541 
degradation activity. Ufarté et al., proposed to use Matrix Assisted Laser Desorption Ionisation - 542 
Time of Flight/Mass Spectrometry (MALDI-TOF/MS) to identify degradation by-products. Three 543 
peaks at m/z 682, 683 and 782 were specific of the bacterial degradation of Impranil-DLN®. All 544 
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seemed to correspond to the formula C36H68O8N2, ionized with either Na+ or I-. The peak at m/z 545 
683 could correspond to the isotope form of the molecule at m/z 682. However, no specific 546 
chemical structure has been suggested. Alvarez-Barragan et al., presented the analysis of 547 
degradation by-products by GC/MS (Álvarez-Barragán et al., 2016). Almost none of the products 548 
identified correspond to the Impranil putative structure shown above (Figure 11) suggesting that 549 
the structure is much more complex than expected. The only corresponding molecule is HDI. 550 
However, HDI cannot be a degradation product as isocyanates are not stable in water. A possible 551 
explanation would be the detection of either hexane diamine (HDA) or HDI-derivatives.  552 

Despite some important limitations, Impranil-DLN® is thus a good model substrate to identify 553 
degrading entities that have a great chance to be efficient afterwards on polyester PUs. It provides 554 
a first approach that must then be confirmed. Hung et al. (2016) did not only present Impranil-555 
DLN® as a model but also as a common coating which integrity can be affected by microbial 556 
degradation (Hung et al., 2016). Esterase and lipase are mainly involved in the enzymatic 557 
degradation of Impranil-DLN®. However, up to now, there is no clear evidence that these 558 
enzymes, improperly called “Polyurethanase” (Ruiz et al., 1999; Stern and Howard, 2000), 559 
effectively hydrolyze the urethane bond.  560 

Few other WPUDs have been tested for degradation activities. Bayhydrol 110 (Covestro, 561 
Germany) is a polyester PU dispersion presenting the same clarification properties as Impranil-562 
DLN®: translucent halo appeared when incubated with a strain of Pseudomonas chlorographis on 563 
an agar plate containing this WPUD (Howard et al., 2001). Poly Lack (Sayer Lack Mexicana, 564 
Mexico), a polyether PU, was also tested on agar plate containing the polymer and minimal media 565 
(Álvarez-Barragán et al., 2016). Strains able to grow on Poly Lack as sole carbon source were 566 
isolated, yet, no clarification zone could have been observed on this polymer.  567 

 568 

5.2. Biological degradation of TPU and PU foams  569 

The most mainstream PU systems, i.e. TPU and PU foams, have been tested in biodegradation 570 
assays. These products present a wide and varied range of chemical structures and groups. When 571 
the purpose is to evaluate the susceptibility to biological degradation of a material, the structure 572 
and formulation are precisely described in the study. In contrast, bioremediation and biological 573 
recycling studies on PU mainly involve commercial products of complex and often unknown 574 
chemical structure, additives and composition. The biological degradation experiments described 575 
in the literature are mainly partial, leading to the recovery of the degraded polymer and, possibly, 576 
soluble degradation products released in the aqueous media (Figure 13). Techniques developed 577 
to evaluate the biological degradation of polymers can thus be oriented towards the efficiency of 578 
the entire degradation system with the analysis of the degraded polymer products (soluble and 579 
insoluble).  580 
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 581 

Figure 13 – Strategies and diversity of the analytical methods for TPU and PU foam biodegradation monitoring 582 

 583 

Samples structures and preparation 584 

Evaluation of PU foam degradation is more challenging than that of TPU, since foams are highly 585 
complex systems based on crosslinked architectures with different components and additives. 586 
Side reactions during synthesis and foaming steps can also lead to the formation of isocyanurate 587 
and other bonds. Foam analysis is limited by their insolubility in solvent. 588 

PUs shape drives the specific surface and thus the bioavailability which is of importance for the 589 
biological degradation. Thanks to their alveolar structure, bioavailability is greater for foams, 590 
especially for open-cell foams, as microorganisms can easily circulate inside the material. Foams 591 
can also be ground to increase bioavailability (Cregut et al., 2014). TPUs for degradation assays 592 
can be used as thin films obtained by coating after solubilizing in an appropriate solvent, pouring 593 
on glassware and solvent evaporation (Chen et al., 2016; Woo et al., 2000). Thin films obtained 594 
can reach a few dozen micrometers (Phua et al., 1987). TPU films can also be obtained by 595 
thermoforming (Zhou and Xie, 2017). TPU cubes (Nakajima‐Kambe et al., 1995), pellets (Cosgrove 596 
et al., 2007) or sheets (Ibrahim N. Ibrahim, 2009) are also used for PU degradation assays.  597 

Preparation of samples 598 

It is not recommended to sterilize TPUs by autoclaving for microbial experiments as most of the 599 
TPU becomes liquid-like or very soft at autoclaving temperatures (121°C). Degradation can occur 600 
e.g., a study comparing autoclaved and non-autoclaved poly(ether urea) PU material revealed 601 
that no weight loss was observed after autoclaving but a surface alteration appeared, leading to 602 
bias in degradation measurement (Rafiemanzelat et al., 2015). Alternatives such as rinsing with 603 
ethanol (Cosgrove et al., 2010; Mathur and Prasad, 2012), UV exposure (Gogoi and Karak, 2014) 604 
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or both (Osman et al., 2018) are thus frequently employed to sterilize the samples. Because of 605 
better thermal resistance of thermosetting materials, foams can be tested after autoclaving 606 
(Álvarez-Barragán et al., 2016). 607 

5.2.1. Evaluation of the global biodegradation efficiency 608 

The most widespread method to evaluate global biodegradation is the weight loss of the PU. 609 
Samples are weighted before and after degradation assay to evaluate the weight of degradation 610 
products released in the liquid media. It is a straightforward and easy method to implement, 611 
although some bias can be noticed. For instance, if the degradation is too superficial and too low 612 
to lead to detectable product release, the test will be considered as inefficient as no weight loss 613 
will be measured. Therefore, weight loss measurement must be associated with a surface analysis 614 
of the sample (Rafiemanzelat et al., 2015) in case of a low degradation extent, or to analyze the 615 
early steps of the degradation. It is necessary to remove all the biological materials that can 616 
remain on the polymer surface. Hard washing with ethanol is generally performed (Mathur and 617 
Prasad, 2012; Urgun-Demirtas et al., 2007). Non-ionic surfactants such as TritonX-100 618 
(Polyethylene glycol tert-octylphenyl ether) (1% v/v) have also been suggested to remove 619 
reversibly bounded enzymes and cells (Ciardelli et al., 2004). This cleaning step is particularly 620 
challenging for the fungal degradation of foams as filaments could be deeply trapped into the 621 
bulk structure of the samples. It was recently suggested to use 0.88% (wt/vol) sodium 622 
hypochlorite for 18 h to destroy and remove the remaining mycelium (Álvarez-Barragán et al., 623 
2016). When enzymatic degradations are performed, kinetic weight loss is generally set up 624 
(Dogan et al., 2017; Zhou and Xie, 2017). In such experiments, a loss of enzymatic activity is often 625 
observed with time. This loss of activity may be due to the thermal denaturation of enzymes 626 
(Pastorino et al., 2004) or to the release of inhibiting compounds (Barth et al., 2015). To cope with 627 
this phenomenon, enzymatic solutions are frequently renewed at regular time intervals (Phua et 628 
al., 1987). Between the removal step and the renewal step, polymer pieces are usually washed, 629 
dried and weighed.  630 

As a parameter of global assay efficiency, the evaluation of the ability of a microorganism to grow 631 
on PUs when the polymer is used as the sole source of carbon (or carbon and nitrogen) is common 632 
practice (Cooney, 1969). Indeed, microbial development means that microorganisms can 633 
depolymerize PUs and metabolize degradation products for growth. It is possible to quantitatively 634 
follow the bacterial growth through the McFarland method which estimates the number of 635 
bacteria thanks to turbidity measurement using UV-vis at 600 nm (Bayan and Karak, 2017; 636 
Fernandes et al., 2016; Gogoi and Karak, 2014). Colony forming unit (CFU) is another method to 637 
count bacteria: after being incubated with polymers, bacteria are sampled, diluted and poured 638 
on an agar plate containing a rich medium (Crookes-Goodson et al., 2013; Urgun-Demirtas et al., 639 
2007). Colonies are counted after overnight incubation. The dry or wet weight of the biomass 640 
corresponding to microorganisms growth can be measured (Oceguera-Cervantes et al., 2007). 641 
This technique could be particularly suitable for bacteria that form aggregates or for filamentous 642 
fungi. 643 

Mineralization of polymers by microorganisms in aerobic conditions leads to the production of 644 
CO2 with O2 consumption. Online sensors are used to measure both evolutions. These variations 645 
must be compared to a negative control made without polymers (Cregut et al., 2014) or with an 646 
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inert polymer such as low-density polyethylene (Rattanapan et al., 2016), and to a conventional 647 
biodegradable positive control such as cellulose (Gómez et al., 2014) or sodium benzoate 648 
(Rattanapan et al., 2016) incubated with the same inoculum. For instance, low O2 consumption 649 
and CO2 release were measured during the 28 days of degradation of a ground polyether PU foam 650 
revealing low degradation by an acclimated microbial consortium (Cregut et al., 2014). CO2 651 
release during PU mineralization is associated with pressure increase. The pressure can be 652 
measured by a Sturm test (Standard OECD 301 B) (Shah et al., 2016). This test is used for readily 653 
biodegradable materials and usually lasts 28 days. Rattanapan et al., used this assay to measure 654 
the biodegradation of a biobased polyester PU foam with long incubation time (60 days) 655 
(Rattanapan et al., 2016). In fact, after 30 days, 7 to 11% of degradation was measured while a 656 
higher degradation rate occurred during the last 30 days leading to a maximal degradation yield 657 
of 46 wt%. Under anaerobic digestion, CH4 is produced proportionally to polymer consumption. 658 
Gomez et al., proposed to compare the biological degradation susceptibility of polyether PU 659 
foams under composting, soil burial and anaerobic digestion according to three ASTM standard 660 
methods based on CO2 or CH4 measurement (Gómez et al., 2014). These methods are ASTM 661 
D5988-03 (Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic 662 
Materials or Residual Plastic Materials After Composting) (International, 2003b), the ASTM 663 
D5338-98 (Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials 664 
Under Controlled Composting Conditions) (International, 2003a) and the ASTM D5511-02 665 
(Standard test method for determining anaerobic biodegradation of plastic materials under high-666 
solid anaerobic-digestion conditions) (International, 2002). The most pronounced degradation 667 
was observed for a bio-based PU foam after 320 days of soil burial. Methods involving CO2, O2 or 668 
CH4 measurement present a low throughput. Incubation time is superior to 28 days. Moreover, a 669 
pressure or gas monitor is required for each reaction which is generally performed in flasks from 670 
2 to 5 liters (recommendation for OECD 301 series). These methods are mainly oriented towards 671 
the evaluation of the biological sensitivity or resistance of newly synthesized or commercial PUs, 672 
especially foams. These techniques are not suitable for screening of PU degrading entities.  673 

5.2.2. Study of the degraded polymers samples and insoluble products 674 

The first assessment of polymer degradation is a naked eye observation, sometimes sufficient to 675 
evaluate the degradation onset. Change in color, roughness or shape can be noticed (Pilch-Pitera, 676 
2012). These observations can be completed by surface analysis such as spectroscopy and/or 677 
microscopy, polymer molar mass evolution by SEC or modifications of physical properties.  678 

Spectroscopy techniques  679 

FT-IR (Fourier-transform infrared spectroscopy) analysis relies on the fact that most molecules 680 
absorb in the infrared region. This absorption corresponds specifically to the vibration modes of 681 
the different bonds present in the analytes. Absorption spectra thus provide information on the 682 
chemical structure of the polymer as a fingerprint. FT-IR is particularly popular for PU degradation 683 
analysis because of its accuracy and rapidity and because FT-IR is a non-destructive method: the 684 
sample is recovered without damage after the analysis. Surface analysis can be easily performed 685 
to measure superficial biological degradation. Different issues can be encountered in the analysis 686 
and interpretation of a spectrum. For instance, partial similarities between bonds e.g., urethane 687 
and ester groups complicate the spectra interpretation for polyester PUs. Moreover, both 688 
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hydroxyl (OH) moieties, resulting from ester and urethane degradation, and amine (NH) moieties, 689 
resulting from urethane degradation, absorb around 3400 cm-1. For polyester PUs, the increase 690 
of this large band is generally attributed to ester- or both ester and urethane hydrolysis (Oprea, 691 
2010; Spontón et al., 2013), but it has also already been interpreted exclusively as the cleavage 692 
of the urethane bond (Umare and Chandure, 2008).  693 

Similarly, it is difficult to interpret changes in spectra presenting carbonyl bonds (C=O) that appear 694 
in ester (1750-1725 cm-1), urethane (1700 cm-1) and urea bonds (1630 cm-1). In polyester PUs, 695 
there is often a unique broad signal representing both urethane and ester carbonyl bonds. Its 696 
decrease is generally attributed to ester bond hydrolysis (Schmidt, J. et al., 2017; Shah et al., 2016) 697 
but sometimes has been attributed only to urethane bond hydrolysis in polyester PUs (Gómez et 698 
al., 2014; Ozsagiroglu et al., 2012). The signal at 1530 cm-1 is generally attributed to the nitrogen 699 
of the urethane moieties. A comparison of the polyester PU based on PCL and the constitutive 700 
PCL polyester showed that the signal at 1530 cm-1 only appeared on the PU spectrum thus 701 
confirming that this signal is attributed to the urethane (Magnin et al., 2019). Oprea et al. 702 
suggested that an increase of this signal is related to urethane bond hydrolysis (Oprea, 2010) 703 
while others suggested that a decrease of this signal attests to urethane bond degradation 704 
(Oceguera-Cervantes et al., 2007; Sarkar and Lopina, 2007). It is also conceivable that an increase 705 
of this signal is correlated to the increase of the urethane proportion in the polymer after the 706 
biological hydrolysis of the soft segment. Concluding on the variation of this signal upon 707 
degradation appeared therefore complicated. Other peaks are sometimes considered as proof of 708 
PU degradation. For instance, the emergence of a peak at 2250 cm-1 after degradation has been 709 
attributed to isocyanate (NCO) release (Shah et al., 2016) (Figure 14b). However, isocyanates are 710 
unstable in water and cannot be released through biological degradation in aqueous media. This 711 
signal could correspond to atmospheric CO2 resulting from improperly done FT-IR background 712 
spectra (Gerakines et al., 1994). Since high variation on FT-IR spectra interpretations are observed 713 
through the literature, especially concerning polyester PUs, additional methods must be used to 714 
confirm urethane bond cleavage for PU degradation.  715 

Kay et al., suggested to consider the decrease of the ratio ester (C=O) /ether (1720 cm-1/1125 cm-716 
1), the ratio urethane (NH)/ether (1630 cm-1/1125cm-1) and the ratio aryl (C=C)/ether in order to 717 
provide a semi-quantitative analysis of the degradation of a polyether PU (Kay et al., 1993). The 718 
ratio ester/ether decreases after degradation with a strain of Corynebacterium while the ratio 719 
urethane/ether and aryl/ether remain stable meaning that the ester bonds are affected by the 720 
bacterial degradation. Zhang et al., have used the band at 1463 cm-1 corresponding to CH2 721 
moieties to normalize their results (Zhang et al., 1994). The decrease of the normalized signals of 722 
1239 cm-1/1463 cm-1 revealed an alteration of the polyester part of an arterial prosthesis made in 723 
polyester PU after 100 days of incubation with pancreatin and collagenase. However, no change 724 
of the normalized signal of 1695cm-1/1463cm-1 showed the stability of the urethane moieties.  725 

Recently, a Raman spectroscopy has been applied to monitor the biodegradation of a polyether 726 
polyurethane foam which is among the most recalcitrant PU (Cregut et al., 2013). This technique 727 
allowed conclusions to be drawn on the amorphous region degradation of the foam by a microbial 728 
consortium while the crystalline region remained unaffected. 729 
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Microscopy  730 

For the assessment of morphological surface modification of PUs, microscopy, particularly 731 
scanning electron microscopy (SEM) is employed. SEM allows for a qualitative evaluation of the 732 
degradation on the surface after biological treatment by observation of cracks or holes on the 733 
degraded polymers. Enzymatic degradation generally leads to cracks (Figure 14a) or holes (Figure 734 
14b) homogeneously spread at the TPU surface (Ozsagiroglu et al., 2012; Schmidt, J. et al., 2017) 735 
while degradation with a microbial consortium leads to irregularities (Figure 14c) (Das et al., 2017; 736 
Thirunavukarasu et al., 2015; Zafar et al., 2013). For instance, Das et al., showed the appearance 737 
of cracks at the surface of a polyester TPU degraded under composting conditions. Depth of the 738 
cracks, corresponding to fungal mycelium development, increased until the formation of holes 739 
(Das et al., 2017).  740 

SEM observations of the fungal mycelium propagation inside a PU foam highlights the higher 741 
biodegradability of open-cell foams compared to closed-cell foams. The strut of cells appeared 742 
distended, leading to the collapse of the alveolar structure (Figure 14d) (Álvarez-Barragán et al., 743 
2016). Degradation is efficient in a PDB medium (Potatoes Dextrose Broth, rich medium) but it is 744 
specified that no degradation was observed by either weight loss or microscopy in minimal media. 745 
Small holes appeared when foams were incubated with one of the three tested strains, confirming 746 
enzymatic action. Holes in the walls and struts of the foam structure were already described 747 
previously (Figure 14e) (Gautam et al., 2007c).  748 

 749 
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  750 

Figure 14 – SEM images showing the morphological modifications of (a, b and c) thermoplastics PU and (d and e) PU 751 
foams degraded by (a and b) enzymes, (c) microbial communities or (d and e) single strains. Photographs are 752 

adapted from (a) Schmidt et al., 2017, (b) Thirunavukarasu et al., 2015, (c) Khan et al., 2017, (d) Alvarez-Barragan 753 
et al., 2016  and (e) Gautam et al., 2007  754 

SEM is also used to evaluate microbial growth. For instance, Micrococcus biofilm formation on 755 
the surface of a poly(ether urea) PU was shown by microscopy (Rafiemanzelat et al., 2013). SEM 756 
can cope with the limitation of available assays to evaluate fungal growth on carbon depleted 757 
media containing polymers. Huang et al. indeed highlighted a higher fungal growth on the surface 758 
of an adhesive containing 70% of a polyester PU than the one containing 40% (Huang et al., 2016). 759 

Size Exclusion Chromatography (SEC)  760 

SEC analysis allows the determination of the molar mass distribution of polymers. This 761 
quantitative analysis is more powerful than weight loss because it can appraise the change of 762 
polymer mass distribution from the beginning of chains cut off even if soluble products are not 763 
released. This measurement relies on the separation of the polymer chains in a column according 764 
to their length. The polymer is solubilized in an organic solvent such as THF, chloroform, 765 
dimethylformamide (DMF), then the solution runs through a fixed column packed with porous 766 
beads (gel) with different sizes pores. Short chains pass through the pores while longer chains 767 
cannot enter and are eluted more rapidly, then the higher the retention time, the lower the molar 768 
mass is. Detection can be performed with a UV diode array detector and/or refractive index (RI) 769 
detector. UV-vis analysis is efficient for PU containing aromatic rings such as 4,4’-MDI- or TDI-770 
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based PUs (generally at 254 nm). Since the sample must be soluble in an organic solvent, this 771 
method is not suitable for PU foams. Analysis and comparison of chromatograms can be 772 
performed to evaluate PU degradation (Christenson et al., 2006; Rafiemanzelat et al., 2013). 773 
Molar masses are usually determined with polystyrene standards. Because of its aromatic rings, 774 
this standard is adapted to both UV and RI detection. Three main parameters are usually 775 
considered with the number average molar mass (Mn), the weight average molar mass (Mw) and 776 
the dispersity (Đ) (ratio of Mw over Mn).  777 

Polymer degradation leads to changes in the molar mass distribution. The most common 778 
observed variation on PU biodegradation studies is a decrease of the Mw whereas Mn remains 779 
unchanged, leading to a decreasing Đ value (Schmidt, J. et al., 2017). Mw being more sensitive to 780 
long polymer chains contribution, this is consistent with the cleavage of the long chains into lower 781 
molar mass molecules. In Ferris et al., only the Mw was found to decrease (Ferris et al., 2010). 782 
Changes in molar mass distribution reveal global degradation in the bulk material and not only 783 
what is occurring at the surface of the polymer (Shah et al., 2013a; Shah et al., 2013b). 784 
Rafiemanzelat et al. described a bi-modal SEC profile with a high and a low molar mass 785 
distribution after 4 months soil burial degradation of a poly(ether urea) PU (Rafiemanzelat et al., 786 
2013) resulting from the cleavage of the long polymer chains into shorter ones (Figure 15). The 787 
decrease of the peak area corresponding to the main polymer chain in favor of lower molar mass 788 
chains, after fungal degradation of two polyester PUs, has also been reported (Magnin et al., 789 
2019).  790 

 791 

Figure 15 – SEC chromatograms of a poly(ether urea) PU before (bottom), after 4 months (middle) and after 6 792 
months (top) of soil burial (Rafiemanzelat et al., 2013). A et B correspond respectively to the long and the short 793 

polymers chains. 794 
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 795 

Throughput of SEC analysis is rather low since a run generally lasts around one hour. Only a few 796 
publications on PU biodegradation offered robust SEC data with several repetitions of the analysis 797 
(Kuang and Mather, 2018; Magnin et al., 2019; Schmidt, J. et al., 2017). 798 

Modifications of the physical and physico-chemical properties of PU degraded 799 
materials 800 

Observation of modifications in the physical and physicochemical properties of a sample can be 801 
an indirect method of assessing biodegradation since the polymer chain cleavage often affects 802 
some of these properties. These assays are thus used as complementary methods. Loss of 803 
mechanical properties such as uniaxial tensile strength is generally observed after significant 804 
biological degradation of a material. Tensile test measurement allows, for example, to evaluate 805 
material elasticity and the behavior at break (Phua et al., 1987). For instance, after 24 months of 806 
composting, a decrease of the tensile strength from 20 to 10 MPa was measured for a poly(ether 807 
urea) TPU. In similar degradation conditions, samples of polyester PU were already broken down 808 
into pieces and cannot be evaluated by uniaxial tensile tests (Krasowska et al., 2012). This 809 
technique was also adapted for flexible PU foams. The tensile strength increased and the 810 
elongation at break decreased after 60 days of incubation with a strain of Pseudomonas for 811 
polyester PU foams (Spontón et al., 2013) (Figure 17, PU-1 and PU-2). In contrast, no change in 812 
static mechanical properties was observed for the polyether PU foam before and after 813 
degradation (Figure 17, PU-3). The polyether PU is thus more stable than the polyester PU.  814 

PUs thermal stability may also be affected by biological degradation. This property can be 815 
measured by thermogravimetric analysis (TGA) where the weight evolution of a sample is 816 
recorded while the temperature is increased in a furnace, under air (oxidative) or N2 (non-817 
oxidative) environments. For most polymers, the analysis temperatures range from 0 to 600-818 
800°C. Weight loss variations correspond to specific structure degradation and/or distinct 819 
mechanisms. The first derivative of the TGA curve (DTG) gives curve with different peaks, to 820 
determine different specific temperatures for each maximum in the case of a multistep 821 
degradation, for instance. The maximum thermal degradation temperature can be used to 822 
compare thermal stability between samples. For polyester TPUs, the first window from 100 to 823 
300°C corresponds to the release of volatile compounds such as additives. Although urethane 824 
bonds present a reversibility at around 200°C (Delebecq et al., 2013), urethane bonds degradation 825 
induces a weight loss between 300 and 400°C while ester bond cleavage results in a weight loss 826 
between 400 and 500°C (Cangemi et al., 2006; Mathur and Prasad, 2012). A decrease in  weight 827 
loss occurring between 400 and 500°C was observed after biological degradation (Mathur and 828 
Prasad, 2012). This revealed a decrease in the ester bond content per polymer and thus evidenced 829 
the biological hydrolysis of these linkages. Beyond the type of linkage affected, TGA may, 830 
therefore, provide information on the material part affected. For instance, a poly(ether urea) PU 831 
was incubated for one month with a strain of Bacillus. The observed changes in the material 832 
thermal stability attested for a higher proportion of hard segments and consequently a 833 
degradation occurring preferentially at the SS domains containing ether bonds (Rafiemanzelat et 834 
al., 2015).TGA is perfectly appropriate to analyze cross-linked foams. In their study, Gomez et al., 835 
compared the composting of a fossil-based and a biobased PU foam (Gómez et al., 2014). TGA 836 
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was combined with MS analysis to identify the gaseous products of thermal degradation. They 837 
found that a bio-based, aliphatic polyester PU is more sensitive to biodegradation than the fossil-838 
based, polyester ether PU with aromatic rings. 839 

Differential scanning calorimetry (DSC) is a thermal analysis which appraises the phase transitions 840 
of material. Glass transition temperature (Tg) is the temperature over which the amorphous 841 
region of a polymer transitions from a hard to a more mobile/viscous state. Working above the 842 
glass transition temperature (Tg) is an advantage for polymer degradation as it promotes chain 843 
mobility of the amorphous zone of semi-crystalline material. Temperature changes depending on 844 
the biological degrading-entities. Temperature of composting process can reach up to 58°C 845 
(Genovese et al., 2016) while degradation with single strain of bacteria or fungi are generally 846 
performed between 25 and 37°C. Enzymatic reaction can be performed at 60 or 70°C (Schmidt, J. 847 
et al., 2017). The melting temperature (Tm) is defined as the temperature of transition from a solid 848 
to a liquid state, which corresponds to the fusion of the crystalline regions. In practice, the area 849 
of this fusion peak allows determining the crystallinity of the material. The crystallinity of a 850 
poly(ether-urea) PU was found to increase after 4 months of soil incubation because of the 851 
decrease in the amorphous region preferentially degraded (Rafiemanzelat et al., 2013). This 852 
modification was accompanied by an increase in the Tm (Figure 19). Similarly, Osman et al., 853 
observed a shift of Tm from 191 to 196°C after the fungal degradation of a polyester PU (Osman 854 
et al., 2018). In addition to this change, a decrease of Tg was measured. Pilch-Pitera et al., also 855 
measured a lower Tg after PU degradation with an enzyme, associated with lower rigidity of the 856 
material (Pilch-Pitera, 2012).  857 

Biological degradation can alter the hydrophobicity of a PU material. Degradation induces 858 
exposure of hydrophilic moieties on the polymer surface such as alcohol and carboxylic acid. 859 
Moreover, disruption (cracks, holes) observed on the material surface offers a higher surface area 860 
of access for water and thus higher hydrophilicity. To evaluate the hydrophobic/hydrophilic 861 
balance, a drop of known liquid, generally water, is deposited on the polymer surface and the 862 
contact angle is measured. With a hydrophilic material, the drop of water will collapse and the 863 
contact angle will be low. A shift from 90° to 63° has been measured after 320 days of soil burial 864 
of a polyester PU (Aranguren et al., 2012). Therefore, this polyester PU is more hydrophilic after 865 
biological degradation.  866 

5.2.3. Analysis of the soluble degradation products 867 

The identification of soluble degradation products found in the liquid phase is the best route to 868 
understand PU degradation mechanisms. Enzymatic degradation is more relevant than microbial 869 
degradation in this case. Indeed, with microbial degradation, the quantifications are biased by 870 
the possible assimilation of some degradation products by the microorganisms. Consequently, 871 
the recovered products are those that cannot be metabolized by the microorganisms. 872 

Quantification of these products is possible with the measurement of the Total Organic Carbon 873 
(TOC) of the soluble fraction (Yamamoto et al., 2007). This measurement can be performed only 874 
for enzymatic reactions as the amount of carbon brought by the enzyme remains stable in time 875 
contrary to microbial cultures which involve growth and thus an increase of the carbon content. 876 
Yamamoto et al., used this method to evaluate the degradation of several PUs based on LDI with 877 
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various proteases. For instance, 518 ppm of carbon from degradation products were released 878 
after the degradation of a PU based on LDI and ethylene glycol, representing 44% of the 879 
theoretical carbon of the polymer. Another way to measure the release of soluble degradation 880 
products is the use of radiolabeled polymers. They were synthesized with 14C molecules such as 881 
14C-TDI, 14C ethylene diamine, 14C 1,4-butanediol or 14C 1,6-HDI (Santerre et al., 1994; Woo et al., 882 
2000). The increase of radiolabeled-based molecules in the supernatant is quantified in counts 883 
per minute (CPM). This is a very sensitive method, but the cost and the hazardous exposure to 884 
radioactivity for the experimenter limit its usage. Both TOC and radioactivity measurements allow 885 
precise quantification of the degradation products release, but these techniques do not give 886 
information about the chemical structure of the corresponding degradation products.  887 

Another indirect way to assess PU biodegradation is to monitor the toxicity of the soluble fraction 888 
resulting from the release of toxic degradation by-products. This is the case of 4,4’-methylene 889 
dianiline (MDA), coming from the hydrolysis of MDI-based PU, which is known to be carcinogenic 890 
(McQueen and Williams, 1990). The toxicity of the soluble fraction containing degradation 891 
products can be evaluated using Microtox® bio-assay. This assay relies on a naturally luminescent 892 
bacterium, Photobacterium phosphoreum. The parameter consider is the IC50 which is, in this 893 
case, the volume of the soluble fraction that induces a decrease of the luminescence of 50% 894 
(Spontón et al., 2013). A liquid medium of a polyester PU foam incubated for 60 days with 895 
Pseudomonas sp, presented an IC50 of 13.29% (V/V) thus attesting the release of toxic products 896 
during the degradation, probably MDA or MDA-based molecules. 897 

The efficient recovery of the degradation products for their analysis is an important issue. Indeed, 898 
the liquid fraction of a degradation assay is a mixture containing salts, enzymes, and eventually 899 
microbial cellular debris and degradation products which are molecules released from the 900 
polymer. Several strategies were suggested to recover only the degradation products from PU 901 
degradation assays. This recovery can be performed by solvent extraction using, for example, 902 
ethyl acetate (Shah et al., 2016), acetonitrile (Tang et al., 2003) or ethyl ether (Spontón et al., 903 
2013). Instead of solvent extraction, selective recovery of degradation products can also be 904 
achieved by removing enzymes using filtration (Wang et al., 1997a). Gamerith et al., added one 905 
volume of methanol and acidified the supernatant to pH 3.5 so that proteins precipitated and 906 
could be removed by centrifugation (Gamerith et al., 2016).  907 

High Performance Liquid Chromatography (HPLC) with UV detection (Thirunavukarasu et al., 908 
2015) and mass spectrometry analyses associated with liquid chromatography (LC-MS) (Elliott et 909 
al., 2002; Wang et al., 1997b) or with gas chromatography (GC-MS) (Pérez-Lara et al., 2016) are 910 
methods of choice to identify the degradation products. These methods coupled a 911 
chromatographic, for the separation of the mix of degradation products and an analytical method 912 
such as the mass spectrometry. Detected degradation products highly depend on the initial 913 
structure of polymers. Some chemical structures of identified degradation products are shown in 914 
Figure 16. Thirunavukarasu et al., monitored the degradation of 50 mg of a poly(diethylene glycol 915 
adipate)-based PU by quantifying diethylene glycol and adipic acid with HPLC analysis. After 4 916 
days of PU incubation with a Cryptococcus sp. lipase, about 25 mg of adipic acid and about 8 mg 917 
of diethylene glycol were released (Thirunavukarasu et al., 2015). The detection of specific amines 918 
appears as the best way to confirm the cleavage of urethane bonds. It is interesting to notice that 919 
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the degradation of a PCL-based TPU (based on TDI as isocyanate starting material) with 920 
cholesterol esterase leads to the release of low molar mass urethane molecules containing TDI-921 
based moieties but no TDA was detected (Wang et al., 1997a) (Figure 16). Then, the urethane 922 
bond has not been cleaved. MDA was the unique aromatic amine released from polycarbonate-923 
based PUs synthesized with diverse diisocyanates (HDI, HMDI and MDI) after hydrolysis with 924 
cholesterol esterase (Tang et al., 2003). This enzyme is thus able to cleave urethane linkages of 925 
MDA based PU but not HDI- and HMDI-based PU. Gamerith et al., used liquid 926 
chromatography/electrospray/time-of-flight mass spectrometry (LC/ESI/TOF-MS) and also 927 
detected MDA as well as MDA derivatives after the hydrolysis of a polyester PU incubated with a 928 
Nocardia farcinica polyamidase enzyme. Using the same procedure, Magnin et al., quantified 929 
MDA at 0.3 mg/L after incubation of a PCL-based TPU for 50 days with an amidase (Magnin et al., 930 
2019). 931 

NMR analysis was used for the identification of degradation products from the enzymatic 932 
hydrolysis of a polyester PU based on PCL. 6-hydroxycaproic acid was predominantly identified 933 
showing the efficient depolymerization of the ester linkage of the SS into the constitutive building 934 
block by the esterase E3576 (Magnin et al., 2019).  935 

 936 

Figure 16 – Degradation products identified after PU biological degradation 937 

 938 

6. Conclusion: The challenge of PU biological degradation: the 939 

urethane bond hydrolysis 940 

PU are versatile polymers with high variability of structures, chemical compositions, formulations, 941 
morphologies, shapes, with a direct impact on the biodegradation mechanisms and kinetics. From 942 
the published literature, a large variety of potential or efficient biological degrading entities can 943 
be identified among fungi, bacteria or enzymes. Because of the diversity of substrates and 944 
analytical tools, a direct comparison of these degrading entities does not appear as an easy task. 945 
Microbial degradation of PUs remains a complex and rather obscure process. For instance, 946 
analysis of the set of enzymes produced by microorganisms during degradation often fails to 947 
understand the mechanisms involved in PU degradation. 948 

To tackle the degradation of the widest range of PU, the urethane bond cleavage appears as the 949 
key parameter. However, only a few techniques provide undeniable proof of urethane bond 950 
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cleavage. Detection of amines derived from isocyanates as degradation products seems to be the 951 
main direct way to prove urethane bond hydrolysis. For that purpose, the recent development of 952 
new techniques such as LC/ESI/TOF-MS helps going forward in the resolution of this issue. Once 953 
mastered, the efficient enzymatic hydrolysis of the urethane bond will undoubtedly pave the way 954 
for a biological recycling of PU. Indeed, besides giving information on the degradation mechanism, 955 
released molecules resulting from PU biological depolymerization can also be considered as 956 
valuable products and used as building blocks for second-generation polymer synthesis. In the 957 
review of Cregut et al., the economic value of major building blocks was evaluated, showing the 958 
interest of recovering molecules such as diethylene glycol, adipic acid or trimethylol propane, 959 
which are products often identified after PU biological degradation (Figure 16) (Cregut et al., 960 
2013). 961 

Applicability of the biological recycling on mainstream PU waste still needs to be attested. As far 962 
as we know, only one study deals with the biodegradation of a real PU waste. Gautam et al., 963 
described the successful degradation of a waste polyester PU foam with a strain of Pseudomonas 964 
chlororaphis (Gautam et al., 2007c). Attempts to work with “real” PU waste (and no PU-based 965 
models) have recently been performed by Alvarez-Barragan et al. by studying the degradation of 966 
polyether-PU foam synthesized with and without the addition of a fire retardant tris(1,3-dichloro-967 
2-propyl)phosphate (TDCPP) (Álvarez-Barragán et al., 2016). The TDCPP-containing foam was 968 
found to be less sensitive to biodegradation thus highlighting the need for considering thoroughly 969 
the presence of additives in real PU biological degradation assessment. 970 

Polluting waste management such as landfilling will no longer be suitable solution. Limitation of 971 
the pollution linked to PU waste is an outcome deeply needed and expected from recycling. An 972 
efficient biological recycling path for PUs will support the economic value of PU waste towards 973 
the development of a circular economy for plastic material. 974 
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