F. Costa, J. E. Hagan, J. Calcagno, M. Kane, P. Torgerson et al., Global morbidity and mortality of Leptospirosis: a systematic review, PLoS Negl Trop Dis, vol.9, 2015.

C. Yang, Leptospirosis renal disease: emerging culprit of chronic kidney disease unknown etiology, Nephron, vol.138, pp.129-136, 2018.

B. Adler and A. De-la-peña-moctezuma, Leptospira and leptospirosis, Vet Microbiol, vol.140, pp.287-296, 2010.

A. I. Ko, C. Goarant, and M. Picardeau, Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen, Nat Rev Microbiol, vol.7, pp.736-747, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00450871

G. Ratet, F. J. Veyrier, M. Fanton-d'andon, X. Kammerscheit, M. Nicola et al., Live imaging of bioluminescent Leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics, PLoS Negl Trop Dis, vol.8, p.3359, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01415707

T. Vinh, B. Adler, and S. Faine, Ultrastructure and chemical composition of lipopolysaccharide extracted from Leptospira interrogans serovar copenhageni, J Gen Microbiol, vol.132, pp.103-109, 1986.

G. L. Murray, A. Srikram, R. Henry, R. A. Hartskeerl, R. W. Sermswan et al., Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence: leptospiral LPS and virulence, Mol Microbiol, vol.78, p.20807198, 2010.

J. Guglielmini, P. Bourhy, O. Schiettekatte, F. Zinini, S. Brisse et al., Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance, PLoS Negl Trop Dis, vol.13, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02938924

N. Que-gewirth, A. A. Ribeiro, S. R. Kalb, R. J. Cotter, D. M. Bulach et al., A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A: the membrane anchor of an unusual lipopolysaccharide that activates TLR2, J Biol Chem, vol.279, pp.25420-25429, 2004.

T. Scior, J. Lozano-aponte, V. Figueroa-vazquez, J. A. Yunes-rojas, U. Zä-hringer et al., Threedimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and speciesdependent activities of Lipid IVA in the mammalian LPS sensor system, Comput Struct Biotechnol J, vol.7, 2013.

M. Cinco, E. Banfi, and E. Panfili, Heterogeneity of lipopolysaccharide banding patterns in Leptospira spp, Microbiology, vol.132, pp.1135-1138, 1986.

K. P. Patra, B. Choudhury, M. M. Matthias, S. Baga, K. Bandyopadhya et al., Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species, BMC Microbiol, vol.15, p.26518696, 2015.

S. Ren, G. Fu, X. Jiang, R. Zeng, Y. Miao et al., Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing, Nature, vol.422, pp.888-893, 2003.

A. Nascimento, A. I. Ko, E. Martins, .. L. Monteiro-vitorello, C. B. Ho et al., Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis, J Bacteriol, vol.186, p.2164, 2004.

D. E. Fouts, M. A. Matthias, H. Adhikarla, B. Adler, L. Amorim-santos et al., What makes a bacterial species pathogenic? Comparative genomic analysis of the genus Leptospira, PLoS Negl Trop Dis, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01436457

A. De-la-peña-moctezuma, D. M. Bulach, T. Kalambaheti, and B. Adler, Comparative analysis of the LPS biosynthetic loci of the genetic subtypes of serovar Hardjo: Leptospira interrogans subtype Hardjoprajitno PLOS PATHOGENS Leptospiral LPS evasion of mouse TLR4-TRIF pathway, FEMS Microbiol Lett, vol.177, pp.319-326, 1999.

T. Kalambaheti, D. M. Bulach, K. Rajakumar, and B. Adler, Genetic organization of the lipopolysaccharide Oantigen biosynthetic locus of Leptospira borgpetersenii serovar Hardjobovis, Microb Pathog, vol.27, pp.105-117, 1999.

T. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses, Clinical microbiology reviews, 2009.

H. Tsukamoto, S. Takeuchi, K. Kubota, Y. Kobayashi, S. Kozakai et al., Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK?-IRF3 axis activation, J Biol Chem, vol.293, pp.10186-10201, 2018.

S. Wright, R. Ramos, P. Tobias, R. Ulevitch, and J. Mathison, CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science, vol.249, pp.1431-1433, 1990.

Z. Jiang, P. Georgel, X. Du, L. Shamel, S. Sovath et al., CD14 is required for MyD88-independent LPS signaling, Nat Immunol, vol.6, pp.565-570, 2005.

I. Zanoni, R. Ostuni, L. R. Marek, S. Barresi, R. Barbalat et al., CD14 controls the LPS-induced endocytosis of Toll-like receptor 4, Cell, vol.147, pp.868-880, 2011.

M. Nahori, E. Fournié--amazouz, N. S. Que-gewirth, V. Balloy, M. Chignard et al., Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human nells, J Immunol, vol.175, p.6022, 2005.

C. Werts, R. I. Tapping, J. C. Mathison, T. Chuang, V. Kravchenko et al., Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism, Nat Immunol, vol.2, pp.346-352, 2001.

Y. Guo, T. Fukuda, S. Nakamura, L. Bai, J. Xu et al., Interaction between Leptospiral lipopolysaccharide and Toll-like receptor 2 in pig fibroblast cell line, and inhibitory effect of antibody against Leptospiral lipopolysaccharide on interaction, Asian-Australas J Anim Sci, vol.28, p.273, 2015.

D. A. Haake, . Zü, and . Wr, The leptospiral outer membrane, Curr Top Microbiol Immunol, vol.387, pp.187-221, 2015.

G. L. Murray, The lipoprotein LipL32, an enigma of leptospiral biology, Vet Microbiol, vol.162, pp.305-314, 2013.

S. Hsu, C. Hung, M. Chang, Y. Ko, Y. et al., Active components of Leptospira outer membrane protein LipL32 to Toll-Like receptor 2, Sci Rep, vol.7, pp.1-16, 2017.

P. Ristow, P. Bourhy, C. Mcbride-fw-da, C. P. Figueira, M. Huerre et al., The OmpA-like protein Loa22 is rssential for leptospiral virulence, PLoS Pathog, vol.3, 2007.

G. Ratet, I. Santecchia, M. Fanton-d'andon, F. Vernel-pauillac, R. Wheeler et al., LipL21 lipoprotein binding to peptidoglycan enables Leptospira interrogans to escape NOD1 and NOD2 recognition, PLOS Pathog, vol.13, p.1006725, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02337055

M. L. Vieira, A. F. Teixeira, G. Pidde, A. Ching, D. V. Tambourgi et al., Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase, Virulence, vol.9, pp.414-425, 2018.

E. Isogai, H. Isogai, Y. Kurebayashi, and N. Ito, Biological activities of leptospiral lipopolysaccharide, Zentralbl Bakteriol Mikrobiol Hyg [A], vol.261, issue.86, pp.80062-80063, 1986.

F. C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat Rev Microbiol, vol.2, pp.820-832, 2004.

N. Maeshima and R. C. Fernandez, Recognition of lipid A variants by the TLR4-MD-2 receptor complex, Front Cell Infect Microbiol, vol.3, 2013.

O. Westphal, O. Lü-deritz, and F. Bister, Ü ber die Extraktion von Bakterien mit Phenol/Wasser. Z Fü r Naturforschung B, vol.7, 1952.

I. Zanoni, C. Bodio, A. Broggi, R. Ostuni, M. Caccia et al., Similarities and differences of innate immune responses elicited by smooth and rough LPS, Immunol Lett, vol.142, pp.41-47, 2012.

L. Kelly, M. M. Kubes, and P. , Varying importance of soluble and membrane CD14 in endothelial detection of lipopolysaccharide, J Immunol Baltim Md, vol.181, pp.1446-1453, 1950.

P. Y. Perera, S. N. Vogel, G. R. Detore, A. Haziot, and S. M. Goyert, CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with lipopolysaccharide or taxol, J Immunol, vol.158, pp.4422-4429, 1997.

A. Haziot, G. W. Rong, J. Silver, and S. M. Goyert, Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide, J Immunol, vol.151, pp.1500-1507, 1993.

E. Pupo, B. Lindner, H. Brade, and A. B. Schromm, Intact rough-and smooth-form lipopolysaccharides from Escherichia coli separated by preparative gel electrophoresis exhibit differential biologic activity in human macrophages, FEBS J, vol.280, pp.1095-1111, 2013.

K. Borzecka, A. Plociennikowska, H. Bjorkelund, A. Sobota, and K. Kwiatkowska, CD14 mediates binding of high doses of LPS but is dispensable for TNF-? production, Mediators Inflamm, p.824919, 2013.

M. D. Cunningham, C. Seachord, K. Ratcliffe, B. Bainbridge, A. Aruffo et al., Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD14, Infect Immun, vol.64, pp.3601-3608, 1996.

E. Hailman, T. Vasselon, M. Kelley, L. A. Busse, M. C. Hu et al., Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14, J Immunol, vol.156, pp.4384-4390, 1996.

M. Vé-drine, C. Berthault, C. Leroux, M. Répé-rant-ferter, C. Gitton et al., Sensing of Escherichia coli and LPS by mammary epithelial cells is modulated by O-antigen chain and CD14. Loor JJ, editor, PLOS ONE, vol.13, 2018.

M. Muroi and K. Tanamoto, The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-?B through human Toll-Like receptor 4, Infect Immun, vol.70, p.6043, 2002.

M. Huber, C. Kalis, S. Keck, Z. Jiang, P. Georgel et al., R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells, Eur J Immunol, vol.36, pp.701-711, 2006.

F. Sisti, J. Fernández, S. C. Higgins, A. Casabuono, A. Couto et al., A deep rough type structure in Bordetella bronchiseptica lipopolysaccharide modulates host immune responses, Microbiol Immunol, vol.55, p.22039958, 2011.

D. Ranoa, S. L. Kelley, and R. I. Tapping, Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex, J Biol Chem, vol.288, p.9729, 2013.

T. J. Sellati, D. A. Bouis, R. L. Kitchens, R. P. Darveau, J. Pugin et al., Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide, J Immunol, vol.160, pp.5455-5464, 1998.

T. J. Sellati, D. A. Bouis, M. J. Caimano, J. A. Feulner, C. Ayers et al., Activation of human monocytic cells by Borrelia burgdorferi and Treponema pallidum is facilitated by CD14 and correlates with surface exposure of spirochetal lipoproteins, J Immunol, vol.163, pp.2049-2056, 1999.

R. M. Wooten, T. B. Morrison, J. H. Weis, S. D. Wright, R. Thieringer et al., The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi, J Immunol, vol.160, pp.5485-5492, 1998.

M. Hirschfeld, C. J. Kirschning, R. Schwandner, H. Wesche, J. H. Weis et al., Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2, J Immunol Baltim Md, vol.163, pp.2382-2386, 1950.

S. Yokota, T. Ohnishi, M. Muroi, K. Tanamoto, N. Fujii et al., Highly-purified Helicobacter pylori LPS preparations induce weak inflammatory reactions and utilize Toll-like receptor 2 complex but not Tolllike receptor 4 complex, FEMS Immunol Med Microbiol, vol.51, p.17645528, 2007.

M. F. Smith, A. Mitchell, G. Li, S. Ding, A. M. Fitzmaurice et al., Toll-like Receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-?B activation and chemokine expression by epithelial Cells, J Biol Chem, vol.278, pp.32552-32560, 2003.

T. Kirikae, T. Nitta, F. Kirikae, Y. Suda, S. Kusumoto et al., Lipopolysaccharides (LPS) of oral black-pigmented bacteria induce tumor necrosis factor production by LPS-refractory C3H/HeJ macrophages in a way different from that of Salmonella LPS, Infect Immun, vol.67, pp.1736-1742, 1999.

M. Hashimoto, Y. Asai, and T. Ogawa, Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis, Int Immunol, vol.16, pp.1431-1437, 2004.

S. Hsu, Y. Lo, J. Tung, Y. Ko, Y. Sun et al., Leptospiral outer membrane lipoprotein LipL32 binding on Toll-like receptor 2 of renal cells as determined with an atomic force microscope, Biochemistry, vol.49, pp.5408-5417, 2010.

R. I. Tapping, S. Akashi, K. Miyake, P. J. Godowski, and P. S. Tobias, Toll-Like Receptor 4, but not Toll-Like Receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides, J Immunol, vol.165, pp.5780-5787, 2000.

E. Hailman, H. S. Lichenstein, M. M. Wurfel, D. S. Miller, D. A. Johnson et al., Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14, J Exp Med, vol.179, pp.269-277, 1994.

T. R. Martin, J. C. Mathison, P. S. Tobias, D. J. Letú-rcq, A. M. Moriarty et al., Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs, J Clin Invest, vol.90, pp.2209-2219, 1992.

C. Fish-low, L. Than, K. Ling, Q. Lin, and Z. Sekawi, Plasma proteome profiling reveals differentially expressed lipopolysaccharide-binding protein among leptospirosis patients, J Microbiol Immunol Infect, vol.53, pp.157-162, 2020.

R. Oldenburg, V. Mayau, J. Prandi, A. Arbues, C. Astarie-dequeker et al., Mycobacterial Phenolic Glycolipids Selectively Disable TRIF-Dependent TLR4 Signaling in Macrophages, Front Immunol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02323696

R. A. Marcsisin, T. Bartpho, D. M. Bulach, A. Srikram, R. W. Sermswan et al., Use of a high-throughput screen to identify Leptospira mutants unable to colonize the carrier host or cause disease in the acute model of infection, J Med Microbiol, vol.62, p.23813276, 2013.

B. Xia, L. Sun, X. Fan, H. Xiao, Y. Zhu et al., A new model of self-resolving leptospirosis in mice infected with a strain of Leptospira interrogans serovar Autumnalis harboring LPS signaling only through TLR4, Emerg Microbes Infect, vol.6, 2017.

M. Fanton-d'andon, N. Quellard, B. Fernandez, G. Ratet, S. Lacroix-lamandé et al., Leptospira interrogans induces fibrosis in the mouse kidney through Inos-dependent, TLR-and NLR-independent signaling pathways, PLoS Negl Trop Dis, vol.8, 2014.

M. Bandeira, C. S. Santos, E. C. De-azevedo, L. M. Soares, J. O. Macedo et al., Attenuated nephritis in inducible nitric oxide synthase knockout C57BL/6 mice and pulmonary hemorrhage in CB17 SCID and recombination activating gene 1 knockout C57BL/6 mice infected with Leptospira interrogans, Infect Immun, vol.79, pp.2936-2940, 2011.

P. A. Jayaraman, A. A. Devlin, J. C. Miller, and F. Scholle, The adaptor molecule Trif contributes to murine host defense during Leptospiral infection, Immunobiology, vol.221, pp.964-974, 2016.

N. Dietrich, S. Lienenklaus, S. Weiss, and N. O. Gekara, Murine Toll-Like Receptor 2 activation induces type I Interferon responses from endolysosomal compartments, PLoS ONE, vol.5, 2010.

C. Aubry, S. C. Corr, S. Wienerroither, C. Goulard, R. Jones et al., Both TLR2 and TRIF Contribute to Interferon-? Production during Listeria Infection, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650491

J. Stack, S. L. Doyle, D. J. Connolly, L. S. Reinert, K. M. O'keeffe et al., TRAM is required for TLR2 endosomal signaling to type I IFN induction, J Immunol, vol.193, pp.6090-6102, 2014.

N. Ruangkiattikul, D. Rys, K. Abdissa, M. Rohde, T. Semmler et al., Type I interferon induced by TLR2-TLR4-MyD88-TRIF-IRF3 controls Mycobacterium abscessus subsp. abscessus persistence in murine macrophages via nitric oxide, Int J Med Microbiol, vol.309, pp.307-318, 2019.

J. Musilova, M. E. Mulcahy, M. M. Kuijk, R. M. Mcloughlin, and A. G. Bowie, Toll-like receptor 2-dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival, J Biol Chem, vol.294, pp.17031-17042, 2019.

G. Prêtre, N. Olivera, M. Cé-dola, S. Haase, L. Alberdi et al., Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis, Microb Pathog, vol.51, pp.203-208, 2011.

C. Chassin, M. Picardeau, J. Goujon, P. Bourhy, N. Quellard et al., TLR4-and TLR2-Mediated B Cell Responses Control the Clearance of the Bacterial Pathogen, Leptospira interrogans, J Immunol, vol.183, pp.2669-2677, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668154

J. C. Lindow, E. A. Wunder, S. J. Popper, J. Min, P. Mannam et al., Cathelicidin insufficiency in patients with fatal leptospirosis, PLoS Pathog, vol.12, 2016.

G. L. Murray, A. Srikram, D. E. Hoke, E. A. Wunder, and R. Henry, Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans, Infect Immun, vol.77, p.952, 2009.

D. Bonhomme and C. Werts, Purification of LPS from Leptospira, Leptospira spp, pp.53-65, 2020.

C. Tsai and C. E. Frasch, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal Biochem, vol.119, p.6176137, 1982.

P. A. Cullen, D. A. Haake, D. M. Bulach, R. L. Zuerner, and B. Adler, LipL21 is a novel surface-exposed lipoprotein of pathogenic Leptospira species, Infect Immun, vol.71, pp.2414-2421, 2003.

M. Caroff, Novel method for isolating endotoxins. WO2004062690A1, 2004.

A. Tirsoaga, A. Novikov, M. Adib-conquy, C. Werts, C. Fitting et al., Simple method for repurification of endotoxins for biological use, Appl Environ Microbiol, vol.73, pp.1803-1808, 2007.

P. Roussel, A. Porcherie, M. Ré-pé-rant-ferter, P. Cunha, C. Gitton et al., Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo, PLOS ONE, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605691

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466