J. Li, H. Jia, X. Cai, H. Zhong, and Q. Feng, An integrated catalog of reference genes in the human gut microbiome, Nat Biotechnol, vol.32, pp.834-841, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195478

L. Xiao, Q. Feng, S. Liang, S. B. Sonne, and Z. Xia, A catalog of the mouse gut metagenome, Nat Biotechnol, vol.33, pp.1103-1108, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02639961

L. Xiao, J. Estellé, P. Kiilerich, Y. Ramayo-caldas, and Z. Xia, A reference gene catalogue of the pig gut microbiome, Nat Microbiol, vol.1, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607746

J. Li, H. Zhong, Y. Ramayo-caldas, N. Terrapon, and V. Lombard, A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment, Gigascience, vol.9, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02860679

C. T. Brett and K. W. Waldron, Physiology and Biochemistry of Plant Cell Walls, p.282, 1996.

V. Sharma, M. Ichikawa, and H. H. Freeze, Mannose metabolism: more than meets the eye, Biochem Biophys Res Commun, vol.453, pp.220-228, 2014.

L. D. Zeleznick, S. M. Rosen, M. Saltmarsh-andrew, M. J. Osborn, and B. L. Horecker, Biosynthesis of bacterial lipopolysaccharide, IV. Enzymatic incorporation of mannose, rhamnose, and galactose in a mutant strain of Salmonella typhimurium, Proc Natl Acad Sci U S A, vol.53, pp.207-214, 1965.

K. Zhang and S. M. Beverley, Mannogen-ing central carbon metabolism by Leishmania, Trends Parasitol, vol.35, pp.947-949, 2019.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

T. Senoura, S. Ito, H. Taguchi, M. Higa, and S. Hamada, New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase, Biochem Biophys Res Commun, vol.408, pp.701-706, 2011.

M. F. Sernee, J. E. Ralton, T. L. Nero, L. F. Sobala, and J. Kloehn, A family of dual-activity glycosyltransferase-phosphorylases mediates mannogen turnover and virulence in Leishmania parasites, Cell Host Microbe, vol.26, pp.385-399, 2019.

F. Cuskin, A. Baslé, S. Ladevèze, A. M. Day, and H. J. Gilbert, The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target ?-1,2-Mannosidic Linkages in Candida Mannan, J. Biol. Chem, vol.290, pp.25023-25033, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184120

T. Nihira, K. Chiku, E. Suzuki, M. Nishimoto, and S. Fushinobu, An inverting ?-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans, FEBS Lett, vol.589, pp.3604-3610, 2015.

R. Kawahara, W. Saburi, R. Odaka, H. Taguchi, and S. Ito, Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase; discovery of a new carbohydrate phosphorylase, ?-1,4-mannooligosaccharide phosphorylase, J Biol Chem, vol.287, pp.42389-42399, 2012.

J. R. Chekan, I. H. Kwon, V. Agarwal, D. Dodd, and V. Revindran, Structural and Biochemical Basis for Mannan Utilization by Caldanaerobius polysaccharolyticus Strain ATCC BAA-17, J Biol Chem, vol.289, pp.34965-34977, 2014.

Y. Ye, W. Saburi, R. Odaka, K. Kato, and N. Sakurai, Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies, FEBS Lett, vol.590, pp.828-837, 2016.

L. Rosa, S. L. Leth, M. L. Michalak, L. Hansen, M. E. Pudlo et al., The human gut firmicute Roseburia intestinalis is a primary degrader of dietary ?-mannans, Nat Commun, vol.10, pp.1-14, 2019.

F. Grimaud, S. Pizzut-serin, L. Tarquis, S. Ladevèze, and S. Morel, In Vitro Synthesis and Crystallization of ?-1,4-Mannan, Biomacromolecules, vol.20, pp.846-853, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02177345

T. Nihira, E. Suzuki, M. Kitaoka, M. Nishimoto, O. Ken'ichi et al., Discovery of ?-1,4-d-Mannosyl-N -acetyl-dglucosamine Phosphorylase Involved in the Metabolism of N -Glycans, J. Biol. Chem, vol.288, pp.27366-27374, 2013.

S. Ladevèze, L. Tarquis, D. A. Cecchini, J. Bercovici, and I. André, Role of glycoside-phosphorylases in mannose foraging by human gut bacteria, J Biol Chem, vol.483628, 2013.

K. Chiku, T. Nihira, E. Suzuki, M. Nishimoto, and M. Kitaoka, Discovery of two ?-1,2-mannoside phosphorylases showing different chainlength specificities from Thermoanaerobacter sp. X-514, PLoS One, vol.9, p.114882, 2014.

T. Tsuda, T. Nihira, K. Chiku, E. Suzuki, and T. Arakawa, Characterization and crystal structure determination of ?-1,2-mannobiose phosphorylase from Listeria innocua, FEBS Lett, vol.589, pp.3816-3821, 2015.

F. N. Awad, P. Laborda, M. Wang, A. L. Li, and Q. , Discovery and biochemical characterization of a mannose phosphorylase catalyzing the synthesis of novel ?-1,3-mannosides, BBA-Gen Subjects, vol.2017, pp.3231-3237, 1861.

S. Tang and N. Pohl, Automated solution-phase synthesis of ?-1,4-mannuronate and ?-1,4-mannan, Org Lett, vol.17, pp.2642-2645, 2015.

J. A. Gerlt, J. T. Bouvier, D. B. Davidson, H. J. Imker, and B. Sadkhin, Enzyme function Initiative-Enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks, BBA-Proteins Proteom, vol.2015, pp.1019-1037, 1854.

H. J. Atkinson, J. H. Morris, T. E. Ferrin, and P. C. Babbitt, Using sequence similarity networks for visualization of relationships across diverse protein superfamilies, PLoS One, vol.4, p.4345, 2009.

B. J. Levin, Y. Y. Huang, S. C. Peck, Y. Wei, and A. Martínez-del-campo, A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans -4-hydroxy-l-proline, Science, vol.355, p.8386, 2017.

A. H. Viborg, N. Terrapon, V. Lombard, G. Michel, and M. Czjzek, A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16), J. Biol. Chem, vol.294, pp.15973-15986, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02291008

S. Ladevèze, E. Laville, J. Despres, P. Mosoni, and G. Potocki-véronèse, Mannoside recognition and degradation by bacteria, Biol Rev, vol.92, pp.1969-1990, 2017.

O. Svartström, J. Alneberg, N. Terrapon, V. Lombard, and I. De-bruijn, Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation, Isme J, vol.11, pp.2538-2551, 2017.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, pp.403-410, 1990.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, CD-HIT suite: a web server for clustering and comparing biological sequences, Bioinformatics, vol.26, pp.680-682, 2010.

A. S. Konagurthu, J. C. Whisstock, P. J. Stuckey, and A. M. Lesk, MUSTANG: a multiple structural alignment algorithm, Proteins, vol.64, pp.559-574, 2006.

S. Nakae, S. Ito, M. Higa, T. Senoura, and J. Wasaki, Structure of novel enzyme in mannan biodegradation process 4-O-?-D-mannosyl-D-glucose phosphorylase MGP, J Mol Biol, vol.425, pp.4468-4478, 2013.

S. Ladevèze, G. Cioci, P. Roblin, L. Mourey, and S. Tranier, Structural bases for N-glycan processing by mannoside phosphorylase, Acta Crystallogr D, vol.71, pp.1335-1346, 2015.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-780, 2013.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-425, 1987.

I. Letunic and P. Bork, Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

H. Nielsen, Predicting secretory proteins with SignalP. Protein Function Prediction, pp.59-73, 2017.

J. D. Gawronski and D. R. Benson, Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection, Anal Biochem, vol.327, pp.114-118, 2004.

M. De-groeve, G. H. Tran, A. Van-hoorebeke, J. Stout, and T. Desmet, Development and application of a screening assay for glycoside phosphorylases, Anal Biochem, vol.401, pp.162-167, 2010.

S. S. Macdonald, Z. Armstrong, C. Morgan-lang, M. Osowiecka, and K. Robinson, Development and application of a high-throughput functional metagenomic screen for glycoside phosphorylases, Cell Chem Biol, vol.26, pp.1001-1012, 2019.

T. Niedermeyer and M. Strohalm, mMass as a software tool for the annotation of cyclic peptide tandem mass spectra, PLoS One, vol.7, p.44913, 2012.

B. Domon and C. E. Costello, A systematic Nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates, Glycoconj J, vol.5, pp.397-409, 1988.

P. Wildberger, A. Todea, and B. Nidetzky, Probing enzyme-substrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site-directed mutagenesis: the roles of Asp49 and Arg395, Biocatal Biotransfor, vol.30, pp.326-337, 2012.

H. H. Lee, J. S. Lee, J. Y. Cho, Y. E. Kim, and E. K. Hong, Structural characteristics of immunostimulating polysaccharides from Lentinus edodes, J Microbiol Biotechnol, vol.19, pp.455-461, 2009.

S. Guo, W. Mao, Y. Han, X. Zhang, and C. Yang, Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda, Bioresour Technol, vol.101, pp.4729-4732, 2010.

N. Shibata, H. Kobayashi, Y. Okawa, and S. Suzuki, Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype a, Eur J Biochem, vol.270, pp.2565-2575, 2003.

C. Mille, P. Bobrowicz, P. Trinel, H. Li, and E. Maes, Identification of a New family of genes involved in ?-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans, J Biol Chem, vol.283, pp.9724-9736, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00642091

E. Katzenellenbogen, N. A. Kocharova, P. V. Toukach, S. Górska, and A. Korzeniowska-kowal, Structure of an abequose-containing O-polysaccharide from Citrobacter freundii O22 strain PCM 1555, Carbohydr Res, vol.344, pp.1724-1728, 2009.

B. Liu, Y. A. Knirel, L. Feng, A. V. Perepelov, S. Sof'ya et al., Structural diversity in Salmonella O antigens and its genetic basis, FEMS Microbiol Rev, vol.38, pp.56-89, 2014.

I. M. Sims and A. Bacic, Extracellular polysaccharides from suspension cultures of Nicotiana plumbaginifolia, Phytochemistry, vol.38, pp.1397-1405, 1995.

M. J. Alberta, T. Holme, B. Lindberg, J. Lindberg, and M. Mosihuzzaman, Structural studies of the Shigella boydii type 5 O-antigen polysaccharide, Carbohydr Res, vol.265, pp.121-127, 1994.

I. Lima, A. Havt, and A. Lima, Update on molecular epidemiology of Shigella infection, Curr Opin Gastroen, vol.31, pp.30-37, 2015.

Y. Chen, X. Li, L. Zhou, W. Li, and L. Liu, Structural elucidation of three antioxidative polysaccharides from Tricholoma lobayense, Carbohydr Polym, vol.157, pp.484-492, 2017.

N. A. Kocharova, Y. A. Knirel, A. S. Shashkov, N. K. Kochetkov, and G. B. Pier, Structure of an extracellular cross-reactive polysaccharide from Pseudomonas aeruginosa immunotype 4, J Biol Chem, vol.263, pp.11291-11295, 1988.