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D-52425, Jülich, Germany; 18Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia; 19Department of Crop Genetics, John Innes Centre, Norwich

Research Park, Colney, Norwich NR4 7UH, UK; 20Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford, OX1 3QG, UK; 21INRA,

Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, UMR759, Montpellier 34060, France; 22Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3

52074, Aachen, Germany; 23Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK

Authors for correspondence:
Cyril Pommier

Tel: +33 1 30 83 38 36
Email: cyril.pommier@inrae.fr

Evangelia A. Papoutsoglou

Tel: +31 62 53 07 019
Email: evangelia.papoutsoglou@wur.nl

Received: 22 November 2019

Accepted: 24 February 2020

New Phytologist (2020) 227: 260–273
doi: 10.1111/nph.16544

Key words: findability, interoperability,
metadata, phenomics, plant phenotyping,
reusability, standards.

Summary

� Enabling data reuse and knowledge discovery is increasingly critical in modern science, and

requires an effort towards standardising data publication practices. This is particularly chal-

lenging in the plant phenotyping domain, due to its complexity and heterogeneity.
� We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard

in coverage, to support perennial plants, in structure, through an explicit data model, and in

clarity, through definitions and examples.
� We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping exper-

iments in a range of different formats, to demonstrate its applicability and the interoperability

between the various implementations. Furthermore, the extended coverage is demonstrated

by the fact that one of the datasets could not have been described under MIAPPE 1.0.
� MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability,

thanks to its extended coverage, and especially the formalisation of its data model, which

facilitates its implementation in different formats. Community feedback has been critical to

this development, and will be a key part of ensuring adoption of the standard.

260 New Phytologist (2020) 227: 260–273 � 2020 The Authors
New Phytologist � 2020 New Phytologist Trustwww.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Methods

https://orcid.org/0000-0001-8209-1900
https://orcid.org/0000-0001-8209-1900
https://orcid.org/0000-0003-1511-277X
https://orcid.org/0000-0003-1511-277X
https://orcid.org/0000-0002-2455-5938
https://orcid.org/0000-0002-2455-5938
https://orcid.org/0000-0002-6020-5919
https://orcid.org/0000-0002-6020-5919
https://orcid.org/0000-0003-2764-0078
https://orcid.org/0000-0003-2764-0078
https://orcid.org/0000-0001-7569-3495
https://orcid.org/0000-0001-7569-3495
https://orcid.org/0000-0001-6565-5145
https://orcid.org/0000-0001-6565-5145
https://orcid.org/0000-0002-3794-4262
https://orcid.org/0000-0002-3794-4262
https://orcid.org/0000-0001-9113-567X
https://orcid.org/0000-0001-9113-567X
https://orcid.org/0000-0003-0522-5674
https://orcid.org/0000-0003-0522-5674
https://orcid.org/0000-0002-4368-8058
https://orcid.org/0000-0002-4368-8058
https://orcid.org/0000-0001-5906-8569
https://orcid.org/0000-0001-5906-8569
https://orcid.org/0000-0002-4656-0308
https://orcid.org/0000-0002-4656-0308
https://orcid.org/0000-0002-5975-6051
https://orcid.org/0000-0002-5975-6051
https://orcid.org/0000-0001-5318-9896
https://orcid.org/0000-0001-5318-9896
https://orcid.org/0000-0002-4316-078X
https://orcid.org/0000-0002-4316-078X
https://orcid.org/0000-0002-8461-9745
https://orcid.org/0000-0002-8461-9745
https://orcid.org/0000-0003-1877-1703
https://orcid.org/0000-0003-1877-1703
https://orcid.org/0000-0002-3370-3218
https://orcid.org/0000-0002-3370-3218
https://orcid.org/0000-0002-1434-9495
https://orcid.org/0000-0002-1434-9495
https://orcid.org/0000-0001-9900-2433
https://orcid.org/0000-0001-9900-2433
https://orcid.org/0000-0001-5745-7085
https://orcid.org/0000-0001-5745-7085
https://orcid.org/0000-0003-0913-2715
https://orcid.org/0000-0003-0913-2715
https://orcid.org/0000-0002-6742-265X
https://orcid.org/0000-0002-6742-265X
https://orcid.org/0000-0001-9853-5668
https://orcid.org/0000-0001-9853-5668
https://orcid.org/0000-0001-5306-5690
https://orcid.org/0000-0001-5306-5690
https://orcid.org/0000-0001-6113-3518
https://orcid.org/0000-0001-6113-3518
https://orcid.org/0000-0002-7287-0094
https://orcid.org/0000-0002-7287-0094
https://orcid.org/0000-0002-9814-1770
https://orcid.org/0000-0002-9814-1770
https://orcid.org/0000-0003-0921-8041
https://orcid.org/0000-0003-0921-8041
https://orcid.org/0000-0002-0213-4016
https://orcid.org/0000-0002-0213-4016
https://orcid.org/0000-0003-4031-9131
https://orcid.org/0000-0003-4031-9131
https://orcid.org/0000-0002-7054-800X
https://orcid.org/0000-0002-7054-800X
https://orcid.org/0000-0002-1427-952X
https://orcid.org/0000-0002-1427-952X
https://orcid.org/0000-0002-3412-9086
https://orcid.org/0000-0002-3412-9086
https://orcid.org/0000-0002-9040-8733
https://orcid.org/0000-0002-9040-8733
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.16544&domain=pdf&date_stamp=2020-04-25


Introduction

The volume of data being generated in the life sciences demands
good data management practices to enable reusability. While it is
common practice to publish standardised sequencing data in
public repositories, other data types are often only made available
through scientific publications, and can be hard to find (Vines
et al., 2014), interpret or reuse. In a survey with over a 1000 par-
ticipants, more than half agreed that lack of access to data is a
‘major impediment to progress in science’ and ‘has restricted
their ability to answer scientific questions’, and most pointed out
that data may easily be misinterpreted due to its complexity or
poor quality (Tenopir et al., 2011).

In the plant phenotyping domain, data reuse is both pressing
and challenging (Spindel & McCouch, 2016; Tardieu et al.,
2017; �Cwiek-Kupczy�nska, 2018). On the one hand, the develop-
ment of automated high-throughput and high-resolution tech-
nologies has contributed to a scale-up in the number, complexity
and size of plant phenotyping datasets. This has been amplified
by the increasing number of long-term, highly multilocal pheno-
typing networks aiming to decipher the interaction between
genotype and environment (Millet et al., 2019). Conversely, the
reuse and meta-analyses of phenotyping data are particularly
challenging due to the heterogeneity of this domain that encom-
passes many types of experimental sites (field, glasshouse, con-
trolled environment), plants (crops, forest trees), collected data
(images, physical measurements, chemical assays, molecular biol-
ogy assays), and experimental designs (factors being tested, tim-
ing, field layouts, etc.). Furthermore, plant phenotype hinges not
only on the interaction between genotype and environment, but
also developmental stage and epigenome status (King et al.,
2010), which raises the challenges of integrating genotypic and
phenotypic data (Pommier et al., 2019b).

A successful example of data reuse in this domain is the study
by Hurtado-Lopez et al. (2015), who reused field trial datasets
and integrated them with quantitative trait locus (QTL) data to
yield novel insights into genotype by environment (GxE) interac-
tions in potato. Because the original experimental data followed
no standardisation guidelines, the authors had to manually
assemble detailed metadata during the preprocessing of the data
from descriptions in unstructured text. To facilitate such studies,
so that they may become the norm rather than the exception, it is
essential that the scientific community adopt good data manage-
ment and publication practices (Zamir, 2013).

The requirements for data reuse in science have been for-
malised in the FAIR data principles (Wilkinson et al., 2016).
They state the criteria that scientific data must fulfil to be find-
able, accessible, interoperable and reusable by both humans and
machines, which hinge on having rich, harmonised, machine-
readable, high-quality metadata describing the data as explicitly
and objectively as possible.

Four key components are needed from research communities
to meet these requirements: metadata standards which list the
fields required for interpreting the data from a given experimental
domain; machine-readable (meta)data exchange formats in which
to express and share the (meta)data; ontologies or controlled

vocabularies to describe (meta)data values and ensure that they
are objective, consistent and unambiguous across datasets; and
searchable data repositories with a well established protocol for
machine access.

The need for a metadata standard was first recognised in the
life sciences by the microarray community, who developed
MIAME (Minimum Information About a Microarray Experi-
ment) (Brazma et al., 2001). This was soon followed by similar
standards for other domains (e.g. Field et al., 2008; Bustin et al.,
2009; Lapatas et al., 2015) as can be seen on FAIRsharing (San-
sone et al., 2019). In the plant phenotyping domain, the need for
metadata to document experiments was initially addressed inde-
pendently by the developers of phenotyping databases, such as
BreedBase (BreedBase team, 2020), GnpIS (Steinbach et al.,
2013), PIPPA (PIPPA team, 2020) and Plant Hybrid Informa-
tion System (PHIS) (Neveu et al., 2019), which resulted in a
multitude of implicit, often database-specific standards. How-
ever, the need for an explicit consensus to enable interoperability
between these databases brought this community together to
develop MIAPPE (Minimum Information About a Plant Pheno-
typing Experiment), the first and so far only community meta-
data standard for the plant phenotyping domain (Krajewski
et al., 2015).

MIAPPE had three guiding principles: to minimise the chance
of a researcher missing important information in the documenta-
tion of an experiment; to support the annotation of content with
community-relevant vocabularies; and to promote a data format
implementation. MIAPPE marked a critical step towards the
FAIRness of plant phenotyping data, as concluded in a survey of
c. 50 citations of this standard in publications and web portals
(Krajewski & �Cwiek-Kupczy�nska, 2020). However, there were
aspects to improve, such as the coverage, usability and clarity of
the standard. In particular, MIAPPE lacked fields needed to cap-
ture experiments with woody plants, as it was conceived primarily
with crop plants in mind, and it lacked an explicit data model,
which left some researchers struggling to understand how to rep-
resent their experiments.

The microarray community was again among the first to pro-
duce a machine-readable (meta)data exchange format in the form
of MAGE-Tab (MicroArray Gene Expression tabular) (Rayner
et al., 2006), a standardised format for MIAME. This gave rise to
the broader-purpose ISA-Tab (Investigation/Study/Assay tab-de-
limited) format (Rocca-Serra et al., 2010; Sansone et al., 2012),
which was adopted by more domains, including plant phenotyp-
ing, with an ISA-Tab implementation of MIAPPE (�Cwiek-
Kupczy�nska et al., 2016).

The use of ontologies and controlled vocabularies in the life
sciences dates back to Linnaeus’s taxonomy, but they have wit-
nessed a more recent boom after the creation of the Gene Ontol-
ogy (The Gene Ontology Consortium, 2019), and currently
number in the several hundred, as seen on BioPortal (Noy et al.,
2009). For the plant phenotyping domain, there are a number of
ontologies that cover different key aspects. The Crop Ontology
(Shrestha et al., 2012) models plant traits and methods for assess-
ing them in several species-specific ontologies. It merits special
reference, in that it aims at standardising the methods used by
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data producers for phenotyping and the way they are reported,
rather than only at terminological standardisation. It therefore
includes an implicit metadata standard, the trait-method-scale
trio, which was incorporated into MIAPPE. The Planteome pro-
ject (Cooper et al., 2018) developed three key ontologies: the
Plant Trait Ontology (Arnaud et al., 2012) modelling species-in-
dependent plant traits under a broader scope than the Crop
Ontology and serving as a reference ontology for multispecies
analyses; the Plant Ontology (Jaiswal et al., 2005) covering plant
anatomical structures and development stages and enabling inter-
plant comparisons; and the Plant Experimental Conditions
Ontology (Cooper et al., 2018) describing plant treatments. In
addition to these, relevant ontologies include: the Agronomy
Ontology (Aubert et al., 2017) covering agronomic practices,
techniques and variables; the Environment Ontology (Buttigieg
et al., 2013) describing natural environments; and the Statistics
Ontology (Statistics Ontology Project, 2020) devoted to statisti-
cal methods. All these ontologies and several others are indexed
in AgroPortal (Jonquet et al., 2018) which serves as the reference
repository and search service for plant-related ontologies.

Finally, while searchable data repositories have long been the
norm in the life sciences, especially concerning gene and protein
data, only in the last decade has it become common practice to
enable machine access to their data via application programming
interfaces (APIs). Currently all major databases, such as GenBank
(Benson et al., 2013) or UniProt (The UniProt Consortium,
2019), provide such access, but most smaller databases do not.
This was the case for the plant phenotyping domain up until
recently, with its numerous, independent and heterogeneous local
databases. To address this problem and enable interoperability
between databases, the plant community undertook the develop-
ment of the Breeding API (BrAPI) (Selby et al., 2019), a common
API for data search and retrieval that can be implemented by plant
breeding databases irrespective of their internal data model. Like
the databases it aims to connect, BrAPI also has an implicit (meta)-
data model that aims to reconcile the metadata available in existing
databases, spanning organisational metadata, plant phenotypic
(meta)data and genotypic (meta)data. BrAPI was initiated inde-
pendently from MIAPPE, so while there is substantial overlap
between the two resources, there are also a few key differences in
their metadata fields, as well as differences in terminology.

The way forward for enabling FAIR plant phenotyping data lies
in bringing together all of the components described above.
MIAPPE would be the cornerstone of such an architecture, speci-
fying the metadata that is needed and connecting metadata fields
to the ontologies recommended to fill them, as well as reconciling
the several implicit metadata models of existing knowledge
resources. BrAPI would serve as the means for federating the many
independent plant phenotyping databases to enable findability and
accessibility, and should enforce and validate the MIAPPE compli-
ance of datasets. The MIAPPE ISA-Tab implementation would
support data publication and exchange. And potentially all of the
ontologies listed above would play a role in describing the data and
metadata of plant phenotyping experiments in a standardised and
unambiguous way. However, it is clear that further development
effort on these resources is needed to attain such a goal.

In this paper, we detail the efforts of an international consor-
tium to enhance the MIAPPE standard towards enabling FAIR
plant phenotyping data. We describe the following refinements: (i)
the extension of MIAPPE to accommodate a wider range of use
cases (including those relevant to perennial and woody plants); (ii)
the specification of a data model underlying the standard, to facili-
tate its interpretation and usage; (iii) the formalisation of MIAPPE
in a computer-interpretable format (using the Web Ontology Lan-
guage, OWL) to enable dataset validation and computational anal-
ysis; and (iv) the alignment of MIAPPE and BrAPI to enable the
exposure of MIAPPE-compliant datasets via BrAPI endpoints.

Materials and Methods

Development of MIAPPE 1.1

To take on the challenge of improving MIAPPE, the community
gathered both life and computer scientists. The former drove the
documentation and description of the standard, ensuring that the
terms and definitions are meaningful and not purely technical.
The latter took the initiative for the technical aspects, involving
data formalisation, organisation, integration, sharing and inter-
operability. This ongoing partnership ensures that MIAPPE
bridges the domains of life and data science and addresses the
needs of both communities.

The development of MIAPPE 1.1 was carried out collabora-
tively using simple and efficient protocols and format (spread-
sheet). Throughout the process, drafts were presented and
discussed with the international community through consulta-
tions by emails, the MIAPPE consortium GitHub issue tracker
(MIAPPE Contributors, 2020a) and during ‘bring your own
data’ training sessions.

Like its predecessor, MIAPPE 1.1 is a metadata standard that
formally organises the documenting of a phenotyping dataset,
including environmental aspects. It primarily structures the meta-
data, imposing no constraints on the data itself (which may con-
sist of images, other binary data, tabular files, etc.).

In comparison with MIAPPE 1.0, MIAPPE 1.1 introduces
several new concepts while preserving most of those already pre-
sent. The major change, however, is that it moved from a simple
checklist to a fully formalised data model that makes explicit
mandatory information, restrictions and expectations and thus
represents a major improvement in clarity from MIAPPE 1.0.

The key changes in MIAPPE 1.1 fall into one of three cate-
gories, which are detailed in the following subsections: scope
extension, interoperability and data model specification. In addi-
tion to these, the MIAPPE data model has been formalised in
OWL as the Plant Phenotyping Experiment Ontology (PPEO).

Note: throughout the rest of this document, we use italics to
denote MIAPPE concepts, <angle brackets> to denote ontology
concepts, and “double quotes” for MIAPPE field value examples.

Scope extension

The scope of MIAPPE 1.0, mostly restricted to field crops, was
extended in MIAPPE 1.1 to encompass woody plants, mainly by
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enabling the identification of plant materials by their geolocation
coordinates, which are typically used to identify forest trees
instead of plant identifiers (e.g. GenBank accession numbers)
used in crop research. Two levels for plant material identification
and description are available in MIAPPE 1.1: (i) its identification
within the experiment (biological material ); and (ii) its identifica-
tion before the experiment (material source), allowing for individ-
ual plants, lots or progeny to be described and related to
previously published or publicly accessible material. Further-
more, the preprocessing field (previously called pretreatments) can
describe any type of action performed on the material source
before it is used as the experimental biological material (for
instance “tree transplantation” and “grafting”).

Interoperability

MIAPPE 1.1 incorporates several metadata standards and prac-
tices that cover parts of its scope, in order to ensure interoperabil-
ity and avoid remodelling and redefining aspects that are already
well established: the generic metadata fields (e.g. identifier, title,
version, date) in MIAPPE 1.1 are largely based on the DataCite
metadata model of Dublin Core (DataCite Metadata Working
Group, 2014); the fields for biological material identification are
based on the Multi-Crop Passport Descriptors (MCPD) v.2.1
(Alercia et al., 2015); the observation unit concept and its fields
were imported from BrAPI and GnpIS-Ephesis (Pommier et al.,
2019b); and the observed variable section is largely based on the
data model of the Crop Ontology.

Additionally, to further foster interoperability, MIAPPE 1.1
includes precise definitions and examples for each of its fields,
with recommendations for the use of controlled vocabularies,
ontologies and ISO norms whenever appropriate. For example,
the ISO 8601 norm is recommended for dates, Crop Ontology
terms are recommended in the observed variable section, and
Plant Ontology terms are recommended for characterising sam-
ples. These definitions and recommendations clarify the intended
usage of MIAPPE 1.1 in a way that is accessible to biologists and
breeders, while promoting compliance with the FAIR principles.

Data model specification

The specification of a data model was essential to clarify
MIAPPE’s structure, and improves its internal consistency. The
construction of a formal model helped: (i) ascertain the roles and
relationships of the MIAPPE 1.0 checklist’s main categories and
concepts; and (ii) extend those concepts to a broader range of
experiments.

Objects in the MIAPPE 1.1 data model correspond to sections
in the MIAPPE 1.1 checklist. A schematic view of the data model
is presented in Fig. 1.

The MIAPPE data model is reconciled with the more generic
data models underlying the ISA-Tab exchange format (Rocca-
Serra et al., 2010) through key objects such as Investigation and
Study (ISA) and specialised representations such as BrAPI (Selby
et al., 2019) with entities such as Observation unit and Observa-
tion variable (BrAPI).

Data model formalisation (PPEO)

While the specification of the MIAPPE data model addresses the
concern of improving the clarity of the standard for users, it does
not address machine readability, which is important to enable
validation and facilitate implementation at scale. The need for
the latter led us to encode the MIAPPE standard in OWL as the
PPEO (Pommier et al., 2020).

In PPEO, each MIAPPE section is encoded as an ontology
class, with additional classes declared to group linked MIAPPE
fields (e.g. <method> groups the linked fields method description
and method accession number). Each MIAPPE field is encoded as
an ontology data property, which specifies the type of value
expected (e.g. <has collection date> for class <sample>, which
must take a date–time value). The relations between classes are
formalised through object properties (e.g. <has biological mate-
rial> connects <observation unit> to <biological material>). Car-
dinality restrictions imposed by the data model are encoded as
ontology restrictions on the corresponding classes (e.g. an <inves-
tigation> must have at least one <study>). Ontology usage rec-
ommendations are encoded as annotations. Finally, to facilitate
the implementation of MIAPPE in various forms, PPEO
includes labels expressing corresponding names of each class in
different resources (BrAPI, ISA-Tab).

Fig. 1 represents a subset of the PPEO.

MIAPPE 1.1 overview

The MIAPPE sections, which correspond to objects in the data
model, are the following:
� Investigation – the entry point of each MIAPPE dataset. It con-
tains several general metadata fields (e.g. title, description,
submission/publication dates), including some critical for
FAIRness (unique identifier, licence, MIAPPE version). One or
more publications may be associated with the investigation.
� Study – corresponds to one experiment and defines its location
(which by definition must be single per study) and duration. It
lists general fields documenting the experiment (e.g. experimental
design, cultural practices, growth facility). Like the investigation, it
contains a unique identifier field. An investigation must have one
or more studies.
� Person – contains contact details for each contributor of an
entire investigation or an individual study, including the role of
the person.
� Data file – references a data file of the MIAPPE dataset (e.g. a
tabular file containing the results of observations, an image file),
which may be attached to the dataset (referenced by name) or
available in an online repository (referenced by URL). A version
and a description must be provided for each data file. A study may
have any number of data files.
� Biological material – identifies and describes the plant materi-
als used in the studies. Plant materials must be identified
through a biological material ID field, which can be institution-
specific or platform-specific (e.g. seed lot number for annual
plants, clone number for perennials or an experimental plant
ID), and is recommended to follow the MCPD convention of
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holding institute identifier (FAO WIEWS code) plus a unique
identifier of the individual plant material provided by that insti-
tute. They must also be identified through the organism field,
which indicates the unique taxonomic identifier of the biological
material in a standard such as the NCBI taxonomy. Optionally,
they may be identified through the fields genus, species and
infraspecific name, where textual names are expected (but should

follow accepted standards). They may also be identified through
geographical coordinates (i.e. latitude, longitude, altitude, and
coordinates uncertainty), as is common for forest trees. The
biological material preprocessing describes the biological material
pretreatments, applied (e.g. to the seeds, or the tree cuttings)
before the beginning of the experiment. Finally, the material
source fields identify the origin or provenance of the biological
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Fig. 1 Subset of the Plant Phenotyping Experiment Ontology representing the MIAPPE data model. Generated using WebVOWL (http://editor.visualdata
web.org/) and edited manually. Circles indicate classes. Object properties are shown in blue rectangles, and data properties are shown in green rectangles.
Yellow rectangles represent literals.
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material (e.g. gene bank accession, in situ material like an
orchard, tree material provenance including forest wild site, lab-
oratory-specific populations). These fields include the material
source ID (which follows the same recommendations as the
biological material ID), the material source DOI (for referencing
material sources listed in repositories), four geographical coordi-
nates fields (same as for biological material ), and finally a textual
description. The biological material section thus covers a mini-
mal subset of the MCPD standard used by gene banks, while
also enabling interoperability and data linking through the use
of identifiers (namely NCBI taxonomy identifiers) both between
MIAPPE-compliant datasets and with external datasets. More-
over, through the provision of external identifiers to resources
detailing their biological material (e.g. DOIs, accessions to gene
banks or genome archives) researchers can encompass additional
information, such as extended MCPD information (e.g. syn-
onyms, genealogy) and genotypic information. Last but not
least, with these additions, MIAPPE 1.1 can handle cases such
as forest tree clonal trials, where the plants identified solely
through biological material coordinates in one study are used to
generate new plant material for another study, in which their
identification is done by specifying the location of the material
source.
� Environment – describes a management practice parameter
(e.g. sowing density, rooting medium composition) that was kept
constant throughout the study across all observation units (to be
described later). It applies to the whole study and has only a type
(parameter) and a value. There can be discrepancies between
intended environmental settings (e.g. target temperature in a
glasshouse) and actual measurements of environmental observed
variables (e.g. hourly temperature measured with four sensors). A
study may have any number of environments.
� Experimental factor – describes a management practice that var-
ied between observation units in a study, assessing the effect of
which is the object of the study. Experimental factors can be biotic
or abiotic (e.g. pest, disease interaction, cultural practice) and are
characterised by a type, a description and a list of possible values.
For instance, a “drought” experimental factor can discriminate
“rainfed” and “irrigated” blocks, and a “nitrogen input level” can
identify groups of plants under “high nitrogen input”, “low
nitrogen input” and “no nitrogen inputs”. A study may have one
or more experimental factors.
� Event – describes a discrete occurrence at a specific time that
affected the whole study or one or more observation units, which
can be the application of a field/glasshouse practice (e.g. planting,
fungicide application) or an unpredictable happening (e.g. rain-
fall, pathogen attack). Events allow a general traceability of the
conditions/events, and have been adopted since their usefulness
was successfully demonstrated in the PHIS (Neveu et al., 2019).
Events include a type, ideally taken from an ontology such as the
Crop Research Ontology (Shrestha, 2020) or the Agronomy
Ontology (Aubert et al., 2017), a date and a description, but no
dedicated field for categorical or numerical values. Events can be
repeated through time (e.g. to capture repeating cultural prac-
tices, such as adding fertiliser) by duplicating the type and
description while providing a new date.

� Observation unit – is the experimentation object on which phe-
notypic and environmental parameters are measured and to
which experimental factors are applied. It is characterised by a type
or level, which can be a single “plant”, a group of plants (“pot”,
“plot”, “block”), or the whole “study”. These types are hierarchi-
cal, meaning that we can have observation units and correspond-
ing observations made from the study level down to the plant
level. In some cases, an observation unit may contain no plant
(e.g. raw plots after harvest or areas of a forest without tree), but
can still be the object of environmental observations. Optionally,
an observation unit can have a cross-reference to an external
database, such as BioSamples (Courtot et al., 2019). Also option-
ally, it can have one or more spatial distribution key-value pairs
that locate the observation unit in the experimental hierarchy (e.g.
“block: 1”) or globally (e.g. “latitude: +43.619261”). A study
should have one or more observation units.
� Sample – represents subplant material that was physically col-
lected from an observation unit and was stored and processed
before observations are made on it (e.g. in molecular studies).
When traceability of sample processing is not needed, subplant
observations can be assigned directly to the corresponding plant-
level observation unit without the use of a sample as an intermedi-
ary. In such cases, the observed variable should describe that the
observation is made on a plant part (e.g. “leaf chlorophyll con-
tent”, “grain protein content”) and include additional informa-
tion on how the sampling was made in the textual description.
The sample description field contains a free text description such
as organism count, oxygenation, salinity or storage attributes.
The plant anatomical entity and the plant structure development
stage give more details on the sample properties at the time of
sampling, which is specified with the field collection date. A
sample must be derived from a single observation unit, but each
observation unit may have any number of derived samples.
� Observed variable – documents a phenotypic or environment
parameter that was observed and recorded as part of the study. It
follows the Crop Ontology model of representing variables as com-
binations of a trait, a method and a scale. Trait details the character-
istic being observed/measured (e.g. “plant height”). Method
describes the procedure used in the observation/measurement (e.g.
“with a measuring tape, starting at ground level”). Scale indicates
the unit or scale with which observations/measurements were
recorded (e.g. “cm”). Observed variables, traits, methods and scales
are each identified by name, and may have a reference to the corre-
sponding ontology concept (ideally from the Crop Ontology).
Observed variables also have an ID by which they are referenced in
the data file. Methods can also have a description plus an additional
reference, usually from the literature. The time scale indicates the
unit of time (e.g. “date–time”, or “growing degree days”) used to
timestamp observations of this observed variable.

Note that in MIAPPE 1.1, the description of environment
aspects is broken into several sections so as to allow flexibility in
capturing and representing environment information: environment
(fixed parameters throughout the study), experimental factors (fixed
set of values for the study which vary between observation units),
observed variables (measured during the study) and potentially events
(discrete occurrences such as heavy rain).
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MIAPPE implementations

MIAPPE is a general specification that needs to be adopted and
implemented by data repositories and exchange tools if it is to be
easily usable. The MIAPPE 1.1 update encompasses four major
implementations which are discussed in the following subsec-
tions: (i) an ISA file archive backed by an updated ISA-Tab con-
figuration, developed in collaboration with the ISA Framework
team; (ii) a web service implementation through BrAPI, devel-
oped in close collaboration between the MIAPPE and BrAPI
communities; (iii) a spreadsheet template developed and used as
training material to introduce biologists to MIAPPE, which can
also be used for simple metadata exchange; and (iv) finally, an
RDF implementation based on the PPEO.

MIAPPE ISA-Tab

The ISA Framework encompasses a model and a set of serialisa-
tions (TAB, JSON and RDF) to describe the experimental meta-
data with links to data files, code, articles and other digital
objects. It comes with a suite of associated tools, is extensively
used in the life sciences (The ISA Team, 2020), and among the
endorsed resources of the ELIXIR Interoperability Platform.

MIAPPE 1.0 already included an ISA-Tab implementation in
the form of a configuration file. This implementation has been
revised in view of the changes in MIAPPE 1.1, and the configura-
tion file has been updated accordingly. This configuration (ISA-
Tab for Plant Phenotyping Contributors, 2020) can be used with

the ISA Creator tool, to more easily produce MIAPPE-compliant
ISA-Tab archives.

The overview of the mapping between MIAPPE 1.1 and ISA-
Tab sections is shown in Table 1. The Investigation and the
Study express the same concepts in both MIAPPE and ISA-Tab,
and many of their fields are listed under the corresponding sec-
tions. There are also direct correspondences for experimental
factors (Study Factors), biological material (Source), observation
units (Samples) and samples (Extracts). The remaining MIAPPE-
specific fields are stored as ISA-Tab Comments. ISA Protocols
must include a protocol named “Growth” holding the MIAPPE
cultural practices field and environment parameters, one protocol
for the “Phenotyping” process, plus an optional list of protocols
with Type “Event” to handle MIAPPE events, with specific
occurrences listed in an external Events file. Finally, the ISA
Sampling Protocol indicates the derivation of a MIAPPE sample
from an observation unit. Each ISA-Tab Assay represents one data
file measured at one observation level. Observed variables are
listed in the trait definition file, and referenced in the data files.
The data files are formatted according to the common practices
of the domain and contain references to that Variable ID, the
measured values and times plus any information which
researchers might deem useful.

Breeding API (BrAPI)

The Breeding API (BrAPI) (Selby et al., 2019) is a RESTful API
developed by an international open-source community for query-
ing plant breeding data, already implemented by several
databases, and selected by the European biological data infras-
tructure ELIXIR as the cornerstone of its plant data search ser-
vice. It is therefore critical that BrAPI and MIAPPE be
compatible.

The collaboration between the BrAPI and MIAPPE teams has
aimed at ensuring the compatibility of the two schemas, and the
latest BRAPI (v.1.3) covers most of MIAPPE. The main sections

Table 1 Mapping between MIAPPE and ISA-Tab sections.

MIAPPE
section ISA-Tab section

ISA-Tab section
specification

Investigation Investigation/investigation
publications

Study Study/study design
descriptors/study protocols

Person Investigation contacts/study
contacts

Data file Study With comment fields
Biological
material

Source

Environment Study protocols Growth type protocol
Experimental
factor

Study Factors

Event Study protocols Event type protocols and
external Events file

Observation
unit

Sample

Sample Extract/study protocols Sampling type protocol
Observed
variable

Observed variable In external trait definition
file

The table lists the MIAPPE sections with the ISA-Tab sections holding their
fields. MIAPPE-exclusive fields have been added as comments in the
corresponding sections. The detailed mapping can be found in Supporting
Information Table S1, and in the MIAPPE repository (https://github.com/
MIAPPE/MIAPPE/tree/master/MIAPPE_Checklist-Data-Model-v1.1/
MIAPPE_mapping).

Table 2 Mapping between MIAPPE sections and BrAPI objects.

MIAPPE BrAPI object

Investigation Trial
Study Study
Person Contact
Data file Data link
Biological material Germplasm
Environment Environment parameter
Experimental factor Treatment
Event Events
Observation unit Observation unit
Sample Samples
Observed variable Variable

The table lists the MIAPPE sections with the BrAPI objects holding their
fields (in the current and future versions). The detailed mapping for each
field can be found on the MIAPPE GitHub repository and in Supporting
Information Table S1, and in the MIAPPE repository (https://github.com/
MIAPPE/MIAPPE/tree/master/MIAPPE_Checklist-Data-Model-v1.1/
MIAPPE_mapping).
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correspond to the same concepts and either share the same name
or have direct correspondence, such as investigation (BrAPI Trial)
and biological material (BrAPI Germplasm). Some MIAPPE sec-
tions are currently absent from BrAPI (e.g. environment, event)
but have already been proposed as additions to BrAPI and are
under consideration for the next major release. The mapping
between MIAPPE and BrAPI is overviewed in Table 2.

Finally, BrAPI datasets can be exported as MIAPPE-compliant
ISA-Tab archives using the BrAPI2ISA tool (BrAPI2ISA contrib-
utors, 2020).

Spreadsheet template

The spreadsheet template for MIAPPE (MIAPPE Contributors,
2020b) was developed mainly for training purposes, as a simpler
alternative to ISA-Tab. It is an explicit representation of
MIAPPE, where each section has been placed in a separate work-
sheet. This template facilitates the understanding of the connec-
tions between documentation, data model and actual data. For
training, it is important that the data model and one-to-many
relationships (Fig. 1) be explicitly presented and comprehensively
explained to the users (e.g. biologists or data managers).

RDF based on the PPEO

PPEO was conceived to enable the direct expression of MIAPPE
datasets in RDF (W3C, 2020a), by instantiating the ontology.
Moreover, because PPEO explicitly maps MIAPPE to its imple-
mentations, it should be straightforward to convert MIAPPE
datasets expressed in any of them to RDF.

MIAPPE and BrAPI are also connected through PPEO, which
not only maps the two resources, but also includes classes exclu-
sive to BrAPI, such as the <observation> class (which is outside
of the scope of MIAPPE, as it pertains to data). A proof of con-
cept has demonstrated the feasibility of producing linked data
through BrAPI using the JSON-LD format (W3C, 2020b), with

PPEO enabling the semantic mapping (see this dataset: Oury
et al. (2020)).

Having MIAPPE datasets in RDF enables the use of a wide
range of available tools for reasoning and analysis, and facilitates
data integration (by enabling data linking and cross-referencing
at the semantic level) and validation.

Results

To evaluate the applicability of the standard and the functional-
ity of its implementations, plant scientists were asked to describe
their phenotyping experiments using MIAPPE 1.1. The datasets
were provided by: the Instituto de Biologia Experimental e Tec-
nol�ogica (iBET), Portugal; the Leibniz Institute of Plant Genetics
and Crop Plant Research (IPK), Germany; the Genetic and
Genomic Information System (GnpIS) of the Institut National
de la Recherche Agronomique, France; and the Vlaams Instituut
voor Biotechnologie (VIB), Belgium. The datasets are sum-
marised in Table 3, and described in detail in Supporting Infor-
mation Notes S1. All of them are listed under Papoutsoglou
et al. (2019), and their files can be retrieved through the reposito-
ries listed there (Baute et al., 2019a,b,c, 2020; Chaves et al,
2019a,b; Junker, 2020; Junker & Li, 2020; Michotey, 2019,
2020; Oury et al., 2019a,b; Pea et al., 2019a,b).

The datasets span model, crop and perennial plants in a variety
of experimental settings, as well as various MIAPPE 1.1 imple-
mentations. They demonstrate the ability of MIAPPE to handle
diverse experimental designs, including automated glasshouses
(IPK and VIB datasets), field networks for crops (GnpIS) and
forest trees (iBET and GnpIS) with multiple scales and repeti-
tions. Perennial plant use cases feature time series data, that is sev-
eral observations across time for the same observed variable on the
same plant. Field networks (GnpIS wheat) demonstrate the use
case of a multilocal and multiannual dataset where each location
represents one study over several years. Several datasets demon-
strate also the use of experimental factors such as cultural practices

Table 3 Overview of some characteristics of the example datasets.

Publication
In�acio et al.
(2017)

Junker et al.
(2015)

Li et al.
(2019)

Oury et al.
(2018)

Monclus et al.
(2012)

Baute et al.
(2015)

Dell’Acqua
et al. (2015)

Baute
et al. (2016)

Biological
material

Natural population
trees identified by
geographical
location; material
source not
identified

Mutant; multiple
replicates

Mutant and
wild-types

Genebank
material

Clonal material
withmaterial
source

traceability;
includes crosses
and populations

RIL
Population

RIL
Population

RIL
Population

Throughput Low High High Low Low High Low High
Plant type Forest tree Model plant Crop Crop Forest tree Crop Crop Crop
Setting Field; three

locations
Automated
glasshouse,
controlled
environment, four
experimental
factors

Automated
glasshouse

Multiyear
multilocal
field
network

Field Glasshouse Field Glasshouse

Dataset Cork oak Arabidopsis Barley Wheat Poplar Maize Maize Maize

The experiments on the table encompass different experimental settings, plant types and throughput. RIL, recombinant inbred line.
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(nitrogen level in GnpIS wheat) or experimental questions (cov-
ered or uncovered plants in IPK Arabidopsis). The observed
variables proved to be well suited for very diverse destructive and
nondestructive measurements adapted to agronomic (e.g. yield,
grain weight), morphological (e.g. plant height), stress (e.g. dis-
ease or game), molecular (e.g. protein content) and physiological
(e.g. photosynthetic efficiency) data. The data types covered by
the observed variables are mostly numeric or textual, but also
include images (IPK barley). These observed variables were
described using references to ontologies (Michotey et al., 2019;
Pommier et al., 2019a; Michotey & Chaves, 2020) whenever pos-
sible, but ad hoc variables were also used in specific cases not cov-
ered by ontologies. One of the most challenging aspects addressed
by MIAPPE and successfully demonstrated by the datasets is the
documentation of the biological material. The datasets clearly
demonstrate how to organise information for model plants (IPK
Arabidopsis), mutants (IPK barley), recombinant inbred line and
population (VIB maize), GenBank reference accessions (GnpIS
wheat) and perennial plants including in situ material (iBET cork
oak stands) or dedicated experimental locations acting as experi-
mental tree fields with populations or crosses (GnpIS poplar).

While the datasets showcase the applicability of MIAPPE to
diverse experimental settings, they by no means represent the full
extent of its coverage. Additional settings that were contemplated
in the conception of MIAPPE but are not covered by the exam-
ples include: high-throughput phenotyping facilities with plants
manipulated by conveyor belts, which produce large volumes of
data with respect to the positions of plants and their develop-
ment; precision agriculture field studies with drones and sensors
capturing a wealth of data both about plant development and the
environment; and cases where tracing the identity of plant mate-
rials is more complex. In the interest of demonstrating
MIAPPE’s coverage, Table 4 presents additional examples of set-
tings and details their modelling in MIAPPE.

Discussion

A global metadata standard is a key component for enabling
FAIR data in any research domain, by providing a common
framework under which researchers can describe their datasets
with the necessary information for their interpretation, thus pro-
moting interoperability and reusability. MIAPPE aims at serving
such a role for the plant phenotyping community, and the first
version of the standard took ample strides in that direction. In
this work, we summarise the steps taken to extend and improve
the usability of the standard.

The datasets presented in the Results demonstrate the broader
applicability of MIAPPE 1.1, which was one of the main goals
behind the update. The datasets span a variety of settings (e.g.
woody, crop and model plants; glasshouses, single fields and field
networks; single-year and multiannual experiments) and include
aspects that could not be modelled under MIAPPE 1.0 (the most
critical being the identification of biological materials using geo-
graphical coordinates).

MIAPPE 1.1 also has improved in flexibility and usability
compared to the previous version. It has clearer definitions,

examples, and when applicable, ontology recommendations for
all fields. It has an explicit data model available in schematic form
and encoded in OWL as PPEO. It has fewer mandatory fields,
since not all of them are applicable to all experiments. It allows

Table 4 Modelling possibilities for complicated experiment details.

No. Scenario MIAPPE modelling

(1) Heterozygous parent genotypes
are used to derive a crossing
population exhibiting
significant
phenotypicsegregation.
Genotype tracing is necessary.

The cross of the parents is
mentioned in thematerial

source. Each of the progeny is
treated as a biological material

derived from the samematerial

source, and is attributed a
unique ID.

(2) Each tree in a field is observed
through several sensors, t the
roots and near its top.

Observation unit levels: “plant”.
Each tree is a single observation
unit. Each sensor measures one
or many observed variables,
(e.g. “Canopy temperature”,
“Cork thickness”, . . .)

(3) A sensor is placed in the middle
of the field.

An observation unit is created for
the sensor. No plants have to be
present for an observation unit

to be valid, as long as that
observation unit is used to pro-
duce measurements or express
experimental factor values.

(4) Multilocal, multiyear field
phenotyping network

Observation unit levels:
“study”> “genotype”> “plot”.

The whole network is an
investigation. Each location is a
study over several years. The
biological material list is shared
for the whole investigation. The
list of observed variable defini-
tions is also shared by all
studies.

The measured data and
observations can be at the
“plant” or “plot” level, or as a
per-genotype average within
each study.

Study-level observations can be
measurements from a
meteorological station.

(5) Time series of event or
observation.

Observation unit levels: any.
Study type: any.
Observed variables list the time

scale they use.
In the data file, a single observed
variable is measured several
times, each value being times-
tamped in julian days, growing
degree days or any other time
scale.

The same applies with events

with a given event type

recorded several times at differ-
ent time stamps.

The table shows more specific scenarios that may be necessary to
accommodate in MIAPPE, and the proposed modelling for them inside the
standard.
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different strategies for modelling aspects such as environmental
parameters: under the environment section, as events or as observed
variables. The improved biological material description and the
new material source can now handle gene banks and experimental
collections with either the bare minimum identification or very
detailed information, including infraspecific description, prove-
nance, complex processing or identification mechanism. We
received evidence for the improved usability of MIAPPE from
the community, during two open requests for feedback and in
several training sessions. The specification of the data model and
the enriched definitions and examples were highlighted as clear
improvements.

While MIAPPE promotes interoperability and reusability,
the other two FAIR principles (findability and accessibility)
rely mainly on BrAPI, which enables data search and retrieval
through machine access. However, for these two resources to
be part of a common scheme for enabling FAIR plant pheno-
typing data, it is necessary to ensure that BrAPI calls ade-
quately cover MIAPPE and enable searches by all key
MIAPPE fields. The process of reconciling MIAPPE and
BrAPI was undertaken in parallel with the MIAPPE 1.1
update, through a collaboration between the BrAPI team, the
ELIXIR Interoperability platform and Plant Sciences commu-
nity, the EMPHASIS Plant Phenotyping Infrastructure and
the CGIAR. BrAPI will be fully MIAPPE 1.1 compliant once
its (currently beta) 2.0 release is finalised.

This reconciliation and the interoperability between the vari-
ous MIAPPE 1.1 implementations is demonstrated in our
Results, as most datasets are available in two different implemen-
tations (including BrAPI), in many cases through automatic con-
version. This is critical, as MIAPPE aims to support a wide range
of users and applications, from data submission by life scientists
to data exchange, validation and even reasoning by machines.
Formats supporting all these applications must not only be avail-
able but also be interconvertible.

While, from a technical standpoint, we believe that the merits
of MIAPPE 1.1 speak for themselves, we are well aware of the
many hurdles ahead of getting any standard widely adopted by
the community it seeks to serve. Indeed, there are several dozen
standards currently deprecated in the FAIRsharing portal and
surely many more have been lost to history.

One of the main factors behind wide adoption is having com-
munity engagement throughout the development process.
Indeed, GO (The Gene Ontology Consortium, 2019) has been
so successful because it emerged from the communities involved
in gene function annotation for several model organisms and has
remained open to input from the community throughout its his-
tory. The story behind MIAPPE is curiously similar, as its devel-
opment gathered several researchers involved in plant
phenotyping repositories, the process of updating it had extensive
direct engagement with the community, and it remains open to
community input through its GitHub repository (MIAPPE Con-
tributors, 2020a). MIAPPE 1.1 therefore gathers as close to a
community-wide consensus as is possible to get and distil into a
clear and well-organised standard, especially considering the
heterogeneity and complexity of the plant phenotyping domain,

and the difficulty in reconciling the perspectives of its different
subdomains and experiment types. We will further foster its
adoption through constant efforts of outreach and dissemination,
to gather new communities and ensure the long-term usefulness
of the standard.

Also critical for adoption is demand: when funders and/or
publishers require compliance with a standard or data publication
practice – such as depositing sequencing data in one of the public
gene banks – it tends to be widely adopted. In the case of
MIAPPE, the demand consists of the increasing pressure from
funding agencies towards compliance with the FAIR data princi-
ples. Researchers working in plant phenotyping and seeking
FAIR data solutions will be pointed towards MIAPPE thanks to
its presence in the FAIRsharing portal (FAIRsharing.org:
MIAPPE, 2020) and above all to the endorsement of ELIXIR,
which led the MIAPPE 1.1 update and is helping shape the poli-
cies and lay the foundations needed for enacting the FAIR princi-
ples.

Equally critical is usability, as researchers tend to view the need
for standardisation and reusability as a burden and often do as lit-
tle effort as they can get away with when submitting a dataset,
unless the process is virtually effortless. While MIAPPE’s usabil-
ity was improved with the 1.1 update, it is still missing an easy-
to-use submission interface. For this reason, we are engaging with
popular data management tools such as COPO (The COPO
team, 2020) or FAIRDOM (Wolstencroft et al., 2017) to incor-
porate MIAPPE and thus enable user-friendly MIAPPE-compli-
ant dataset submission.

Last but not least, in order to persist, a standard must con-
stantly evolve to keep up with technical and scientific advances.
In this regard, the 1.1 update demonstrates that MIAPPE is very
much a living standard, and we are already starting the next phase
of development of MIAPPE. It will concentrate on two main
aspects: extending its coverage of environmental aspects (initiated
by the EMPHASIS members of the MIAPPE community) and
facilitating the recording of technical aspects of material and data
processing (e.g. sensors, cameras, software, configurations, cali-
brations), which are becoming increasingly important. Within
this scope, another possible improvement could be to establish a
formal complementarity with the ICASA standard, which is used
by the agronomic and modelling communities, and provides vari-
ables for agronomic management practices, treatments, environ-
mental conditions and measurements of crop responses (White
et al., 2013). There is overlap between these two standards – with
MIAPPE dedicated to plant phenotyping as used by geneticists,
biologists and some agronomists and ICASA to ‘any field experi-
ment or crop production situation’ – but the scope of each
extends far beyond that of the other and there are obvious com-
plementarities between them. User feedback from these endeav-
ours will steer further developments, by revealing areas where
improvement is desired by the community.
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