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Abstract: In this work, we consider a model of the biodenitrification process taking place in a
spatially-distributed bioreactor, and we take into account the limitation of the kinetics by both the
carbon source and the oxidized nitrogen. This model concerns a single type of bacteria growing on
nitrate, which splits into adherent bacteria or free bacteria in the liquid, taking all interactions into
account. The system obtained consists of four diffusion-convection-reaction equations for which we
show the existence and uniqueness of a global solution. The system is approximated by a standard
finite element method that satisfies an optimal a priori error estimate. We compare the results
obtained for three forms of the growth function: single substrate limiting, “multiplicative” form,
and “minimum” form. We highlight the limitation of the ‘ single substrate limiting model”, where the
dependency of the bacterial growth on the nitrate is neglected, and find that the “minimum” model
gives numerical results closer to the experimental results.

Keywords: modeling; biodenitrification; convection-diffusion-reaction equations; finite element method

1. Introduction

The biodenitrification process (degradation of nitrite and nitrate into gaseous nitrogen) is realized
by heterotrophic microbial ecosystems. In the absence of oxygen, such ecosystems use oxidized
nitrogen (NO2 and/or NO3) instead of oxygen as an electron acceptor while they need an organic
carbon source for their growth. Mccarthy [1] and Payn [2] described the process of biodenitrification
as a respiratory process in which certain bacteria (so-called denitrifying bacteria) use nitrates instead
of oxygen as an acceptor of electrons, intended to provide energy for cell activity and the synthesis of
new cells. The process generally takes place under conditions called anoxic, i.e., when the dissolved
oxygen is replaced by another electron acceptor. From a thermodynamical viewpoint, nitrates are the
best acceptor of electrons that can replace oxygen so that they should be considered in the modeling as
a limiting compound. Most standard models of microbial growth in laboratory bioreactors, such as the
chemostat or the piston flow reactor, take into account the tendency of bacteria to adhere to surfaces
and thus form biofilm (cf. [3,4]); however, such models neglect the possible diffusion of attached
biomass. In reality, the bacterial population consists of cells suspended in the fluid termed planktonic
or free cells, and cells adhering to the surface, termed adherent cells. At any time, planktonic cells can
adhere to the walls forming biofilms, while adherent cells can detach from the biofilm (due to erosion
and sloughing) and move into the planktonic cell compartment. Earlier (see [5]), we considered a
model of the biodenitrification process taking place in a spatially-distributed bioreactor with a single
type of bacteria growing on nitrate and that splits into adherent and free bacteria in the liquid, taking all
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interactions into account. We considered that the growth function µ(·) depends only on the nutrient
concentration S following the Monod law:

µ(S) = µS
max

S
S + KS

, (1)

so the nitrates’ concentration, SN , was not considered as a limiting substrate. Generally, in the case
of the existence of two limiting substrates, the growth function µ(·) can take various forms (see [6])
depending on the relationship among its nutrients. Among the most frequently used forms, we cite two
formulas that are used when the two limiting resources are both essential (i.e., are needed). The first,
called the multiplicative formula, is given by:

µ(S1, S2) =

(
µ1

max
S1

S1 + K1

)(
µ2

max
S2

S2 + K2

)
(2)

and the second, called the minimum formula, is given by:

µ(S1, S2) = min
(

µ1
max

S1

S1 + K1
; µ2

max
S2

S2 + K2

)
, (3)

where S1, S2 are the two limiting substrates and K1, K2 are respectively the associated
half-saturation indices. Charpentier, Ch. et al. [7] (2008) used a slightly different multiplicative formula.
Stewart, H.A. et al. [8] (2017) compared three dual limitation models (multiplicative, minimum,
and Bertolazzi) based on experiments considering two bacteria types, where the growth of the first
one is limited by dissolved oxygen and nitrite, whereas the growth of the second by ammonium and
nitrite.

In this work, we provide a comparison between the three formulas. We will first study the limit of
the model with µ(·) given by (1), by comparing it to the case where nitrates are considered as a limiting
substrate; it emerges that this first model remains valid up to a threshold beyond which the results are
no longer valid. Currently, the multiplicative model is the most commonly used as it is continuous,
smooth, and easy to handle in numerical simulations. We will compare the two Formulas (3) and (2),
especially in the presence of the diffusion, which pertains to our case, and show, via numerical tests,
that (3) gives better results than others reported in the literature.

In the second section, we recall the mathematical model represented by a non-linear coupled
system of four equations, before introducing the hypotheses. In the third section, we give the analysis
of the existence of solutions and the approximated problem by a standard finite element method. In the
last section, some numerical tests are presented where the advantage of the growth function (3) is
highlighted by comparisons with previous simulations obtained with (1) and (2).

2. Mathematical Model

Let Ω be an open set of R2 with a regular enough boundary ∂Ω = Γ, which is divided into three
parts Γ1, Γ2 and Γ3:

Γ = Γ1 ∪ Γ2 ∪ Γ3.

We suppose that Ω contains nitrified water, denitrifying bacteria, and a nutrient. The flow of
the nitrified water comes from Γ1 and goes through Γ2; we assume that the flow is permanent with a
velocity u. The impermeable part of the boundary is Γ3. In the reactor, the bacteria will be divided into
two categories: those that adhere to the walls of the reactor to form a biofilm, which is assumed to
be a monolayer, and those that remain mobile and free in the medium, called planktonic cells. For a
given T, let the space-time domain defined by:

QT := Ω× ]0, T] , with the boundary ΣT = Γ× ]0, T] .
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We denote by bm the density of the mobile bacteria and by b f the surface density of bacteria
adhering to the walls, with a maximum value denoted by w∞. The proportion of the occupation of the
wall is a number between zero and one defined by the ratio:

b̄ f =
b f

w∞
.

The function µi(·) is the growth rate of bi, for i = f , m, and S is the concentration of the limiting
substrate. According to [5], the equation modeling the evolution of adherent bacteria is given by:

∂b f

∂t
=

(
µ f (S)G(b̄ f )− k f − β

)
b f + α

(
1− b̄ f

)
γbm, (4)

where:

• k f denotes the adherent bacteria mortality rate;
• β denotes a term corresponding to the detachment rate from the wall.
• A portion of the mobile category can attach to the walls with a certain rate that is denoted by α.
• G(b̄ f ) denotes the proportion of daughter cells of the fixed bacteria able to find a place to attach

onto the wall, the remainders being washed out by the liquid flow (cf. [9]).
• γ is the coefficient of conversion of the volume density to the surface density.

For the mobile bacteria, the equation modeling their evolution according to [5] is given by:

∂bm

∂t
=

(
µm(S)− km − α

)
bm + γ−1b f

(
µ f (S)(1− G(b̄ f )) + β

)
, (5)

where k f denotes the free bacteria mortality rate.

The degradation of the nutrient S and of the contaminant SN is governed by the equations (cf. [10,11]):

∂S
∂t

= − 1
Ym

bmµm(S)−
1

Yf
γ−1b f µ f (S), (6)

∂SN
∂t

= − R
Ym

bmµm(S)−
R
Yf

γ−1b f µ f (S), (7)

where:

• Yi, for i = m, f , is respectively the coefficient rate of yield of mobile and fixed bacteria, defined as
the ratio of the bacterial mass produced (in g or mol) by the mass of the substrate consumed (in g
or mol),

• R is the rate of the degradation of nitrates.

We will give now some comments about the coefficients G and µi for i = f , m. According to the
form considered by Freter ([9,12]), let:

G(X) =
1− X

a + 1− X
,

where a is a small positive number.
The most used expression for the growth rate is the Monod law [13] given by (1). In the present

work, we take into account the fact that the bacteria need both carbon and nitrate to grow. We consider
the growth rates depending on two limiting nutrients S and SN according to the Formulas (3) and (2).
Equations (4)–(7) are now considered with the growth rates µi(·), for i = m, f , given in (2) for the
analysis part. In the numerical simulations, we consider a comparison between the Formulas (3) and (2).
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The functions G and µi(·) in (1) and (2) satisfy the following hypothesis:

Hypothesis 1. The growth rate of bacteria µi(S, SN), for i = f , m, satisfies:

µi ∈ C1, µi(0, SN) = µi(S, 0) = 0.

Hypothesis 2. The function G satisfies:

G ∈ C1, 0 < G(0) ≤ 1, G(1) = 0.

The rate of change of concentrations due to diffusion is represented by terms of the form D∇c,
where c is the concentration or density and D is the diffusion coefficient. The transport is represented
by terms of the form cu, where u is the velocity. We obtain a system of four equations, defined in
QT . The first one is a reaction-diffusion equation, and the others are reaction-convection-diffusion
equations in which the transport velocity is u. Equations (4)–(7) become in the time-space variables:

∂b f

∂t
− div(D f∇b f ) =

(
µ f (S, SN)G(b̄ f )− k f − β

)
b f + αγ(1− b̄ f )bm,

∂bm

∂t
− div(Dm∇bm − u · bm) =

(
µm(S, SN)− km − α(1− b̄ f )

)
bm

+

(
µ f (S, SN)(1− G(b̄ f )) + β

)
γ−1b f ,

∂S
∂t
− div(D1∇S− u · S) = −

(
µm(S, SN)

Ym

)
bm −

(
µ f (S, SN)

Yf
γ−1

)
b f ,

∂SN
∂t
− div(D2∇SN − u · SN) = −

(
Rµm(S, SN)

Ym

)
bm

−
(

Rµ f (S, SN)

Yf
γ−1

)
b f .

In order to describe the time evolution of the variables b f , bm, S, and SN completely, we have to
specify the behavior of these variables on the boundary of the domain. Let n be the outward normal
vector to the boundary Γ. By the definition of fixed bacteria, there is no flux across the entire boundary
of the domain:

∂b f

∂n
= 0 on Γ× ]0, T[ . (8)

In order to maintain the growth of the bacteria, we continuously inject from Γ1 the substrate with
the density Sin. The boundary conditions used on Γ1, which models flow continuity, assuming that the
concentrations are uniform outside, are Robin’s type, also called Danckwerts [14]:

− D1∇S · n + (u · n)S = (u · n)Sin on (Γ1 × ]0, T[). (9)

At the output, the flow of S is uniform, and the condition on Γ2 is then given by:

− D1∇S · n + (u · n)S = 0 on (Γ2 × ]0, T[). (10)

On the impervious part Γ3, it is natural to consider:

∇S · n = 0 on (Γ3 × ]0, T[). (11)
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For bm, similar reasoning leads to the following boundary conditions:

− Dm∇bm · n + (u · n)bm = 0 on ((Γ1 ∪ Γ2)× ]0, T[), (12)

∇bm · n = 0 on (Γ3 × ]0, T[). (13)

The nitrified water contained in Ω comes from Γ1 with a velocity flow u and is withdrawn with
the same flow from the part Γ2 of the boundary. The concentration of nitrates thus verifies the following
boundary conditions:

− D2∇SN · n + (u · n)SN = (u · n)Sin
N on (Γ1 × ]0, T[), (14)

− D2∇SN · n + (u · n)SN = 0 on (Γ2 × ]0, T[), (15)

∇SN · n = 0 on (Γ3 × ]0, T[). (16)

To close this system, we define the initial conditions. At t = 0, the domain Ω contains nitrified
water with an initial density S0

N , planktonic bacteria with a density b0
m, adherent bacteria with a density

b0
f , and a carbon source with an initial density S0 :

SN(x, 0) = S0
N in Ω, (17)

bm(x, 0) = b0
m in Ω (18)

b f (x, 0) = b0
f in Ω, (19)

S(x, 0) = S0 in Ω. (20)

We suppose that:
S0

N ≥ 0, b0
m ≥ 0, b0

f ≥ 0 and S0 ≥ 0.

3. Analysis and Approximation

The usual space Lp(Ω), for 1 ≤ p < ∞, is defined by:

Lp(Ω) :=

{
f : ‖ f ‖p,Ω :=

(∫
Ω
| f |p

)1/p
< ∞

}
.

The norm in L2(Ω) is denoted by ‖ f ‖0,Ω=
(∫

Ω | f |2
) 1

2 . For p = ∞, the space L∞(Ω)

is defined by L∞(Ω) = { f : supΩ ess | f |< ∞} , equipped with the norm ‖ f ‖∞= supΩ ess| f |.
If X is a Banach space, Lp(0, T; X) is the set of the measurable functions in X such that

‖ f ‖Lp(0,T;X) :=
(∫ T

0 ‖ f ‖p
X

)1/p
< ∞. For p = ∞ ‖ f ‖L∞(0,T;X):= supx∈Ω ‖ f ‖X . Let H1(Ω) be

the usual Sobolev space of the first order defined by:

H1(Ω) :=
{

v ∈ L2(Ω) /∇v ∈
(

L2(Ω)
)n}

,

equipped with the standard norm: ‖v‖1,Ω :=
(
‖v‖2

0,Ω + ‖∇v‖2
0,Ω

)1/2
, and H−1(Ω) be its topological

dual. From now on, we adopt the following notations:

C = (c1, c2, c3, c4) := (b f , bm, S, SN) and C0 = (b0
f , b0

m, S0, S0
N). (21)

‖C‖0,Ω =

(
4

∑
i=1
‖ci‖0,Ω

)
and ‖ C ‖1,Ω=

(
4

∑
i=1
‖ ci ‖1,Ω

)
.
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We put:

F1(C) :=
(

µ f (S, SN)G(b̄ f )− k f − β

)
b f + αγ(1− b̄ f )bm,

F2(C) :=
(

µm(S, SN)− km − α(1− b̄ f )

)
bm +

(
µ f (S, SN)(1− G(b̄ f )) + β

)
γ−1b f ,

F3(C) := −
(

µm(S, SN)

Ym

)
bm −

(
µ f (S, SN)

Yf
γ−1

)
b f ,

F4(C) := −
(

Rµm(S, SN)

Ym

)
bm −

(
Rµ f (S, SN)

Yf
γ−1

)
b f ,

and:
F := (F1, F2, F3, F4).

The global fluxes are defined by:

J1(c1) := D f∇b f ,
J2(c2) := Dm∇bm − ubm,
J3(c3) := D1∇S− uS,
J3(c4) := D2∇SN − uSN .

The boundary operator will be denoted by B := (B1, B2, B3, B4) with:

Bi(ci) =

{
Ji(ci) · n on Γ1 ∪ Γ2 for i = 2, 3, 4
∇ci · n on Γ3 for i = 2, 3, 4 and on Γ for i = 1.

Let g := (0, 0, g3, g4) with:

g3 =

{
u · n Sin on Γ1

0 on Γ2 ∪ Γ3
and g4 =

{
u · n Sin

N on Γ1

0 on Γ2 ∪ Γ3.

With these notations, the quasilinear diffusion-convection system (8)–(20) becomes:
∂ci
∂t
− div(Ji(ci)) = Fi(C) in QT , for i = 1, 2, 3, 4

B(C) = g on ΣT
C(0, ·) = C0 in Ω.

(22)

3.1. Existence Theorem

Since C is in (L∞(Ω))4 and Fi is in C1(R4) (in the case when we use the Formulas (1) or (2)) for
1 ≤ i ≤ 4, the classical local existence result is well known (see [15]). There exists T > 0 and a unique
classical solution of (22) in

(
C([0, T]; L1(Ω))

)4 ∩ (L∞([0, T − τ]×Ω))4, for all τ ∈ (0, T). To show the
global existence and uniqueness of the weak solution of (22), the functions Fi for i = 1, . . . , 4 have to
satisfy some hypothesis. The first one is the quasi-positivity of Fi.

Lemma 1. For 1 ≤ i ≤ 4, the functions Fi are in C1(R4) and satisfy the quasi-positivity property:

For cj ≥ 0, j = 1, . . . , 4, Fi(C) ≥ 0 whenever ci = 0.

Proof of Lemma 1. Since G, µ f , and µm are in C1, so is Fi, for 1 ≤ i ≤ 4. The quasi-positivity is
immediately obtained for non-negative densities b f , bm, S, and SN .
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The second essential property of the reaction term F is the “triangular” structure of F defined in
the following lemma. We recall that in our problem, F does not depend explicitly on (t, x) ∈ QT .

Lemma 2. There exists a lower triangular invertible matrix M = (mij)1≤i,j≤4 with non-negative diagonal
entries and a vector V in R4

+ such that:

∀C ∈ ([0,+∞))4 , MF(C) ≤
(

1 +
4

∑
i=1

ci

)
V (23)

(where the inequality stands component by component).

Proof of Lemma 2. In the definition of F1 and F2, the coefficients of the variables bm and b f are both
positive, and we can consequently write, for all x ∈ Ω:

F1(C) ≤ max
(
(µ f G(b̄ f )− k f − β); (αγ(1− b̄ f )

)
(bm + b f )

F2(C) ≤ max
(
(µm − km − α(1− b̄ f ); (µ f (1− G(b̄ f )) + β)γ−1

)
(bm + b f ).

Let:

v1 := max
(
(µ f G(b̄ f )− k f − β); (αγ(1− b̄ f )

)
,

v2 := max
(
(µm − km − α(1− b̄ f )); (µ f (1− G(b̄ f )) + β)γ−1

)
,

V := (v1, v2, 1, 1). (24)

Since S and SN are positive and F3 and F4 are negative, we obtain for i = 1, 2, 3, 4:

Fi(C) ≤ vi(b f + bm + S + SN) ≤ vi(1 + b f + bm + S + SN). (25)

We take M as the identity matrix to obtain (23).

The third essential property considered for the reaction term F is the “polynomial growth”
structure of F defined in the following lemma.

Lemma 3.
∀T > 0, ∃L > 0, p > 0 : ∀i, ∀y ∈ ([0,+∞[)4, |Fi(y)| ≤ L(1 + |y|p), (26)

where | · | is the euclidean norm in R4.

Proof of Lemma 3. This is a consequence of (25) by taking p = 1 and M = max
1≤i≤4

vi.

Lemmas 1–3 allow us to have the result of the global existence and uniqueness of the weak
solution, in the following theorem (see Theorem 1 in [16]).

Theorem 1. The problem (22) has a unique global non-negative weak solution in the following: sense
∀T > 0, C ∈

(
C([0, T] ; L2(Ω)) ∩ L∞(QT) ∩ L2(0, T; H1(Ω))

)4 ,

∀Ψ = (ψ1, ψ2, ψ3, ψ4) ∈
(
C∞(QT)

)4 such that Ψ(T) = 0, for i = 1, 2, 3, 4

−
∫

QT

ci
∂ψi
∂t

+
∫

QT

Ji(ci) · ∇ψi =
∫

QT

Fi(C)ψi +
∫

Ω
c0

i ψi(0) +
∫

ΣT

giψi.
(27)
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Moreover, for any T > 0, there exists: M > 0 depends on T, c0, u, and V defined by (24) such that:

‖C‖(L∞(QT))4 + ‖C‖(L2(0,T;H1(Ω)))4 +

∥∥∥∥∂C
∂t

∥∥∥∥
(L2(0,T;H−1(Ω)))4

≤ M (28)

3.2. Approximation

By taking the test function Ψ in (D(QT))
4, then in (D(QT))

4, and using some integration by
parts, it is standard to see that the weak solution of the last theorem is a solution of the system (22) in
(D′(QT)

4) (the distribution space). Now, to give an approximation of this solution by a finite element
method, we consider the following formulation obtained from (22) by integration by parts. It reads:

Find C ∈
(

L2(]0, T[; L2(Ω)) ∩ L2(0, T; H1(Ω))
)4 such that for a.e. t ∈]0, T[

d
dt

∫
Ω

ci(t)ψi +
∫

Ω
Ji(ci(t)) · ∇ψi =

∫
Ω

Fi(C(t))ψi +
∫

Γ
giψi, ∀Ψ ∈

(
H1(Ω)

)4

C(0) = C0.

(29)

In order to have a (H1(Ω))4-elliptic bilinear form, we transform the problem by using the
following augmented bilinear form:

ãi(u, v) =
∫

Ω
Ji(u) · ∇v + γ

∫
Ω

uv (30)

where γ = inf
1≤i≤4

Di, which is H1-elliptic if ‖u‖∞ ≤ 2γ. Indeed, we have:

for i = 1, ã1(v, v) = D1‖∇v‖2
0,Ω + γ‖v‖2

0,Ω ≥ γ‖v‖2
1,Ω,

For 2 ≤ i ≤ 4, ãi(v, v) = Di‖∇v‖2
0,Ω −

∫
Ω

vu · ∇v + γ‖v‖2
0,Ω

≥
(

Di −
‖u‖∞

2

)
‖∇v‖2

0,Ω +

(
γ− ‖u‖∞

2

)
‖v‖2

0,Ω

≥
(

γ− ‖u‖∞

2

)
‖v‖2

1,Ω.

The problem is then transformed as follows. Let Φ = (φ1, φ2, φ3, φ4), with φi = exp (−γt)ci,
and let g̃i = exp (−γt)gi and Gi(Φ) = exp (−γt)Fi(exp (γt)Φ). The problem (29) is equivalent to the
system: for a.e. t ∈]0, T],

find Φ(t) ∈
(

H1(Ω)
)4 such that for i = 1, . . . , 4

d
dt

∫
Ω

φi(t)ψi + ãi(φi(t), ψi) =
∫

Ω
Gi(Φ)ψi +

∫
Γ

g̃iψi, ∀ψi ∈ H1(Ω),

Φ(0) = C0.

(31)

The discretization of the problem (31) is based on two steps: the space discretization
(or semi-discretization), which is made by a finite element method of degree one, and the time
discretization, which uses the backward Euler scheme.

3.2.1. Semi-Discretization

Let Th =
⋃
T

T be a family of regular triangulations of Ω, where T is a triangle and hT its diameter.

We denote h = max
T∈Th

diam(T). let P1(Th) and Vh be defined respectively by:

P1(Th) =
{

v ∈ C(Ω) | v |T∈ P1(T), ∀T ∈ Th
}

and Vh = (P1(Th)))
4 ,
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where, for each T ∈ Th, P1(T) stands for the space of restriction to T of polynomial functions of
degree one.

The semi-discrete problem associated with (31) is given, for a.e. t ∈]0, T], by:
Find Φh(t) ∈ Vh such that for i = 1, . . . , 4
d
dt

∫
Ω

φih(t)ψih + ã(φih, ψih) =
∫

Ω
Gi(Φh(t))ψih +

∫
Γ

g̃iψih, ∀ψih ∈ P1(Th),

Φh(0) = ΠhΦ0,

(32)

where Πh is a projection operator on Vh. Let t̄ ∈]0, T]. To give an a priori error estimate for a local
solution of the semi-discretized problem (32), we consider a finite time interval J̄ = (0, t̄].

The error estimates in the L2-norm are based on the elliptic projection: for all t ∈ [0, t̄] and for all
0 ≤ i ≤ 4, let ωih(t) be the elliptic projection of the exact solution φi on P1(Th) defined by:

ãi(ωih(t)− φi(t), χ) = 0, ∀χ ∈ P1(Th), (33)

where ãi(·, ·) is defined in (30). Following the technique of Thomée [17], we can prove the
following theorem.

Theorem 2. Let Φ and Φh be the solutions of (31) and (32), respectively, and let ΠhΦ0 be the elliptic operator
defined by (33) for t = 0. We assume that ‖u‖∞ < 2γ. Then, we have:

‖ Φ(t)−Φh(t) ‖0,Ω≤ L(Φ)h2, for t ∈ J̄,

where L(Φ) is a non-negative constant and depends on t and the solution Φ, but independent of h.

3.2.2. Full Discretization

We consider the discretization of [0, T] given by 0 = t0 < t1 < ... < tN = T and put τn = tn − tn−1

and τ = max
1≤n≤N

τn. For all k, 0 ≤ k ≤ N, and all i, 1 ≤ i ≤ 4, we use the notation:

{
φk

i := φi(tk)

Φk
h := Φh(tk) = (φk

h1, φk
h2, φk

h3, φk
h4).

(34)

The derivative with respect to time is approximated by the backward Euler scheme given by the
following difference quotient:

∂φi
∂t

(tn) '
φn

i − φn−1
i

τn
.

To linearize the reaction term and have decoupled equations, we consider at time t = tn the
reaction term at time t = tn−1. The system (32) is then fully approximated by the following implicit
Euler scheme:

for 1 ≤ n ≤ N, find Φn
h ∈ Vh such that for i = 1, . . . , 4

∫
Ω

φn
ih − φn−1

ih
τn

ψih + ã(φn
ih, ψih) =

∫
Ω

Gi(Φn−1
h )ψih +

∫
Γ

g̃iψih, ∀Ψ ∈ Vh

Φ0
h = Πh(Φ0).

(35)

The error estimate for the fully approximated problem is given in the following theorem. The proof
follows also the technique of Thomée.
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Theorem 3. Let Φn
h and Φ be the solutions of (35) and (31), respectively. Then, there exists a constant M̄

depending on Φ, but independent of h and τ such that:

‖Φn
h −Φ(tn)‖0,Ω ≤ M(Φ)(h2 + τ). (36)

Remark 1. The estimates of Theorem 3 remain valid for Ch since we have Φh = exp(−γt)Ch. Therefore,
in the numerical tests, we use the following approximated problem:

for 1 ≤ n ≤ N, find Cn
h ∈ Vh such that for i = 1, . . . , 4

∫
Ω

cn
ih − cn−1

ih
τn

ψih +
∫

Ω
Ji(cn

ih) · ∇ψih =
∫

Ω
Fi(Cn−1

h )ψih

+
∫

Γ
giψih, ∀ψih ∈ P1(Th),

C0
h = Πh(C0),

(37)

4. Numerical Tests

In this section, we consider a domain Ω ⊂ R2 defined by Ω =]0, 3[×]0, 1[, Γ1 = {0} × [0, 0.3] and
Γ2 = {3} × [0.7, 1] (see Figure 1).

Figure 1. Domain.

We assume that Ω is a porous medium, hereafter denoted the “reactor” Ω, into which we inject
some water containing nutrients, sources of both nitrate and a carbon with concentrations Sin

N and Sin,
respectively. In this case, the flow in Ω is governed by Darcy’s equation, given in its mixed form by the
system: find (u, p) ∈ H(div; Ω)× L2(Ω), with u · n = u0 on Γ1 ∪ Γ2 such that:

∫
Ω

K−1u · v +
∫

Ω
div v p =

∫
Γ2

v · npD, ∀v ∈ V∫
Ω

div u q +
∫

Ω
f q = 0, ∀q ∈ L2(Ω),

(38)

where H(div; Ω) :=
{

v ∈ (L2(Ω))2/div v ∈ L2(Ω)
}

and V := {v ∈ H(div; Ω)/v · n = 0 on Γ1 ∪ Γ2},
K is the hydraulic conductivity of the medium, u0 is the given flux on Γ1, and pD is the given pressure
on Γ2. This problem will be approximated by the mixed finite element method of Raviart–Thomas
with the lowest order (see [18]). The resolution of this system gives the velocity u, which is needed to
resolve our system (37). All the resolutions will be done with the FreeFem ++ software [19] with the
mesh of Figure 2 and the curves drawn using MATLAB.
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Figure 2. Mesh.

We consider the initial data given in [20] and the parameters of the system (22) given in [7].
These parameters are summarized in Table 1.

Table 1. Model parameter values used for the simulations.

Parameters Values Parameters Values Initial Conditions Values

D1 0.3 cm2/h µ
f
max 0.7 h−1 b0

f 10 g/cm2

D2 0.4 cm2/h Ym 0.5 b0
m 10 g/mL

Db 0.4 cm2/h Yf 0.5 Sin 104 mg/L
D f 0.2 cm2/h β 0.2 h−1 Sin

N 100 mg/L
α 0.02 h−1 T 100 days K0 0.865 cm/h

w∞ 50 g/cm2 R 1.2 S0 104 mg/L
− − K f

S 54 mg/L S0
N 100 mg/L

km 0.005 h−1 Km
S 54 mg carbon/L − −

kb 0.005 h−1 Km
SN

50 mg NO−3 /L − −
µm

max 0.7 h−1 K f
SN

50 mg carbon/L − −

The hydraulic conductivity changes due to the evolution of the fixed bacteria. We use the
following relation, given in [21], to describe the evolution of the hydraulic conductivity with respect to
this evolution:

K(b f ) = K0
(

1− b f
w∞

)nk
,

where K0 is the initial conductivity and nk is a given parameter. At the first time step, we resolve
the system (38) with K0, which gives the first velocity u, and then, the system (37) to obtain
(b(1)f , b(1)m , S(1), S(1)

N ). Then, at each subsequent time step tn, for n ≥ 2, the algorithm is as follows: given

(b(n−1)
f , b(n−1)

m , S(n−1), S(n−1)
N ), we resolve the system (38) with K(b(n−1)

f ) to obtain the new velocity,

and we resolve the system (37) to obtain (b(n)f , b(n)m , S(n), S(n)
N ), until tn = T.

We call Models 1, 2, and 3 the models defined with the functions (1), (2), and (3), respectively,
and we give some comparison between these models. Using growth function (1), which is dependent
only on carbon as in [5], can give rise to problems for some situations. For example, in the case
where Sin

N = 0, we come across negative values of the nitrate concentration, which is nonsense.
Figures 3 and 4 give the evolution of the concentrations obtained with Models 1 and 2, near Γ1 and Γ2,
respectively. In both sides of the reactor, the concentration of nitrate becomes negative for Model 1,
while it remains positive for Model 2. Model 3 also gives a non-negative concentration for Sin

N = 0.
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Figure 3. Concentrations for Models 1 and 2 at point (0.1, 0.1) for Sin
N = 0.

Figure 4. Concentrations for Models 1 and 2 at point (2.9, 0.8) for Sin
N = 0.

In Figure 5, we plot the concentrations for Models 2 and 3 near Γ2 for Sin
N = 0: for both models,

the concentration of nitrate remains positive. These foregoing conclusions also hold for small values
of Sin

N , as we can see in Figure 6, which represents the evolution of the concentrations of nitrate and
carbon near Γ2 with Sin

N = 20, for all three models.
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Figure 5. Concen trations for Models 2 and 3 at point (2.9, 0.8) for Sin
N = 0.

Figure 6. Concentrations of carbon and nitrates for the three models at point (2.9, 0.8) for Sin
N = 20.

In addition, it was shown in [22] that the ratio between the carbon used and the nitrate degraded
remains constant throughout the experiment. In the curve representing SN with respect to S given
in Figure 7, this conclusion is satisfied for Model 2, but not for Model 1, at least after about 80 days.
We conclude that the domain of validity of Model 1 is more reduced than that of Model 2 or Model 3.
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Figure 7. SN with respect to S.

We will now consider a larger Sin
N than in the previous cases. The simulations of the

evolution of the concentrations of the four components—the nitrate, the nutrient, the free, and the
adherent—at the point (1.5,0.5) with T = 300 days, are represented in Figure 8 for Models 1 and 2.
We observe that the results achieved using Model 1 better agree qualitatively with the experimental
results given by Chevron [20] (see Figure 25 and page 104) compared to the other two models.
Specifically, the percentage of nitrate removal stabilizes by 95 percent in 80 days of reactor operation.
Indeed, Figure 8 shows that, in Model 1, ninety percent of nitrates are removed in about 80 days,
whereas Model 2 seems to be less consistent with these experimental results and would need additional
parameter calibration. The comparison between the concentrations of nitrate and carbon for the three
models is given in Figure 9.

Figure 8. Concentration for Models 1 and 2 at point (1.5, 0.5) for Sin
N = 100.
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Figure 9. Concentrations of carbon and nitrates for the three models at point (2.9, 0.8) for Sin
N = 100.

We observe that Model 1 and Model 3 concur with the experimental results. From all these
observations, we can posit that the growth function (3) (the minimum formula) seems to be more
suitable for our problem than (1) and (2). We explain the fact that Model 1 also gives good results by
the fact that when Sin

N is large enough, it prevents the nitrate from becoming negative, giving:

µS
max

S
S + KS

= min(µS
max

S
S + KS

; µSN
max

SN
SN + KSN

),

while small Sin
N gives a negative concentration because:

min(µS
max

S
S + KS

; µSN
max

SN
SN + KSN

) = µSN
max

SN
SN + KSN

.

In [8], for another problem, the authors gave a comparison between three formulas, including the
minimum and multiplicative formulas, and found that the minimum formula concurs better with the
experimental results. In the literature, the Formulas (3) and (2) are generally presented as equivalent.
If we consider the system (22) with only the reaction terms, i.e., the non-spatialized model, which is
a system of Ordinary Differential Equations (ODE), we notice that these formulas do indeed give
equivalent results, as can be seen in Figures 10 and 11.

Figure 10. Concentrations of the ODE model using the minimum and the multiplicative
formulas (T = 50 day).



Processes 2020, 8, 890 16 of 17

Figure 11. Concentrations of the ODE model using the minimum and the multiplicative
formulas (T = 300 day).

These last figures are obtained using a Runge–Kutta scheme for ODE. The difference between the
two cases is found mainly at the start of the calculations (first five days). Furthermore, it can be seen
that the nitrate elimination rate stabilizes at 75%, which is a long way from the experimental results.
We conclude that: firstly, the introduction into the equation of the diffusion and transport gives a
more realistic model, and secondly, Formula (3) is better than (2) (as mentioned above). This can be
explained by the fact that (2) can create a numerical (not physical) diffusion, as shown in Figures 8 and 9.

5. Conclusions

In this work, we present the impact of different forms of growth rate functions (1)–(3) on the
numerical results of a spatialized model of the denitrification process in a porous media. In particular,
we take into account both free and adherent bacteria. This model is composed of four coupled
non-linear partial differential equations (PDEs) related to biological phenomena. We establish the
existence and uniqueness of the weak solution of this system with Formulas (1) and (2). We show
that the first one, which depends on one substrate only, gives satisfactory results as long as the
nitrate concentration remains positive (for large values of Sin

N ). For the second growth rate expression,
which takes both substrate concentrations into account and which is the most commonly used in the
literature, the numerical results are valid whatever the values of Sin

N . However, this second expression
seems to be less consistent with the experimental results, even in the case where ODE models using
Formulas (2) and (3) give equivalent results. We found that the growth function (3) is the most suitable
for our PDE model since numerical tests have shown that the minimum form gives results closer to
those of the experiment.
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