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ABSTRACT 
Motivation: Current advances in DNA synthesis, cloning and 
sequencing technologies afford high throughput implementation of 
artificial sequences into living cells. However, flexible computational 
tools for multi-objective sequence design are lacking, limiting the 
potential of these technologies. 
Results: We developed DNA-Tailor (D-Tailor), a fully extendable 
software framework, for property-based design of synthetic DNA 
sequences. D-Tailor permits the seamless integration of multiple 
sequence analysis tools into a generic Monte-Carlo simulation that 
evolves sequences toward any combination of rationally defined 
properties. As proof of principle, we show that D-Tailor is capable of 
designing sequence libraries comprising all possible combinations 
among three different sequence properties influencing translation 
efficiency in E. coli. The capacity to design artificial sequences that 
systematically sample any given parameter space should support 
the implementation of more rigorous experimental designs. 
Availability: Source code is available for download at 
https://sourceforge.net/projects/dtailor/ 
Contact: aparkin@lbl.gov or cambray.guillaume@gmail.com 
Supplementary information: Supplementary data are available at 
Bioinformatics online (D-Tailor Tutorial). 

1 INTRODUCTION  
The accumulation of genomic data has fueled the development of 

numerous computational tools that infer functional behavior from 

biological sequences. These algorithms essentially capture our 

understanding of how functional information is encoded in nucleic 

acid and protein sequences. As a result, molecular biologists can 

now access a plethora of sequence analysis tools to help them 

predict functional behaviors from plain sequences (Altschul, et al., 

1997; Bailey, et al., 2009; Giardine, et al., 2005; Hofacker, 2003; 

Kingsford, et al., 2007; Markham and Zuker, 2008; Thomas-

Chollier, et al., 2011). Common tasks comprise the identification 

of sequence motifs from nucleic acid (DNA/RNA) or protein 

sequences (e.g., promoter or termination activity, recombination or 
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splicing sites), as well as the computation of sequence properties 

that are mechanistically linked to particular phenotypes (e.g., 

codon usage or propensity to form transmembrane protein 

domains). 

Such sequence analysis tools are usually used to inform 

biological discovery in natural genomic sequences. However, 

considering recent advances in DNA technologies and the 

concomitant rise of synthetic biology applications (Cambray, et al., 

2011; Carr and Church, 2009; Czar, et al., 2009; Endy, 2005; Ma, 

et al., 2012), these same tools may also be leveraged to guide the 

design of artificial sequences satisfying predefined functions of 

interest.  

Ideally, elementary biological functions should be contained 

within well-defined sequence parts that could be re-used with 

acceptable reliability in different contexts (e.g., (Davis, et al., 

2011; Mutalik, et al., 2013)). However, it is becoming increasingly 

clear that many molecular behaviors result from the combined 

influence of several sequence determinants that cannot be neatly 

encapsulated within the physical boundaries of a single part, but 

rather emerge at the interface between the different parts 

(Cambray, et al., 2013; Kosuri, et al., 2013; Mutalik, et al., 2012; 

Salis, et al., 2009). In this context, the multidimensional 

examination of DNA sequences becomes necessary to better 

capture the inherent complexity of biological behavior and further 

enable predictive design of synthetic sequence functions and 

activities (e.g. (Allert, et al., 2010; Dvir, et al., 2013; Kinney, et al., 

2010; Na, et al., 2013; Rhodius and Mutalik, 2010; Rodrigo, et al., 

2012; Salis, et al., 2009; Seelig, et al., 2006; Welch, et al., 2009)). 

Valuable sequence design tools implementing heuristic searches 

have been successfully developed for multi-objective optimization 

within specific applications (e.g., protein synthesis optimization 

(Chung and Lee, 2012; Dana and Tuller, 2012; Gaspar, et al., 

2013; Gaspar, et al., 2012; Raab, et al., 2010; Racle, et al., 2012; 

Salis, et al., 2009; Welch, et al., 2011)). However, application of 

such optimization procedures requires an objective function 

relating computed sequence properties to an expected performance 

score. Unfortunately, the data and models required to describe 

these relationships are generally not sufficient to support truly 

reliable functional design. 
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Interestingly, sequence design tools can also be used upstream of 

the optimization process to produce libraries of sequences that are 

more suited for the development of predictive models. Although 

large-scale studies have mostly used random approaches to 

introduce variability in the synthetic sequences to be interrogated 

(Dvir, et al., 2013; Quan, et al., 2011), similar endeavours have 

greatly benefited from following well-established design of 

experiments (DoE) (Allert, et al., 2010; Antony, 2003; Kosuri, et 

al., 2013; Sharon, et al., 2012; Smith, et al., 2013).  

DoE is a general framework that fully integrates planning and 

analysis phases, and comprises three major steps. The first one 

consists in identifying the factors of interest and defining the range 

of values for each factor. In the case of molecular sequences, 

factors are properties of the primary sequence itself and can be 

typically identified by reanalysing available functional genomic 

data and published mechanistic studies. The second step consists in 

implementing a particular experimental design wherein multiple 

combinations of factor levels are selected to create an experimental 

dataset providing maximal information to relate the design factors 

to the response variable(s). For example, one of the most 

informative DoE is the full-factorial design, where all possible 

combinations of factor levels across the different factors are 

performed. The resulting dataset not only permits to estimate the 

contribution of each factor to the measured response variable, but 

also robustly captures the interactions between the different factors 

(Antony, 2003; Mutalik, et al., 2013). Lastly, the third step 

includes the collection of experimental data and definition of a 

model relating the multiple factors to the response variable(s). Of 

note, this can be an iterative process wherein models derived from 

the third phase can inform the design of a new set of experiments. 

Although implementation of experimental designs systematically 

varying easily manipulated factors can be straightforward (e.g., 

growth medium, pH, temperature or oxygen levels), the ability to 

design artificial sequences whose intrinsic properties can be 

systematically varied is not necessarily trivial (e.g., binding site 

affinity or the strength of an RNA secondary structure). 

Here, we present D-Tailor, an extendable framework supporting 

integration of multiple sequence analysis tools to mine and design 

biological sequences. D-Tailor uses a heuristic search algorithm to 

enable flexible design of synthetic sequences varying multiple 

properties of interest so as to satisfy complex DoEs. We have 

validated our tool by successfully designing artificial sequence 

libraries conforming to full-factorial designs, which represent the 

upper bound of experimental design complexity. More specifically, 

we have designed libraries systematically varying multiple 

sequence properties known to impact translation efficiency in E. 
coli. To further demonstrate the versatility of the algorithm, we 

also used D-Tailor to design artificial bacterial promoter sequences 

varying multiple cis-regulatory properties (see Supplementary 

Information).  

2 METHODS 
D-Tailor essentially implements the two-step planning process outlined 

above (Fig. 1). The analysis mode computes property scores from plain 

biological sequences. Here, the user specifies input sequences and a 

predefined set of properties to be computed. The design mode integrates the 

analysis routines with a parameterizable Monte-Carlo algorithm that 

evolves an input sequence (seed) so as to match the specified combinations 

of property scores. In a typical workflow, users can use the analysis mode 

to identify sequence properties and operational ranges that seem worth 

exploring in design mode. 

2.1 Sequence analyzer 
D-Tailor provides a generic interface for multidimensional interrogation of 

DNA sequences. The software is designed with a modular architecture, so 

that users with basic programing skills can easily implement or extend 

Fig. 1 D-Tailor enables multidimensional analysis and design of DNA sequences. D-Tailor provides a flexible and extendable architecture to interrogate 

different sequence properties (box in the middle). The left panel depicts an example of the retrieval process of two properties (RNA structure and motif 

prediction) from multiple input sequences that can come from either FASTA or CSV files. The resulting score profile can be used to identify general 

trends and further define ideal parameter ranges for the design objectives. The right panel shows the design mode of D-Tailor, wherein a seed sequence is 

evolved to meet a user-defined combination of sequence properties. The figure depicts a full-factorial design for two different properties of interest (RNA 

structure and motif scores) with three levels each (low, medium and high), which yields a total of nine different combinations (colored areas).  
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modules for handling any sequence property of interest. Such modules can 

be implemented using custom Python code or scripts connecting to third 

party software (see the Tutorial available in the Supplementary 

Information). In analysis mode, D-Tailor reads a set of sequences in either 

delimiter separated (e.g., CSV) or FASTA format files. A property profile 

is then computed for each of the input sequences by successively calling 

the analysis modules specified by the user. (Fig. 1, left panel). 

    D-Tailor currently comprises 14 different modules to compute various 

sequence properties involved in diverse mechanisms of gene regulation. 

This collection of sequence property evaluators includes algorithms to 

score promoter regions or transcription factor binding sites based on 

sequence logos (Thomas-Chollier, et al., 2011), estimate translation 

initiation rates based on the Shine-Dalgarno (SD) sequence (Shine and 

Dalgarno, 1975), predict propensity to form RNA structures, calculate 

nucleotide composition or compute the codon adaptation index (CAI) for a 

given gene sequence (Sharp and Li, 1987). Although the implementation of 

the different sequence property evaluators is usually self-contained within 

D-Tailor, the computation of specific properties may rely on third party 

softwares (e.g., UNAfold (Markham and Zuker, 2008) for the prediction of 

RNA secondary structure,). Together, these modules illustrate diverse 

implementation modalities and provide useful examples to guide future 

extensions (see Supplementary Information). The specification of adequate 

analysis routines is an essential prerequisite to running the design mode.  

2.2 Sequence designer 
As capacities for DNA synthesis increase exponentially, the ability to 

computationally design artificial sequences need to become more 

automated and transparent. The most innovative feature of D-Tailor is to 

provide a generic solution of designing synthetic sequences constrained by 

multiple properties of interest (Fig. 1, right panel). 

The design process in D-Tailor starts with the specification of a seed 

sequence and the desired design objective (i.e. the DoE) (Fig. 1, right 

panel). Seed sequences serve as a template to bootstrap the evolutionary 

design process. Typically, users would use a particular sequence of interest 

from which they want to derive a mutational series. The DoE enumerates 

combinations of sequence properties that need to be generated, each of 

which constitutes a design target. D-Tailor provides a flexible scheme for 

the definition of DoE, which can vary from full-factorial to entirely 

customized designs.  

The definition a finite number of targets requires the discretization of 

continuous property scores into a finite number of nominal or ordinal 

levels. For example, Fig. 1 shows the discretization of two sequence 

property scores into three ordinal levels (low, medium and high). This 

framework markedly differs from usual multi-objective optimization 

approaches (Chung and Lee, 2012; Raab, et al., 2010; Racle, et al., 2012), 

which operate to optimize a single continuous and integrated performance 

score rather than explicitly target different regions of the parameter space. 

As illustrated in the Results section, natural feature profiles extracted from 

available genomic sequences can be used to guide the discretization 

processes and ensure biological relevance of the sampled space. For each 

sequence property, users may define as many levels as necessary to attain 

the desired degree of resolution in the designed sequences. However, since 

the number of possible combinations increases geometrically with the 

number of properties/levels, their definition must be mindful of 

downstream experimental capacities. 

Finding a sequence that conforms to an arbitrary combination of 

property levels is often computationally infeasible using a brute force 

approach. Indeed, the sequence space to be searched is gigantic (4
N
 where 

N is the number of nucleotides in the sequence to be designed, more if 

indels are allowed). To optimize the search process, D-Tailor uses a Monte-

Carlo algorithm to evolve a given seed sequence towards the set of design 

targets (Fig. 2).  

More specifically, the algorithm loops through cycles of evolution until 

all target combinations of property levels specified by the DoE are found. 

Each cycle consists in three consecutive steps: i) a target combination of 

property levels is randomly selected; ii) a template sequence is chosen from 

the repository of previously generated sequences using fitness 

proportionate selection (only seed sequences are available at the very first 

iteration); and iii) a predefined number of mutational iterations are 

performed until a sequence satisfying the target combination of the 

property level is found (Fig. 2, sequence evolver). We use the inverse of the 

cumulative Euclidean distance (D) between property levels, as a generic 

fitness measure of a sequence relative to a given design target (Eq. 1): 

 

 

D " #$%d' ( t'*+ 																						%Eq. 1* 
 

 

where n	represents the number of sequence properties; d'	and t'	represent 

the levels of the ith sequence property in the designed sequence and the 

desired combination, respectively. 

Each iteration of the sequence evolver also comprises three steps: i) the 

sequence being evolved is analyzed and a property requiring optimization 

(i.e., not within the target level) is randomly selected; ii) the template 

sequence is then mutated following user-specified mutational rules (see 

below); and, iii) the feature scores of the resulting sequence are analyzed 

and evaluated with respect to the current design target (Eq. 1). Every 

generated sequence is also screened for compliance to a user-

defined set of rules meant to prevent the emergence of undesired 

properties in the final designed sequences (e.g., restriction sites, 

unexpected promoters or terminators). Only validated sequences 

are stored in the database. 

Next, if the new sequence matches the target combination (D=0), then 

the target is marked as completed and the evolution cycle is terminated. 

Otherwise, the algorithm updates the template for the next mutational 

iteration, choosing between retaining the current template sequence or 

accepting the mutant just derived. At this point, we defined three different 

selective regimes: i) directional selection, where the sequence with the 

lower Euclidean distance to the target combination is chosen; ii) neutral 

selection, where any of the two sequences is selected with predefined 

probabilities; or iii) temperature selection, as inspired by simulated 

annealing optimization (Kirkpatrick, et al., 1983), where the sequence is 

selected based on a temperature schedule that allows worse sequences 

(longer distances) to also be selected with a probability that decreases with 

the number of iterations performed. 

At each of the mutational iterations, new sequences can be generated 

through random mutation of the template sequence, as usual in many 

sequence optimization tools (Chung and Lee, 2012; Gaspar, et al., 2012; 

Fig. 2 Sequence designer algorithm comprised by three different steps 

described in the main text. Initially, a target combination of features is 

selected and then a sequence that is close (i.e., short Euclidean distance) 

to the desired target is chosen to serve as the template in the sequence 

evolution step. This last step applies successive mutations until it finds a 

sequence matching the target combination of features 
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Salis, et al., 2009). In addition, D-Tailor offers the possibility to implement 

specialized mutation operators that aim at improving the likelihood to 

generate desired property changes. Practically, a mutation operator 

randomly selects a property amongst those that are non-optimal in the 

current template (d' ( t'	 2 0). We then distinguish between: i) targeted 

operators, which restrict the mutational space to specific regions of the 

sequence that are therefore more likely to affect the property that needs to 

be evolved; and ii) oriented operators, which further specify particular 

mutation patterns to bias the production of variants toward the current 

design target. For example, if the design goal specifies an increase in the 

CAI of a gene, the targeted mutation operator restricts the mutable region 

to the coding sequence and randomly replaces a codon by another one 

irrespective of its usage score. The oriented mutation operator further 

constrains the replacement of a randomly chosen codon with one associated 

with a higher usage score, thereby enforcing the required increase. For 

certain emergent features, the definition of oriented mutation might not be 

so straightforward. For example, we implemented oriented mutation 

operators for RNA secondary structure by specifically targeting mutations 

to bases that are predicted to be paired or unpaired, to respectively decrease 

or increase the strength of the mutated RNA structure. Importantly, any 

mutation operator targeting gene-coding sequences can be further 

constrained to only generate synonymous mutations, thereby preserving the 

encoded protein sequence while modifying the underlying DNA properties. 

In some applications, it may be desirable to limit the overall divergence 

between sequences in the designed library, so that it provides small 

variations with respect to a particular reference sequence. Conversely, users 

might want to generate sequences that are as dissimilar as possible and, 

therefore, share as few confounding factors as possible. In D-Tailor, users 

can manipulate mutational patterns and the selective regime—two major 

parameters of the evolutionary design process—to indirectly control 

sequence diversity, and consequently impact the rate of sequence evolution, 

as well as the overall performance of the search algorithm (see below). 

3 RESULTS AND VALIDATION 
D-Tailor provides an integrated Python-scripting framework for 

multidimensional analysis of sequence properties and for the 

design of artificial sequences constrained by multiple sequence 

properties of interest. 

As a case study, we have chosen three different previously 

reported sequence determinants of translation efficiency. In E. coli, 

two major factors have been shown to modulate the rate of 

translation initiation: i) the strength and position of a Shine-

Dalgarno (SD) motif upstream of the start codon (Barrick, et al., 

1994; Shine and Dalgarno, 1975); and ii) the propensity of these 

sequence signals to engage in mRNA secondary structures (de 

Smit and van Duin, 1994; Hall, et al., 1982; Kudla, et al., 2009). 

Subsequent to initiation, the rate of elongation may also affect the 

overall translation efficiency and is mainly determined by the 

codon usage of the gene (Gustafsson, et al., 2004; Ikemura, 1985; 

Kane, 1995; Sharp and Li, 1987; Welch, et al., 2009; Welch, et al., 

2011). We first illustrate how D-Tailor analysis module can be 

used to examine such sequence properties in the natural genome of 

E. coli. Then, we demonstrate how to use D-Tailor design module 

to generate artificial sequence libraries systematically varying the 

three properties of interest according to a full-factorial design of 

experiments. 

3.1 Using D-Tailor to interrogate sequences 
We used D-Tailor to re-analyze three different sequence properties 

across the entire E. coli W3110 genome (Fig. 3). Mechanistically, 

the SD motif stabilizes the initial binding of the 30S subunit of the 

ribosome by establishing canonical base pairing with the 3’ end of 

the 16S rRNA (anti-SD) (Shine and Dalgarno, 1975). We applied a 

sequence property evaluator that calculates the strength of the SD 

sequence by searching for a subsequence within the 25 nucleotides 

upstream of a start codon with highest affinity to the known anti-

SD (Lithwick and Margalit, 2003). The presence of secondary 

structures in this region of the mRNA can hinder initiation by 

occluding the SD motif or the nearby start codon from recognition 

by the ribosomal subunits. For that purpose, we used an RNA 

structure evaluator to compute the minimum free energy of the 60 

nucleotides subsequence centered on the start codon (Kudla, et al., 

2009). Finally, we used a CAI calculator to score the codon usage 

of a gene sequence (Sharp and Li, 1987). Practically, the usage of 

these property evaluators and associated parameters requires a 

standard interface, which is provided by extending the abstract 

class Feature in D-Tailor (see Supplementary Information). 

The sequence property profiles resulting from a genome analysis 

give a solid basis to identify trends in the properties of interest, and 

to further determine the relevant parameter space to explore during 

the design step (Fig. 3A-C). Correlations amongst property scores 

may also provide insights onto potential functional interactions 

although some may be purely incidental. For example, the modest 

correlation between RNA structure in the translation initiation 

region and the affinity between ribosomes and the SD sequence 

(Fig. 3D) might merely reflect the thermodynamic propensity of G-

rich SD motifs to engage in secondary structures. Similarly, the 

peculiar shape of the relationship between CAI and RNA 

secondary structure (Fig. 3E) might stem from the joint 

contributions of independent evolutionary pressures for expression 

levels acting on these two properties to tune expression levels 

(highly expressed genes being both under selection for high CAI 

and for low structure (Gu, et al., 2010; Kudla, et al., 2009; Plotkin 

and Kudla, 2011; Tuller, et al., 2010)). It is then up to the user to 

define a DoE containing combinations of sequence property scores 

Fig. 3 (A-C) Distribution of the three different sequence properties 

(hybridization energy between the 16S rRNA and SD sequence (A), 

minimum folding energy of RNA structure in the translation initiation 

region (B) and codon adaptation index—CAI—of gene sequences (C)) 

influencing translation efficiency in E. coli. The dashed lines indicate the 

quintile boundaries for the scores of each property, which were later used 

in design mode to discretize the parameter space. (D-F) Scatter plots 

showing the cross-correlation between the three sequence properties of 

interest. 
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that are more adequate to test the research hypothesis to be 

investigated. 

3.2 Using D-Tailor to implement 
experimental design on sequence 
properties 

Although recent advances in DNA synthesis, cloning and 

sequencing make it possible to generate and experimentally probe 

thousands of custom DNA/RNA sequences (Dvir, et al., 2013; 

Kosuri, et al., 2013; Patwardhan, et al., 2012; Patwardhan, et al., 

2009; Quan, et al., 2011; Sharon, et al., 2012; Smith, et al., 2013), 

the availability of computational tools to aid the rational design of 

large sequence libraries remains very limited. 

The main purpose of D-Tailor is to provide a flexible 

computational tool to design custom sequences satisfying complex 

specifications. Such task can be extremely laborious when the 

properties of interest physically overlap in the sequence space. For 

instance, in our case study, the subsequence containing the SD 

motif influences the formation of RNA secondary structures in that 

same region. Likewise, the secondary structure can be affected 

when modifying codon usage at the beginning of the gene. 

Typically, such optimization problems are best solved using a trial-

and-error approach wherein sequence variants are generated using 

random mutations until a desired combination of property scores is 

found (Allert, et al., 2010; Gaspar, et al., 2013; Raab, et al., 2010; 

Racle, et al., 2012; Salis, et al., 2009). To generalize this process, 

the design mode of D-Tailor provides a framework to integrate any 

sequence property evaluator into a parameterizable Monte-Carlo 

algorithm that iteratively evolves sequences toward a specific set 

of design targets (or combinations of property levels). 

We used D-Tailor to design sequences that systematically vary 

the three properties of interest (or factors) defined above (Fig. 3). 

For each of these factors, we defined five contiguous ordinal levels 

on the basis of the quintiles observed in the natural genome (Fig. 

3A-C, dashed lines). We then instructed D-Tailor to search for 

sequences conforming to a full-factorial DoE based on these levels. 

This DoE describes a total of 125 design targets corresponding to 

all combinations of five levels across the three different properties 

(5
3
). To validate our approach, we compared the performance of 

four increasingly complex evolutionary strategies available in D-

Tailor at deriving full-factorial libraries for 30 different genes 

randomly selected in E. coli (Fig. 4A-B). In these simulations, the 

algorithm was run for at most 3,000 generations—with a single 

mutational event per generation—allowing for unrestricted 

mutations in the 5’ UTR but only for synonymous mutations in the 

coding sequence.  

We first explored the most rudimentary evolutionary strategy 

available in D-Tailor, random sampling, which does not implement 

any heuristic search and simply generates random sequences until 

all desired design objectives are completed. Every attempt to 

complete the full-factorial design before the threshold of 3,000 

generated sequences failed (Fig. 4A-B, black line, 54.2 generated 

sequences per target found [gspt] on average). The second design 

strategy used D-Tailor’s generic heuristic algorithm (Fig. 2 and 

Methods) along with the simplest mutational method wherein new 

sequence variants are generated by random mutagenesis (Fig. 4A, 

yellow line). This strategy improved the efficiency of the search 

algorithm by a factor of 2 as compared to that of the random 

sampling method (24.8 vs 54.2 gspt on average, Mann-Whitney 

test p-value = 2.3×10
-10

, Fig. 4B). Still, many sequences had to be 

generated to meet the various design objectives. The third 

mutational strategy employed spatially targeted mutation operators 

(see Methods) and improved the search algorithm efficiency by 

another factor of 2 (13.3 gspt on average, Fig. 4B). The fourth 

strategy used more ‘rational’ mutation operators that explicitly 

orient mutations toward the desired objective (see Methods) and 

provided slightly faster dynamics (Fig. 4A, orange line, 11.8 vs 

13.3 gspt on average, Mann-Whitney test p-value = 0.129, Fig. 

4B). Since the computational time necessary to achieve a given set 

of design targets is dependent on the number of generated 

sequences per target, these results illustrate the advantage of 

defining specific mutation operators whenever it is possible. 

When designing synthetic sequences, users may want to limit the 

divergence of the designed sequences with respect to the initial 

seed. To roughly control the spread of the generated sequences 

during the evolutionary process, users can manipulate the strength 

Fig. 4 D-Tailor design simulations. (A) We performed simulations of 

full-factorial design using 30 different initial sequences (seeds) and 

four different design strategies: random sampling (black) and heuristic 

search using random (yellow), targeted (blue) and oriented (orange) 

mutations. The different lines represent the average number (across 30 

simulations) of target combinations found (out of 125) as a function of 

the number of generated sequences (up to 3,000) for the four different 

strategies. We observed sizeable variation between seeds (not shown 

for clarity, see Supplementary Information for details) (B) Number of 

generated sequences per target found (gspt) for the four different 

mutational strategies (n=30). (C) We used the same 30 different seeds 

to find six different target combinations at various Euclidean distances. 

The different lines show the average hamming distance between the 

seed and the sequence matching the target combination as a function of 

the Euclidean distance to the target combination using neutral (light 

blue), directional (orange) or temperature selection (black). (D) The 

number of generated sequences until the desired target is found as a 

function of the Euclidean distance to the target combination using 

either neutral (light blue), directional (orange) or temperature (black) 

selection. 
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of selection toward the desired target(s). To better illustrate this 

point, we evolved each of the 30 seeds previously selected toward 

six different target combinations bearing different Euclidean 

distances from the seeds (Fig. 4C-D). We then examined the 

behavior and results of the algorithm in response to three 

contrasted selective regimes: neutral, directional and temperature 

selection (Methods).  

As expected, we observed that a more relaxed selection process 

(neutral) is able to generate sequences matching the desired target 

that are more similar to the seed sequence than those resulting 

from the directional or temperature selection approach (average 

hamming distance of 21 vs 31.3 and 39.2, respectively; Mann-

Whitney test p-value = 0.0005 and 1.03e-13; Fig. 4C).  

Nonetheless, the limitation of sequence diversity comes at the cost 

of longer computation time (Fig. 4D). In fact, for the 30 seed 

sequences, the neutral selection process requires the generation of 

8 and 6 times more sequences per target than the directional and 

temperature selection approach, respectively and on average. For 

large designs, users may have to balance the desired divergence of 

the designed sequences with the available computational power. A 

hybrid approach, wherein the algorithm is initially set with weak 

selection and hard constraints to limit divergence, and then 

progressively configured with increased selection bias and/or 

relaxed mutational constraints (e.g., allow non-synonymous 

mutations in coding sequences if it is acceptable by the user) as the 

rate of target discovery slows down may then be recommended. 

The details of such procedure are likely specific for each 

application, and therefore we have not sought to implement an 

automatic schedule to control this behavior. Since the state of a D-

Tailor design mode run is permanently stored in a database, we 

suggest users to manually experiment with adjusting these 

parameters.  

4 CONCLUSION 
Advances in DNA reading/writing technologies readily enable the 

construction and validation of complex genetic systems (Gibson, et 

al., 2010). However, rules to successfully design synthetic 

sequences to functional specifications have been limited by 

measurements from biased natural samples and/or small scale 

controlled synthetic samples comprising at most hundreds of 

sequences (e.g., (Allert, et al., 2010; Amit, et al., 2011; Barrick, et 

al., 1994; Garcia, et al., 2012; Mutalik, et al., 2012; Na, et al., 

2013; Rhodius and Mutalik, 2010; Rodrigo, et al., 2012; Salis, et 

al., 2009)). This lack of knowledge strongly restrains the practical 

applications of ab initio design. Innovative experimental 

methodologies based on high-throughput technologies are scaling 

the characterization process up to tens of thousands of designed 

sequence variants, providing larger datasets to better understand 

sequence/activity relationships (Dvir, et al., 2013; Kinney, et al., 

2010; Patwardhan, et al., 2012; Patwardhan, et al., 2009; Sharon, et 

al., 2012; Smith, et al., 2013). However dramatic, this increase in 

throughput remains limited in comparison to the sheer immensity 

of the sequence space. It is therefore crucial to reduce the 

dimensionality of the design space to a set of sequence properties 

of interest that can be independently varied to facilitate estimation 

of their individual contribution to the measured phenotype and 

further support predictable design of synthetic variants (Allert, et 

al., 2010; Sharon, et al., 2012; Smith, et al., 2013). 

We developed D-Tailor as an extendable and flexible software 

platform for the multi-objective design of artificial sequences. It 

provides a generic interface to integrate multiple sequence analysis 

tools into a heuristic Monte-Carlo search procedure capable of 

evolving sequences towards pre-defined design targets (Fig. 1). D-

Tailor presents significant differences to other multi-objective 

sequence optimization tools (Allert, et al., 2010; Chung and Lee, 

2012; Dana and Tuller, 2012; Gaspar, et al., 2012; Raab, et al., 

2010; Racle, et al., 2012; Salis, et al., 2009). First, it allows the 

definition of multiple design targets as combinations of sequence 

properties that embody particular design of experiments. A DoE 

can range anywhere from one specific combination of property 

levels to a full-factorial design, where the parameter space is fully 

explored. In contrast, traditional optimization tools describe design 

objectives in terms of desired response performances, which are 

linked to the sequence properties by a complex and pre-defined 

static objective function. Such formalization is suited for 

functional optimization, but do not explicitly support systematic 

exploration of the parameter space. Second, D-Tailor provides an 

evolutionary algorithm to optimize both coding and non-coding 

regions. Third, D-Tailor supports the implementation of advanced 

mutational strategies that can significantly enhance the heuristic 

search performance (Fig. 4B). Finally, our tool is not application-

specific and provides an open source solution based on an 

extendable architecture, such that new sequence property 

evaluators can be easily implemented and integrated into the 

sequence design engine. 

We demonstrate that D-Tailor can efficiently design artificial 

sequences to systematically vary any given set of properties of 

interest. To this end, we successfully derived full-factorial 

sequence libraries, starting from 30 different seed sequences, 

exploring the entire parameter space of three intertwined sequence 

properties affecting translation efficiency. Interestingly, we 

observed that the dynamics of target discovery varies slightly 

depending on the input seed (see Supplementary Information for 

details). This illustrates that different sequences may have distinct 

evolutionary landscapes; some being more amenable to generate 

widely variable profiles of property scores, with fewer mutational 

cycles than others (Cambray and Mazel, 2008; Wagner, 2008). For 

both targeted and oriented mutational methods, the average 

dynamics of target discovery revealed a relatively steady rate for 

the first ~80% of targets, followed by a sharp decrease in 

efficiency—presumably because the remaining targets specify 

combinations of property levels that are harder to attain (Fig. 4A, 

orange and light blue lines). We also confirmed that more 

simplistic design approaches—such as generation of random 

sequences—perform poorly in comparison to a heuristic search 

(Fig. 4A-B). 

In addition to the case study detailed here, we have used D-

Tailor to systematically design synthetic bacterial promoter 

sequences varying multiple cis-regulatory properties (see Tutorial 

for details), that way demonstrating the generality and flexibility of 

our methods and tool. 

D-Tailor permits the implementation of advanced experimental 

designs into artificial sequence samples that can serve as a basis to 

rigorously and consistently test sets of molecular hypothesis. We 

believe that comprehensive full-factorial libraries of sequences are 

needed to investigate complex biochemical activities and robustly 

dissect the contribution of individual factors as well as their 
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interactions. Such libraries will aid characterizing complex 

multifactorial phenotypes and eventually derive quantitative 

relationships between sequence and activity. 
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1. Installing D-Tailor 

1.1. Prerequisites 

D-Tailor is implemented in Python. Python is an interpreted and interactive object-

oriented programming language that is available for several platforms including Unix, 

Mac OSX and Microsoft Windows. Before starting to use D-Tailor, you need to install 

Python version 2. More information can be found at http://www.python.org. 

D-Tailor uses a few command line utilities such as cat or awk that are commonly 

available for Unix or Unix-derived operating systems. When using Microsoft Windows it 

is necessary to run D-Tailor in a Unix-emulation environment such as Cygwin 

(http://www.cygwin.com/). 

To have access to certain functionalities in D-Tailor, you will need to install third-

party software to predict RNA structure (UNAFold v3.6 and RNAplfold v1.6) and 

transcription terminators (TransTermHP v2.08). The sources for these tools are located 

in the folder “3rdParty” and, after installation, the compiled binaries must be copied to 

each corresponding folder. For installation instructions of third party software, please 

refer to their respective websites: 

• UNAFold—http://dinamelt.rit.albany.edu/download.php 

• RNAplfold (Vienna RNA package)—http://www.tbi.univie.ac.at/~ivo/RNA/ 

• TransTermHP—http://transterm.cbcb.umd.edu/ 

All these tools are optional and hence only necessary if the user wants to use above-

mentioned functionalities, namely predict RNA structure or transcription terminators.  

1.2. Installation 

D-Tailor is a Python project ready to be used. To start using D-Tailor, simply 

download it from https://sourceforge.net/projects/dtailor/ and copy the files to the 

destination folder. 

1.3. License 

D-Tailor is licensed under the BSD 2-Clause License. 
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2. D-Tailor Essentials 

2.1. Scope and functionalities 

D-Tailor is an extendable framework that automates the analysis and design of DNA 

sequences properties. To this end, it implements two distinct modules: Sequence 

Analyzer and Sequence Designer (Figure 2.1). In the Analyzer module, a predefined set 

of sequence properties of interest is automatically retrieved and evaluated from plain 

DNA sequences. Conversely, the Designer module evolves a DNA sequence to match 

specific combinations of sequence properties scores under given mutation constraints 

(e.g., sequences regions available for mutation or only synonymous mutations). In 

addition, it is possible to constraint diversity of the designed sequences and/or enforce 

validation tests to prevent final sequences from comprising undesired elements (e.g. 

restriction sites, unexpected promoters, terminators or internal ribosome binding sites). 

Figure 2.1 D-Tailor framework 
D-Tailor provides automated analysis and design of DNA sequences. Because it is based on a modular 
architecture, it enables the independent development of sequence property evaluators that can be easily 
plugged-in to the software (Properties library). The left panel depicts an example of the evaluation of two 
properties from multiple DNA sequences. The right panel outlines the design mode of D-Tailor, where 
designed sequences are generated based on a design objective constraining two different sequence properties. 
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In summary, D-Tailor provides an integrated framework for the seamless extraction 

and evaluation of multiple properties of interest from plain DNA sequences. This 

analysis pipeline is also integrated in a Monte-Carlo algorithm that evolves input 

sequences under user-defined constraints toward a set of combinations of sequence 

properties scores, thereby enabling flexible multi-objective sequence design. D-Tailor is 

based on an extendable architecture to allow the independent development of new 

sequence property evaluators that can be easily plugged-in to the software (Figure 2.1). 

2.2. Project Structure 

D-Tailor uses object-oriented design and its core entities are: 

• Feature—abstract object encapsulating all relevant attributes and methods to 

describe a particular sequence feature or property; 

• Solution—concrete object containing all information for a particular sequence. 

A Solution can have one or more Feature objects. Solution is a concrete class that 

stores a DNA/RNA sequence and corresponding properties of interest. In contrast, 

Feature is an abstract class that is extended by concrete property classes. D-Tailor 

comes packaged with many ready-to-use concrete properties that extend the abstract 

class Feature. We will use a detailed implementation of two of these properties to 

exemplify how users can easily implement their own sequence properties of interest 

(below). 

The two main executable classes of are: SequenceAnalyzer and SequenceDesigner. 
These are abstract classes and must be extended by concrete classes implementing user-

defined analyses and designs (e.g., which properties to compute or what are the mutation 

constraints). The design mode also requires the definition of a design objective (a class 

extending the abstract class Design). Several design methodologies are already 

implemented in D-Tailor (see section 6.2). 

To provide a flexible storage environment and enable parallel computation, generated 

sequences are stored in a database. D-Tailor uses the abstract class DBAbstract to 

encapsulate a database management interface. We have extended this class to implement 

a storage environment based on SQLite (http://www.sqlite.org/). DBSQLite uses the 

built-in Python library sqlite3 to implement a file-based SQL database engine to store 

information resiliently and in a structured way without the need to install additional 
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software. Other database solutions can be implemented by extending DBAbstract to 

provide a storage environment compatible with other user preferences (e.g., SQLServer, 

MySQL, etc) without impacting the basic functionalities of D-Tailor. 

Figure 2.2 depicts a unified model language (UML) class diagram that captures the 

multiple dependencies between classes implemented in D-Tailor. 

 

Figure 2.2 UML class diagram of D-Tailor 

The two main executable classes (SequenceAnalyzer and SequenceDesigner) contain one or more instances of 
the class Solution, which contains a list of one or more instances of the class Feature. The SequenceDesigner 
requires the instantiation of the class Design, which provides basic information about the design target(s), 
and the class DBAbstract, where designed sequences are stored. The diagram shows examples of classes 
extending the abstract classes Design and Feature. 

The project itself is organized in a series of folders and packages: 

• Root directory: contains several core classes of the software 

(SequenceAnalyzer, SequenceDesigner and Solution). It also contains two 

auxiliary modules (Data and Functions) with relevant data structures and 

functions. Data contains all data variables/structures shared by the many 

classes and can be seen as a repository for global variables. Functions provides 

a repository for common functions that are used by different classes. 

• Packages: 

o DBOperation—contains the abstract and concrete classes 

implementing the storage management system; 

o DesignOfExperiments—includes all classes defining design objectives; 

Solution

SequenceDesigner SequenceAnalyzer

Feature

Features

CAI Structure

StructureMFE

Design

DesignOfExperiments

Optimization FullFactorial Random
Sampling

DBAbstract

DBSQLite
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o Features—collection of sequence property evaluators implemented in 

D-Tailor; 

o Running examples—contains usage examples for the two different 

modes of D-Tailor (analysis and design); 

o Utils—a set of auxiliary tools (e.g., database statistics, below). 

• Folders: 

o 3rdParty—folder with 3rd party software that may be required to run 

certain sequence property evaluators (e.g., UNAFold to predict RNA 

structures); 

o testFiles—a collection of test files that are used by the running 

examples (e.g., sequences for all E. coli genes); 

o tmp—a folder where temporary outputs generated by the sequence 

property evaluators are saved (e.g., structure files produced by 

UNAFold); 

o db—where the databases generated in the design mode can be stored;  
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3. Feature class: handling sequence properties 

The class Feature encapsulates the concept of a sequence property (i.e., a variable 

whose score can be inferred/calculated from the raw sequence). This class stores all 

relevant information about a particular property and contains all methods necessary to 

calculate its score(s). In D-Tailor, Feature is an abstract class that must be extended by 

classes implementing concrete properties. Figure 3.1 shows an example of a class CAI 

that calculates of the codon adaptation index. Basically, this class only needs to 

implement a constructor, which has to call the super class constructor from Feature and 

further define specific attributes, and the method set_scores, which computes property 

score(s). Importantly, the score of a given property needs to be stored in a dictionary 

called scores using the appropriate key, which must be a string resulting from 

concatenating the given label and the property’s class name (Figure 3.1). 
 

class CAI(Feature): 

 

    def __init__(self, caiObject = None, solution = None, label="", 

                       args = { 'cai_range' : (0,59), 'mutable_region' : None, 

                                'cds_region' : None , 'keep_aa' : True }): 

 

        if caiObject == None: #create new instance 

            #General properties of feature 

            Feature.__init__(self, solution=solution, label=label) 

            #Specifics of this Feature 

            self.cai_range  = args['cai_range'] 

            self.sequence   = solution.sequence[self.cai_range[0]:(self.cai_range[1]+1)] 

            self.set_scores() 

            self.set_level() 

        else: #copy instance 

            … 

     

    def set_scores(self, scoring_function=Functions.analyze_cai):      

        self.scores[self.label+"CAI"] = scoring_function(self.sequence) 

 

Figure 3.1 Definition of a class implementing a feature (CAI) 

The constructor receives three input parameters: a Solution (sequence to evaluate), a 

string (label) and a dictionary args with all the parameters necessary to configure the 

property. In this case, to calculate CAI score, we only need the region of the sequence 

where we want to compute it. This parameter comes in the dictionary args and is 

accessed via the key cai_range (a tuple with the starting and ending position). Next, to 

calculate CAI score, we implemented the method set_scores (Figure 3.1), which uses the 

routine analyze_cai to calculate the geometric mean of the weight associated with each 

codon within sequence (Figure 3.2). To enhance software reusability, we decided to 

implement functions like this in the Functions module. 
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def analyze_cai(seq): 

    seq = seq.lower(); 

    score = 0 

    len_sq = 0 

    for i in range(0,len(seq),3): 

        if cai_table.has_key(seq[i:i+3]): 

            score += log(cai_table[seq[i:i+3]]) 

            len_sq += 1 

    score /= len_sq 

    return exp(score) 

 

Figure 3.2 Calculation of CAI score 

Given the simplicity of CAI score calculation, analyze_cai can be entirely 

implemented in Python. However, many complex properties require sophisticated 

algorithms that are already available in third party software. D-Tailor can also be used 

to provide a streamlined way to call such software. For example, we implemented 

another property to evaluate RNA secondary structures (Structure) that uses the 

external command line tool—UNAfold (Figure 3.3). 
 

class Structure(Feature): 

 

    def __init__(self, structureObject = None, solution = None, label="",  

                        args = { 'structure_range' : (0,59), 'mutable_region' : None, 

                                 'cds_region' : None,'keep_aa' : True }): 

         

        if structureObject == None: #create new instance 

            #General properties of feature 

            Feature.__init__(self, solution=solution, label=label) 

            #Specifics of this Feature 

            self.structurefile      = solution.solid + label 

            self.structure_range    = args['structure_range']         

            self.sequence           =  

                   solution.sequence[self.structure_range[0]:(self.structure_range[1]+1)] 

            self.set_scores() 

            self.set_level() 

        else: #copy instance 

            … 

 

    def set_scores(self, scoring_function=Functions.analyze_structure):  

        scoring_function(self.sequence, self.structurefile) 

 

Figure 3.3 Definition of the class Structure 

Similarly to CAI, this class only implements the constructor and the set_scores 
method. Here, the parameter specifying the region of the sequence where the structure 

should be predicted is given by structure_range (in args). Then, the function 

analyze_structure is used to call the external RNA structure prediction tool and process 

its output. In this case, the function saves the RNA structure predicted by UNAfold 

with a predefined name and moves it to ‘tmp/structures/’ (Figure 3.4).  
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def analyze_structure(seq,filename,ensemble=False): 

     

    chdir(project_dir) 

    system("echo '" + str(seq) + "' > " + filename + ".seq")         

    fnull = open(devnull, 'w')   # omit output generated by UNAFOLD 

    if ensemble:          

        call("./3rdParty/unafold/UNAFold.pl -n RNA " + filename + ".seq", shell = True, stdout = 

fnull, stderr = fnull) 

    else: 

        call("./3rdParty/unafold/hybrid-ss-min -n RNA " + filename + ".seq", shell = True, stdout = 

fnull, stderr = fnull)      

    system("mv %s*.ct tmp/structures/" % filename) 

    # remove tmp files 

    system("rm %s*" % filename) 

    fnull.close()              

  

    return 1 

 

Figure 3.4 Prediction of RNA structure using external software 

The class Structure does not compute any specific score per se. This design pattern is 

useful when different scores can be derived from the same object, as it avoids re-

instantiating the parent object. For example, multiple scores can be inferred from the 

same RNA secondary structure (e.g., minimum free energy or paired/free nucleotides). In 

this case, sub-classes implementing the different score calculations should extend the 

parent class (Structure). Figure 3.5 shows the class StructureMFE, which computes the 

minimum folding energy (MFE) for an RNA structure predicted using the class 

Structure. In this particular example, the score is computed by calling another tool of 

the UNAFold package that calculates the MFE from a structure file. Finally, since this 

class computes a property score, it is required to update the dictionary scores.  
 

class StructureMFE(Structure): 

    """ 

    Manipulate the structure MFE 

    """ 

    def __init__(self, structureObject, label = "", regionOfInterest= None): 

        Structure.__init__(self,structureObject) 

        self.label = self.label + label 

        self.set_scores() 

        self.set_level()       
         

    def set_scores(self, scoring_function=Functions.analyze_structure_mfe):     

        self.scores.update(Functions.appendLabelToDict(scoring_function(self.structurefile), self.label)) 
 

Functions.py: 
 

def analyze_structure_mfe(filename,region = None): 

   … 

   if path.exists(project_dir+"/tmp/structures/"+filename+".ct"):             

      output = check_output(["./3rdParty/unafold/ct-energy" , "tmp/structures/"+filename+".ct"]).rstrip() 

      mfe_list = [float(a) for a in output.split('\n')]             

      data['StructureMFE'] = mfe_list[0] 

   else: 

      data['StructureMFE'] = 0 
   … 

 

Figure 3.5 Definition of the class StructureMFE extending Structure 
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In summary, a class extending the abstract class Feature will have the following 

attributes: 

• label—a user defined label for the property; 

• solution—an object of class Solution where the property should be calculated; 

• subfeatures—a dictionary with all sub-properties associated with this 

property; 

• scores—a dictionary containing the score for the property and its sub-

properties. 

D-Tailor comes out-of-the-box with several properties implemented. Most of them are 

directly related to sequence properties impacting gene expression. As documented above, 

the software can easily be extended to implement any other property of interest. A list of 

the properties currently implemented in D-Tailor is detailed below. Users are encouraged 

to contact the authors if they need help implementing new properties and/or want to 

contribute with new ones to future releases of the tool. 

 
Property class Description Parameters 
CAI Scores a gene sequence codon usage as compared 

to that of highly expressed genes. It computes a 
score between 0 and 1, where the higher the 
score, the closer is the overall codon usage to the 
reference set.  

cai_range : a pair of integers 
with starting and ending 
nucleotide positions of the sub-
sequence where the CAI should 
be calculated. 

Structure This property evaluator uses UNAFold to predict 
the MFE RNA secondary structure. It uses 
UNAfold and stores the generated 
structure-related files to the folder 
‘tmp/structures/’. Structure class can then be 
accessed by inheriting sub-classes that compute 
specific feature scores (see below). 

structure_range : a pair of 
integers with starting and 
ending nucleotide positions of 
the sub-sequence where the 
structure should be predicted 

StructureMFE Extends the class Structure to retrieve the MFE 
structure score, as defined by the Gibbs free 
energy (ΔG). 

None 

Structure 
SingleStranded 

Extends the class Structure to compute a list and 
count the total number of single stranded bases 
(i.e., free) in the MFE structure.  

None 

Structure 
DoubleStranded 

Extends the class Structure to compute a list and 
count the total number of double stranded bases 
(i.e., paired) in the MFE structure 

None 

StructureEnsemble This property evaluator uses UNAFold to 
compute an ensemble of RNA structures. The 
predicted structures are stored to 
‘tmp/structures’.  

structure_range : a pair of 
integers with starting and 
ending nucleotide positions of 
the sub-sequence where the 
structure should be predicted 
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StructureEnsemble 
Accessibility 

Extends the class StructureEnsemble to calculate 
the average accessibility for each nucleotide (i.e., 
probability of a nucleotide being free across all 
structures in the ensemble) and overall average. 

None 

StructureProb This class uses the software RNAplfold from the 
Vienna RNA package to calculate the average 
probability of unpaired bases across a sliding 
window of RNA structures.  

structure_range : a pair of 
integers with starting and 
ending nucleotide positions of 
the sub-sequence where the 
structure should be predicted 
acc_region : a list with 
nucleotide positions if the 
average of a specific region is 
desired 
window : window size 

HydropathyIndex This class calculates the average hydropathy 
index of a peptide based on the properties of its 
amino acids. Larger scores indicate more 
hydrophobic properties. 

hi_range : a pair of integers 
with starting and ending 
nucleotide positions of the 
amino acid subsequence 

NucleotideContent This property evaluator calculates the nucleotide 
content of a particular sequence (% of A, C, G, 
T, AT, GC) 

ntcontent_range : a pair of 
integers with starting and 
ending nucleotide positions of 
the subsequence of interest. 

RNADuplex This class predicts the hybridization of any two 
RNA molecules. This structure is then saved to 
‘tmp/structures’. 

rnaMolecule1region : a pair of 
integers with starting and 
ending nucleotide positions of 
the first RNA molecule 
rnaMolecule2region : as above 
but for second RNA molecule 

RNADuplex 
Ribosome 

Extends the class RNADuplex to implement the 
interaction between an RNA molecule and the 
16S rRNA. 

rnaMolecule1region : a pair of 
integers with starting and 
ending nucleotide positions of 
the RNA molecule 

RNADuplexMFE Extends the class RNADuplex to calculate the 
MFE of the duplex. 

None 

Motif This class implements the search for a given 
motif (as defined by a position weight matrix 
(PWM)). D-Tailor comes with pre-configured 
PWMs for E. coli, namely for SD and promoter 
regions (see module Data). 

pwm : a dictionary where the 
keys (1-letter conventional 
symbols for DNA, RNA or 
amino acids) are associated 
with a list of weights (one per 
position) 
motif_range : a pair of integers 
with starting and ending 
nucleotide positions of the 
sequence to be searched 

MotifScore Extends the class Motif to calculate motif score None 
MotifPosition Extends the class Motif to calculate motif 

position 
None 
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4. Solution class: handling sequences 

The class Solution is the realization of a particular sequence along with all the 

properties of interest that are computed from it, and it has the following basic 

attributes: 

• solid—unique solution identifier; 

• sequence—the full sequence to be analyzed, subsequences being specified at 

feature level; 

• features—a dictionary filled with pairs (Feature’s label, Feature object); 

• scores—a dictionary that aggregates all scores for the features of this Solution 

(keys are the labels defined for each feature concatenated with class name); 

Some of these attributes are defined when the object is created, namely solid and 

sequence. Following the creation of a Solution, objects of type Feature can be added 

using the generic method add_feature. This method will automatically update features 
and scores dictionaries. This way Solution objects can be easily created and further 

populated with an arbitrary set of properties of interest (Figure 4.1). 
 

>>> from Solution import Solution 

>>> from Features.CAI import CAI 

>>> from Features.Structure import Structure, StructureMFE, StructureDoubleStranded 

≥≥≥ from Features.NucleotideContent import NucleotideContent 

 

## Instantiate an object of type ‘Solution’ 

>>> solution = Solution(sol_id = ‘b0001’, sequence = ‘TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAA 

CATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGA’) 

 

## Instantiate Feature objects of interest 

# Feature to calculates the codon adaptation index 

>>> cai_obj = CAI(solution=solution,label="cds",args= {'cai_range':(49,115)}) 

#Feature to predicts RNA Structure 

>>> st1_obj = Structure(solution=solution ,label="utrCds",args= { 'structure_range' : (19,78) } ) 

# Two sub-features inheriting from the class Structure 

>>> st_mfe = StructureMFE(st1_obj) 

>>> st_ss  = StructureDoubleStranded(st1_obj) 

>>> st1_obj.add_subfeature(st_mfe) 

>>> st1_obj.add_subfeature(st_ss) 

# Feature to calculate nucleotide content 

>>>nuc_obj = NucleotideContent(solution=solution ,label="utr",args= { 'ntcontent_range':(0,50) } ) 

## Add features to solution 

>>> solution.add_feature(cai_obj) 

>>> solution.add_feature(st1_obj) 

>>> solution.add_feature(nuc_obj) 

 

## Retrieve feature score 

>>>  solution.scores 

{'cdsCAI': 0.6136121593930156, 'utrCdsStructureDoubleStrandedList':[18, 19, 25, 26, 38, 39, 44, 45], 

 'utrCdsStructureDoubleStranded': 8, 'utrCdsStructureMFE': -2.5, 

 'utrNucleotideContentAT': 0.63,  'utrNucleotideContentG': 0.16,'utrNucleotideContentT' : 0.18, 

 'utrNucleotideContentC': 0.22, 'utrNucleotideContentA' : 0.45, 'utrNucleotideContentGC': 0.37} 

 

Figure 4.1 Definition of an object Solution with multiple features 
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5. Sequence Analyzer 

The sequence analyzer mode of D-Tailor provides an integrated solution for the 

multidimensional interrogation of sequences. Sequences to be analyzed can be read from 

files in CSV or FASTA format (CSV files must contain the headers ‘name’ and 

‘sequence’). Before starting the sequence analyzer, the user needs to extend the abstract 

class SequenceAnalyzer and implement the following methods: 

• configureSolution—this method instantiates all properties to compute for a 

sequence (Solution). Its architecture is similar to the one shown in Figure 4.1; 

• outputStart—called once at the beginning of the method to initialize the 

output (e.g., open a file and/or write a table header); 

• output—called after each sequence is analyzed and can be used to perform 

operations on the retrieved features (e.g., print to the screen). 

Figure 5.1 shows a schematic workflow for the analysis of three different features 

influencing translation efficiency in E. coli: 
• CAI, a proxy for the translation elongation rate along the gene; 

• Hybridization energy between Shine-Dalgarno (SD) region and 16S rRNA; 

• RNA Structure around translation initiation region. 

 

Figure 5.1 Sequence analyzer workflow 

The user can read the sequences to analyze from a CSV file. Then, the user selects the sequences properties 
to evaluate (three in this case: CAI, 16S:SD hybridization energy and RNA structure) from a large library of 
available properties (box with balls). The sequence analyzer module will then extract and evaluate the 
sequence property scores for each of the input sequences. The output is a standard table where each row 
contains property scores for a given input sequence. 

Figure 5.2 depicts the corresponding implementation in D-Tailor—class 

TranslationFeaturesEcoli (located in RunningExamples/Analyzer). 
 

Sequence Analyzer

>s001
TATAGGCATAGCGCACAGACAGA
TAAATGTAAATTACAGAGTACAC
AACATCCAACGGTGCGGGCTGA
>s002
GGTGTGAATACAGCTTTTCCGCG
ATAAAAATTGCAGCAGGCTTAAC
CTTGACCGCTGTACAAGGTATAC
TCGGACGATTTTCACTGTTTTGA

...

.csv

Sequences of 
E. coli genes

Properties of interest

CAI 16S:SD 
hybrid.

Pro

C

Properties 
Library

RNA
structure

For each input sequence:
Gene5’UTR

-12.3-5.4 0.43

... ... ... ...

s001

s002

0.2

0.5

-2.4

-5.4

-20.1

-12.2
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from SequenceAnalyzer import SequenceAnalyzer 

from Features import CAI,Structure,RNADuplex 

from Functions import validateCDS 

 

class TranslationFeaturesEcoliAnalyzer(SequenceAnalyzer): 

     

    ''' 

    Class to analyze CAI, SD strength and structure in E. coli  

    ''' 

     

    def __init__(self, input_file, input_type):         

        SequenceAnalyzer.__init__(self,input_file,input_type)          

             

    def configureSolution(self, solution):         

        solution.valid = validateCDS(solution.sequence[49:]) 

 

        if solution.valid:         

            #CAI 

            cai_obj = CAI.CAI(solution=solution,label="cds",args= {  'cai_range' :  

                                                                     (49,len(solution.sequence)) } ) 

             

            #Look for RBS 

            dup_obj1 = RNADuplex.RNADuplexRibosome(solution1=solution, label="sd16s",  

                                                          args = { 'rnaMolecule1region' : (25,48) }) 

            dup_mfe = RNADuplex.RNADuplexMFE(dup_obj1) 

            dup_obj1.add_subfeature(dup_mfe) 

             

            #MFE [-30,30] 

            st1_obj = Structure.Structure(solution=solution,label="utr", 

                                                       args= { 'structure_range' : (49-30,49+30) } ) 

            st_mfe = Structure.StructureMFE(st1_obj) 

            st1_obj.add_subfeature(st_mfe)           

             

            solution.add_feature(cai_obj) 

            solution.add_feature(dup_obj1) 

            solution.add_feature(st1_obj) 

 

    def outputStart(self): 

        print "gene_name,sd_hyb_energy,mfe_structure,cai" 

     

    def output(self, solution): 

        if solution.valid: 

            print solution.solid,”,”, 

                  solution.scores['sd16sRNADuplexMFE'],”,”, 

                  solution.scores['utrStructureMFE'],”,”, 

                  solution.scores['cdsCAI'] 

 

if __name__ == '__main__':     

    seqAnalyzerTest = \ 

                 TranslationFeaturesEcoli("../../testFiles/genomes/partial_ecoli_genome.csv","CSV") 

    seqAnalyzerTest.run() 

Figure 5.2 Class TranslationFeaturesEcoliAnalyzer calculates multiple features for all E. coli genes 

This class loads all E. coli gene sequences along with the 49 nucleotides preceding 

them (this table can be found at testFiles/genomes/ecoli_genome.csv) into the sequence 

analyzer module. The three properties of interest are configured in the configureSolution 

method, which also checks if the provided coding sequences are valid (i.e., have start 

codon and no in-frame stop codons). The user can further define output options using 

the methods outputStart and output. In this example, we simply print the computed 

property scores to the screen (note that the key for each score is the label of the feature 
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concatenated with the property class name, e.g., ‘utrStructureMFE’). The program 

above will print to the screen a table-like output that is partially shown in Figure 5.3. 
 

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Analyzer/TranslationFeaturesEcoliAnalyzer.py 

gene_name,sd_hyb_energy,mfe_structure,cai 

b0001,-1.8,-1.925,0.613612159393 

b0002,-7,-9.16,0.34043688741 

b0003,-5.7,-13.2,0.341658034933 

b0004,-3.2,-5.5,0.385891327353 

b0005,-7.3,-6.76,0.377281853234 

b0006,-6.1,-14.75,0.342733396212 

b0007,-5.6,-8.4,0.319183029826 

b0008,-2.7,-8.1,0.604195702312 

b0009,-3.5,-7.5,0.396623675448 

b0010,-6.2,-9.6,0.574062247682 

b0011,-0.3,-4.5,0.286738246339 

b0013,-2.3,-7.8,0.362374253526 

b0014,-5.4,-7.08333333333,0.723381361599 

b0015,-4.8,-6.45,0.525547136369 

… 
 

Figure 5.3 Partial output of TranslationFeaturesEcoliAnalyzer 

This output can then be easily imported into statistical tools such as SciPy or R for 

posterior analysis. For instance, Figure 5.4 shows how three different features impacting 

translation efficiency (hybridization energy between 16S and SD sequence, RNA 

structure with MFE and CAI score) are distributed and related in E. coli. 
 

 

Figure 5.4 Distribution (A) and relationship (B) of three different translation features in E. coli 
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6. Sequence Designer 

The most innovative functionality of D-Tailor is the ability to design sequences that 

meet user-defined goals (Figure 6.1). This section provides a detailed description of how 

to define a class extending SequenceDesigner to use this functionality. Briefly, the user 

needs to provide a starting seed sequence (from which the designed sequences will be 

derived), the properties to design for, a design objective (one or more target 

combinations of feature scores) and a database filename (where generated sequences will 

be stored). Additionally, we describe multiple parameters by which users can constrain 

the way sequences are mutated and selected.  

 

Figure 6.1 Sequence designer workflow 
The user provides a design objective (indicating the sequence properties and levels he/she wants to design 
for—in this example there are 2 properties with 3 levels each [colored rectangles]) and a seed sequence, 
which will then be evolved until all combinations of sequence properties levels defined by the user are found. 

This chapter provides detailed information about the multiple entities and concepts of 

the sequence designer module of D-Tailor. It also contains two case studies for the design 

module: 1) design of sequences using the three features analyzed in the previous chapter; 

2) designing artificial bacterial promoter sequences varying multiple cis-regulatory 

properties. 

6.1. Definition of features 

Users first need to create a class extending SequenceDesigner. Similarly to the 

extension of the SequenceAnalyzer class (above), the concrete class has to implement the 

method configureSolution where all the features classes are instantiated and associated 

Sequence Designer

Properties 
Library

>seed
TATAGGCATAGCGCACAGACAGA
TAAATGTAAATTACAGAGTACAC
AACATCCAACGGTGCGGGCTGA
AGGGTTCAAGATGCATCGATCGA
TGCATCGGGTCAGCTAGCTAGCT

Seed sequence

Design objective

RNA structure score
L H

L
H

M

M

>seed
TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

...

Output

RNA structure score
L H

L
H

M

MM
ot

if 
sc

or
e

M
ot

if 
sc

or
e

TATAGGCATAGCGCACAGACAGATAAATG
TAAATTACAGAGTACACAACATCCAACG
GTGCGGGCTGAAGGGTTCAAGATGCATC
GATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATG
TAAATTACAGAGTACACAACATCCAACG
GTGCGGGCTGAAGGGTTCAAGATGCATC
GATCGATGCATCGGGTCAGCTAGCTAGCT
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with a given Solution (Figure 6.2). After that, SequenceDesigner requires the 

configuration of three additional parameters to guide the design process: 

• mutational_region—a list of all the positions that can be mutated; 

• cds_region—a pair of integers defining the starting and ending positions of 

the coding sequence, if any; 

• keep_aa—a Boolean indicating if only synonymous mutations can be 

performed. 
 

    def configureSolution(self, solution): 

        ''' 

        Solution configuration 

        ''' 

        if solution.sequence == None: 

            return 0 

         

        ## Designer specific         

 

        solution.mutable_region=range(0,len(solution.sequence)) # whole region 

        solution.cds_region = (49,len(solution.sequence)) 

        solution.keep_aa = True 

         

        ## Populate solution with desired features 

         

        # CAI 

        cai_obj = CAI.CAI(solution = solution,label="cds", 

                              args = {  'cai_range' : (49,len(solution.sequence)),  

                                        'mutable_region' : range(49,len(solution.sequence)) } ) 

             

        # Search SD 

        dup_obj1 = RNADuplex.RNADuplexRibosome(solution1=solution, label="sd16s",  

                                    args = { 'rnaMolecule1region' : (25,48),  

                                             'mutable_region' : range(25,48) }) 

        dup_mfe = RNADuplex.RNADuplexMFE(dup_obj1) 

        dup_obj1.add_subfeature(dup_mfe) 

         

        # MFE [-30,30] 

        st1_obj = Structure.Structure(solution=solution,label="utr", 

                                    args = { 'structure_range' : (49-30,49+30)  

                                             'mutable_region' : range(49-30,49+30)} ) 

        st_mfe = Structure.StructureMFE(st1_obj) 

        st1_obj.add_subfeature(st_mfe)           

         

        solution.add_feature(cai_obj) 

        solution.add_feature(dup_obj1) 

        solution.add_feature(st1_obj) 

 

Figure 6.2 Definition of the method configureSolution in TranslationFeaturesEcoliDesigner 
This code shows the definition of three sequence features to be computed for a Solution. In design mode, 
some constraints have to be defined to guide mutation process. These can be defined in the Solution object 
or at the Feature level (e.g., CAI). In this example, we are declaring that the entire solution region can be 
mutated, i.e., from position 0 to the length of the entire sequence. Additionally, we define that the gene 
starts at position 49 and ends at the end of sequence region (attribute cds_region), and that we only want 
to perform synonymous mutations (keep_aa = True). Since CAI is only affected by mutations within the 
coding region, we override the mutation constraints for this particular feature and indicate that, to alter this 
feature score, we should perform mutations only within the gene sequence by configuring the parameter 
mutable_region in the instantiation of the class CAI. 
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6.2. Definition of a design objective 

After the user defines the properties of interest, it is necessary to define a design 

objective for D-Tailor. A design objective can be one or more target combinations of 

property scores. Alternatively, when using random sampling, the design objective is 

simply the number of sequences to be generated. In D-Tailor, a class defining a design 

objective extends the abstract class Design and there are already four predefined 

methods: 

• Optimization—only one specific combination of property scores is desired. For 

example, to increase the expression of a given gene, we may want to design a 

sequence with high CAI, strong binding between SD and the 16S rRNA and 

weak mRNA secondary structure around the initiation region. 

• FullFactorial—all possible combinations between the levels of the different 

properties are generated. This methodology is appropriate to systematically 

vary the multiple properties and quantify their effect the observed phenotype. 

• CustomDesign—this is a more flexible design where the user can indicate each 

combination of property scores that he/she wants to design for. 

• RandomSampling—this method does not enforce any particular combination 

of properties a priori. It can be used to generate a predetermined number of 

new sequence variants and observe how they scatter across the property space. 

Design methods are based on the concept of property levels, which are obtained by 

discretization of the scores (if necessary), allowing users to define design targets in a 

more coarse-grained fashion and to yield finite full-factorial designs. The user freely 

defines the number of levels for each property. Here, the more levels are defined, the 

higher the resolution (and the smaller the predicted functional difference between levels).  

A set of properties and their respective levels need to be inputted to instantiate a 

sub-class of Design. This is given in the form of a dictionary, where for each property it 

is necessary to define a type (REAL, INTEGER or TEXT) and a list of levels containing 

the respective lower and upper bounds (Figure 6.3). As mentioned before, the user can 

freely decide how to discretize the levels for each property, but to ensure biological 

relevance it may be useful to perform that based on the analysis of natural genomes. For 

example, let’s use the sequence properties influencing translation efficiency analyzed in 

the previous chapter to discretize the scores space and define a design objective (i.e., one 
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or more combinations of property levels). First, we need to decide in how many levels we 

want to split each of the properties of interest. Here, we chose to divide each property 

into 5 different categorical levels (very low, low, medium, high and very high) and used 

the quintiles identified in the genomic analysis to define their boundaries (Table 1). 

Table 1 Definition of feature levels 

 Very low 

(0-20%) 

Low 

(20-40%) 

Medium 

(40-60%) 

High 

(60-80%) 

Very high 

(80-100%) 

16S:SD [-12.7, -7.3[ [-7.3, -5.8[ [-5.8, -5.2[ [-5.2, -3.3[ [-3.3,2.0] 

RNA structure [-29.2, -12.2[ [-12.2, -9.95[ [-9.95, -8.4[ [-8.4, -6.73[ [-6.73, 0.65] 

CAI [0.13, 0.29[ [0.29, 0.33[ [0.33, 0.37[ [0.37, 0.42[ [0.42, 0.86] 

Second, we need to define a design objective by instantiating one class of type Design. 

The design methods implemented in D-Tailor are located in the package 

DesignOfExperiments. These classes have an attribute (listOfDesigns), which is a vector 

of strings containing the multiple target combinations of property levels (e.g., ‘1.1.1’ 

indicates a combination where all scores are within level 1—or very low). 

Figure 6.3 also shows the definition of a full-factorial design by instantiating the class 

FullFactorial, which only needs to be parameterized with the three sequence properties 

and the respective level thresholds. Of note, level identifiers must be ordered. To 

perform a full-factorial design it is necessary to generate all combinations between the 5 

levels for each of the 3 properties (i.e., 5*5*5 = 53 = 125 combinations). 
 

>>> from DesignOfExperiments.Design import FullFactorial 
 

#Design Methodology and thresholds 

>>> design_param = {   

    "sd16sRNADuplexMFE": { 'type' : 'REAL' ,  

                           'thresholds' : { '1': (-12.7,-7.3), '2': (-7.3,-5.8),  

                                            '3': (-5.8,-5.2),  '4': (-5.2,-3.3), '5': (-3.3, 2.0) } }, 

    "utrStructureMFE": { 'type' : 'REAL' ,  

                         'thresholds' : { '1': (-29.2,-12.2), '2': (-12.2,-9.95),  

                                          '3': (-9.95,-8.4), '4': (-8.4,-6.73), '5': (-6.73,0.65) } }, 

    "cdsCAI"         : { 'type' : 'REAL' ,  

                         'thresholds' : { '1': (0.13,0.29), '2': (0.29,0.33),  

                                          '3': (0.33,0.37), '4': (0.37,0.42), '5': (0.42,0.86) } } } 
 

>>> design = FullFactorial(["sd16sRNADuplexMFE","utrStructureMFE","cdsCAI"],design_param) 

>>> design.listDesigns 

['1.1.1','1.1.3','1.1.2','1.1.5','1.1.4','1.3.1','1.3.3','1.3.2','1.3.5','1.3.4','1.2.1','1.2.3', 

'1.2.2','1.2.5','1.2.4','1.5.1','1.5.3','1.5.2','1.5.5','1.5.4','1.4.1','1.4.3','1.4.2','1.4.5', 

'1.4.4','3.1.1','3.1.3','3.1.2','3.1.5','3.1.4','3.3.1','3.3.3','3.3.2','3.3.5','3.3.4','3.2.1', 

'3.2.3','3.2.2','3.2.5','3.2.4','3.5.1','3.5.3','3.5.2','3.5.5','3.5.4','3.4.1','3.4.3','3.4.2', 

'3.4.5','3.4.4','2.1.1','2.1.3','2.1.2','2.1.5','2.1.4','2.3.1','2.3.3','2.3.2','2.3.5','2.3.4', 

'2.2.1','2.2.3','2.2.2','2.2.5','2.2.4','2.5.1','2.5.3','2.5.2','2.5.5','2.5.4','2.4.1','2.4.3', 

'2.4.2','2.4.5','2.4.4','5.1.1','5.1.3','5.1.2','5.1.5','5.1.4','5.3.1','5.3.3','5.3.2','5.3.5', 

'5.3.4','5.2.1','5.2.3','5.2.2','5.2.5','5.2.4','5.5.1','5.5.3','5.5.2','5.5.5','5.5.4','5.4.1', 

'5.4.3','5.4.2','5.4.5','5.4.4','4.1.1','4.1.3','4.1.2','4.1.5','4.1.4','4.3.1','4.3.3','4.3.2', 

'4.3.5','4.3.4','4.2.1','4.2.3','4.2.2','4.2.5','4.2.4','4.5.1','4.5.3','4.5.2','4.5.5','4.5.4', 

'4.4.1', '4.4.3','4.4.2','4.4.5','4.4.4'] 
 

Figure 6.3 Defining a class of type Design (Full-Factorial) 



 20 

6.3. Mutational strategies 

During the design process, our algorithm applies mutations to generate sequence 

variants that match desired combination of property levels. Commonly, a random 

mutation approach is used to generate the multiple variants. However, this can be 

inefficient because properties are usually located in different regions of the sequence. To 

optimize this mutational process, different properties can be configured with different 

mutational regions, that way targeting mutations toward regions of the sequence that 

are more susceptible to affect the feature score. For example, we can define the 

mutable_region for the 16S:SD hybridization energy feature to comprise the region 

between [25,48] nucleotides, i.e., where the SD sequence is located. We call this guided 

procedure: targeted mutagenesis. 

In some cases, a good knowledge of the relationship between sequence and property 

score might allow to devise smart operators that ‘rationally’ guide the mutation process 

and increase the likelihood of producing new sequences with the desired score using fewer 

mutational steps. For example, if meeting the design goal requires CAI to increase, a 

smart mutation operator can readily replace a poor codon by an alternative one with a 

higher CAI score. We call this guided procedure: oriented mutagenesis.  

Oriented mutational strategies provide some improvements over random and target 

mutation operators, and therefore should be implemented whenever possible. 

The default mutation operator defined in the abstract class Feature implements the 

‘targeted’ mutation operator with equiprobable mutation at all predefined mutable 

positions. When developing a new property, users can override this operator with an 

oriented one by implementing the method mutate in the respective feature (Figure 6.4). 

Specific instruction regarding the direction the target score can be defined in the method 

defineTarget and stored in the class variable targetInstructions (note that abstract class 

Feature implements a minimal version of this method, where the direction is set to ‘+’ if 

increasing the feature score is needed, or ‘-‘ otherwise) (Figure 6.4). 

The code implementing oriented RNA structure mutations is depicted in Figure 6.4. 

Here, we mutate either paired or unpaired bases if we want to decrease or increase 

structure strength, respectively. 
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Feature.py: 

 

    def defineTarget(self,desiredSolution): 

        ''' 

        Function that determines if a target wasn't hit and, if not, updates target instructions  

        ''' 

        if desiredSolution == None: 

            return True 

         

        #check if there is a target 

        if not desiredSolution.has_key(self.label+self.__class__.__name__+"Level"): 

            return False 

        else: 

            target_level = desiredSolution[self.label+self.__class__.__name__+"Level"] 

             

            if target_level == 0: 

                return False         

                         

            if  target_level != self.level:                 
                level_info =   

            self.solution.designMethod.thresholds[self.label+self.__class__.__name__][target_level] 

                 

                if isinstance(level_info, tuple): #Then it's a numeric range                 

                    if  level_info[0]-self.scores[self.label+self.__class__.__name__] > 0: 

                        self.targetInstructions['direction'] = '+' #increase 

                    elif level_info[0]-self.scores[self.label+self.__class__.__name__] < 0: 

                        self.targetInstructions['direction'] = '-' #decrease 

                else: 

                    self.targetInstructions['direction'] = 'NA' #not applicable                                     

                     

                return True 

 

            return False 

 

Structure.py: 

 

    #Overriding the mutation method to implement oriented mutation 

    def mutate(self, operator=Functions.SimpleStructureOperator):         

        if not self.targetInstructions: 

            return None         

        ss_bases = None if not self.scores.has_key(self.label+'StructureSingleStrandedBasesList') else 

self.scores[self.label+'StructureSingleStrandedBasesList'] 

        ds_bases = None if not self.scores.has_key(self.label+'StructureDoubleStrandedBasesList') else 
self.scores[self.label+'StructureDoubleStrandedBasesList']                     

        new_seq = operator(self.solution.sequence, self.structurefile,  self.structure_range, 

self.mutable_region, self.cds_region, self.targetInstructions['direction'], ss_bases=ss_bases, 

ds_bases=ds_bases) 

        if not new_seq: 

            return None                  

        return Solution.Solution(sol_id=str(uuid4().int), sequence=new_seq, cds_region = 

self.cds_region, mutable_region = self.mutable_region, parent=self.solution, 

design=self.solution.designMethod) 

 

Functions.py: 

 

def SimpleStructureOperator(sequence, structurefile, structure_range, mutable_region, cds_region, 

direction, keep_aa = True, ss_bases=None, ds_bases=None): 

 

    if not mutable_region: #it's not possible to mutate 

        return None 

     

    # get single stranded bases 

    if ss_bases == None: 

        ss_bases = structureAnalysis(structurefile, "ss") 

    # get double stranded bases     

    if ds_bases == None: 

        ds_bases = structureAnalysis(structurefile, "ds") 
     

    # for structure, increasing structure score (MFE) (+) means that we want to produce weaker 

structures, so we will mutate double stranded bases 
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    if direction == '+':        

        #get double stranded bases     

        baseToMutate = [(b+structure_range[0]-1) for b in ds_bases \ 

                                                  if (b+structure_range[0]-1) in mutable_region] 

    # conversely to increase structure we mutate single stranded bases 

    elif direction == '-': 

        #get single stranded bases 

        baseToMutate = [(b+structure_range[0]-1) for b in ss_bases \ 

                                                  if (b+structure_range[0]-1) in mutable_region] 

    else: 

        sys.stderr.write("Direction Unknown") 

 

    mutated = False 

    iteration = 0 

     

    #try to mutate up to 100 different times 

    while not mutated and iteration <= 100:          

        #select a position to mutate at random 

        index_to_mutate = baseToMutate.pop(randint(0,len(baseToMutate)-1)) if len(baseToMutate) != 0 

else mutable_region.pop(randint(0,len(mutable_region)-1)) 

                     

        #mutate base keeping amino acids (omitted) 

        if keep_aa == True and index_to_mutate >= cds_region[0] and index_to_mutate <= cds_region[1]:             

            … 

        #mutate without keeping amino acids 

        else: 

            mutated = True 

            new_seq = list(sequence) 

            if direction == '+': 

                comp = complementary(sequence[index_to_mutate]) 

            else: 

                comp = randomMutation(sequence[index_to_mutate]) 

            new_seq[index_to_mutate] = comp 

            #print sequence 

            #print "".join(new_seq)      

             

        iteration+=1                 

                 

    return "".join(new_seq) 

 

Figure 6.4 Definition of the method mutate in Structure 

6.4. Designer algorithm 

The algorithm that generates desired sequences is implemented by the method run in 

SequenceDesigner. Briefly, the algorithm loops through an evolution cycle until it finds 

all the user-defined combinations of property scores. The pseudocode and a schematic of 

the algorithm are presented in Figure 6.5 and Figure 6.6, respectively. 

Each evolution cycle consist of three steps: i) a particular target that is yet to be 

found is selected (step 1); ii) the repository of sequences previously generated (including 

the seed sequence) is searched to select a template sequence based on a fitness 

proportionate method, where the fitter the sequence, the shorter the Euclidean distance 

between its feature scores and the target combination (step 2); iii) a defined number of 

mutational iterations starting with the selected template sequence is performed (step 3). 
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In each mutational iteration, the current sequence is evaluated and a property, whose 

score does not match the desired combination, is randomly selected and a mutation is 

applied. As mentioned before, two types of mutations can be applied: 1) targeted 

mutation, and 2) oriented mutation. Briefly, the former specifically targets sequence 

regions that are more likely to alter the score, whereas the latter applies mutations that 

will specifically move a property score toward the desired level. Next, the scores for the 

new sequence variant are evaluated and if the new sequence matches the target 

combination, then the sequence is validated and the evolution cycle is terminated. 

Otherwise, one of the two sequences (the template or the mutated one) is chosen as the 

template for the next iteration of the evolution cycle depending on the selection option:  

• neutral—one of the sequences is randomly selected; 

• directional—the sequence with shorter Euclidean distance between the feature 

scores and the desired combination of feature levels is selected; 
• temperature—the sequence is selected based on a temperature schedule. 

 

while combinations_to_find != []: 

     desired_combination = getElement(combinations_to_find) 

     #get a sequence already generated that is close to the desired combination in the feature space. 

     solution = getSolutionFromDataBaseCloserTo(desired_combination) 
 

     #Evolution cycle 

     while solution != desired_combination or iteration != MAX_ITERATIONS: 

          old_solution = solution 

          solution = solution.mutate() #mutate current solution to get a new sequence 

          DataBase.store(solution) 

          If solution.combination in combinations_to_find: 

               Combinations_to_find.remove(solution.combination) 

          #select sequence for next iteration 

          #The “selectionMethod” can be either directional or neutral or based on temperature schedule 

          solution = selection(old_solution,solution,”selectionMethod”)  
 

Figure 6.5 Pseudocode of SequenceDesigner algorithm 

 

Figure 6.6 Schematic of the SequenceDesigner algorithm 
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6.5. Database of designed sequences 

D-Tailor uses an SQLite database engine to store solutions generated during the 

design process. This database contains three different tables: 

• desired_solution—dynamic table created on-the-fly during initialization of the 

database containing user-defined target combinations of feature levels; 

• generated_solution—dynamic table where all generated solutions are stored; 

• worker—table stores the SequenceDesigner programs that already ran. 

D-Tailor can be easily extended to other database engines. For that, it is only 

necessary to extend abstract class DBAbstract and implement the required methods. 

6.6. Configuring and running the designer 

To start running the algorithm we need a seed sequence from which the designed 

sequences will be generated, a design objective (from the class Design), a file path to 

create a database containing all the generated sequences (Figure 6.7). In the example 

below, we used a seed sequence that contains a 5’UTR of 49 nucleotides including a SD 

region, followed by the gene sequence encoding human insulin (NCBI: NM_000207.2). 
 

>>> from RunningExamples.Designer.TranslationFeaturesEcoliDesigner import 

TranslationFeaturesEcoliDesigner 

>>> from DesignOfExperiments.Design import FullFactorial 

 

#Seed sequence from which mutants will be derived 

>>> seed='ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccctgtggatgcgcctcctgcccctgctggcgctgctgg 

ccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtggaagctctctacctagtgtgcggggaacgaggcttct

tctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggggccctggtgcaggcagcctgcagcccttggccctgg

aggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagctggagaactactgcaactag' 

 

#Design Methodology and thresholds 

>>> design_param = {  "sd16sRNADuplexMFE": { 'type' : 'REAL' ,  

                                             'thresholds' : { '1': (-12.7,-7.3), '2': (-7.3,-5.8),  

                                                              '3': (-5.8,-5.2),  '4': (-5.2,-3.3),  

                                                              '5': (-3.3, 2.0) } }, 

                      "utrStructureMFE"  : { 'type' : 'REAL' ,  

                                             'thresholds' : { '1': (-29.2,-12.2), '2': (-12.2,-9.95),  

                                                              '3': (-9.95,-8.4),  '4': (-8.4,-6.73),  

                                                              '5': (-6.73,0.65) } }, 

                      "cdsCAI"           : { 'type' : 'REAL' ,  

                                             'thresholds' : { '1': (0.13,0.29), '2': (0.29,0.33),  

                                                              '3': (0.33,0.37), '4': (0.37,0.42),  

                                                              '5': (0.42,0.86) } }                    

                   } 

 

>>> design = FullFactorial(["sd16sRNADuplexMFE","utrStructureMFE","cdsCAI"],design_param) 

 

>>> tirap_designer = TranslationFeaturesEcoliDesigner("tfec", seed, design, 

"/Users/jcg/Documents/workspace/D-Tailor/testFiles/outputFiles/tfec_1", createDB=True) 

>>> tirap_designer.run() 

 

Figure 6.7 Running the SequenceDesigner 
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Please note that the regions of the seed sequence that can be mutated were already 

defined in the class method configureSolution (Figure 6.2). Additionally, the user may 

also want to implement the method validateSolution, which is called every time a new 

sequence is generated. This validation step is fundamental to avoid undesired properties 

in new sequence variants (e.g., a spurious restriction site). Only validated sequences will 

be stored in the database. Our exemplary class TranslationFeaturesEcoliDesigner 
implements a series of validation tests that one may want/need (Figure 6.8). Specifically, 

it checks if the new sequence does not include internal promoters, terminators and 

undesirable restriction enzymes sites (in this case BsaI sites). 
     

    def validateSolution(self, solution): 

        ''' 

        Solution validation tests 

        ''' 

        if solution.sequence == None or ('?' in solution.levels.values()): 

            solution.valid = False 

            return 0 

         

        #check if solution is valid 

        valid = True       

        designed_region = solution.sequence 

                 

        #No internal Promoters 

        (score, position, spacer) = Functions.look_for_promoters(designed_region) 

        if score >= 15.3990166: #~0.95 percentile for Promoter PWM scores 

            valid = False 

            sys.stderr.write("SolutionValidator: High Promoter score\n")                     

         

        #No internal Terminator 

        score = Functions.look_for_terminators(designed_region) 

        if score >= 90: #90% confidence from transtermHP 

            valid = False 

            sys.stderr.write("SolutionValidator: High Terminator score\n")     

             

        #No BsaI sites 

        if 'ggtctc' in designed_region or 'gagacc' in designed_region: 

            sys.stderr.write("SolutionValidator: Restriction enzyme found\n") 

            valid = False         

         

        solution.valid = valid 

         

        return valid     

 

Figure 6.8 Definition of the method validateSolution 

The parameter createDB in the SequenceDesigner constructor (Figure 6.7) should be 

set to ‘True’ when a new empty database is desired. Otherwise, if the database is already 

created and we want to resume the designer algorithm or start multiple concurrent 

algorithms, we must to set this parameter to ‘False’.  

When the method run() is invoked in SequenceDesigner, the program will only stop 

when the design objective is achieved (i.e., all combinations are found). While running, 

the program will output the particular target combination it is looking for and statistics 
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about generated sequence (Figure 6.9). When Optimization design is selected, the 

program will additionally print the final designed sequence (Figure 6.10). 
 

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py 

fullfactorial 

looking for combination:  2.3.5 

SolutionValidator: Restriction enzyme found 

No solution could be found... 

looking for combination:  3.2.5 

No solution could be found... 

looking for combination:  4.4.3 

No solution could be found... 

time elapsed: 76.58 (s)   solutions generated: 385   rate (last min.): 5.03 sol/s    rate 

(overall): 5.03 sol/s 

looking for combination:  3.5.3 

… 

Program finished... 

 

Figure 6.9 Running TranslationFeatureEcoliDesigner (FullFactorial design) 
 

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py 

optimization 1.2.3 

looking for combination:  1.2.3 

Solution found... inserting into DB... 

 

########################### 

# Optimized solution: 

# ID:  46124799975394009622803191427036818508 

# Sequence:  

ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggcactttggatgcgcctcctgcccttactggcattactggcgctgtgggg

ccctgacccggccgccgccttcgtgaatcaacatctgtgcggatcacacttggttgaggctctttacttagtgtgcggggaacgcggttttttctacacacc

aaaaacgcgccgggaagcagaagacctgcaggttgggcaggtagaattaggtgggggccctggtgctggcagcctgcagcccctggccctggaaggatccct

gcagaaacgtggaattgttgaacaatgctgcaccagcatctgttcgttataccagttagagaactactgcaactag 

# Scores:  ['sd16sRNADuplexMFE: -8.4', 'utrStructureMFE: -10.4', 'cdsCAI: 0.346776020332'] 

# Levels:  ['sd16sRNADuplexMFELevel: 1', 'utrStructureMFELevel: 2', 'cdsCAILevel: 3'] 

# Number of generated solutions:  66 

# Distance to seed:  49 

########################### 

 

Program finished... 

 

Figure 6.10 Running TranslationFeatureEcoliDesigner (Optimization design) 

Lastly, when using D-Tailor to randomly sample the sequence space, users must 

indicate a number of sequences variants to generate (Figure 6.11).  
 

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py 

randomsampling 1000 

time elapsed: 61.98(s)  solutions generated: 297 rate(last min.): 4.79 sol/s rate(overall): 4.79 sol/s 

time elapsed: 134.74(s) solutions generated: 665 rate(last min.): 5.06 sol/s rate(overall): 4.94 sol/s 

time elapsed: 199.14(s) solutions generated: 962 rate(last min.): 4.61 sol/s rate(overall): 4.83 sol/s 

RandomSampling: 1000 solutions generated. 

Program finished... 

 

Figure 6.11 Running TranslationFeaturesEcoliDesigner (RandomSampling design) 
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6.7. Running examples 

6.7.1. Designing sequences systematically varying sequence properties 

impacting translation efficiency 

The code used to run this design example can be found at 
‘RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py’ 

We have already shown how to use D-Tailor to analyze three different sequence 

properties impacting translation efficiency across the entire E. coli genome (Figure 5.4). 

We then discretized property scores into five different levels based on their respective 

quintiles (Table 1). A full-factorial design based on such configuration yields a total of 

125 (53) different target combinations of all property levels across the three variables.  

To demonstrate flexibility of the software to use different seed sequences, we 

randomly selected 30 gene sequences along with their 5’UTR from E. coli and compared 

four different strategies within D-Tailor to design a set of sequences conforming to a 

full-factorial design for each of the seeds. We also defined that designed sequences could 

be generated by unrestricted mutations in the entire 5’UTR region, composed by 49 

nucleotides, but only synonymous mutations were allowed in the gene coding sequence.  

We first used the most rudimentary design strategy available in D-Tailor, random 

sampling, to generate random sequences until the 125 different targets were found. Every 

attempt to complete this design goal using this purely random procedure was aborted 

after 3,000 generated sequences due to its obvious inefficiency (Figure 6.12A-B, black 

solid and faded lines). The second design strategy included the canonical heuristic 

algorithm implemented by D-Tailor (Figure 6.6) and used the simplest mutation 

method, wherein new sequences are consecutively generated by random mutation (Figure 

6.12B, yellow line). This strategy significantly improved the efficiency of the search 

algorithm as compared to that of the random sampling method. Nonetheless, the overall 

performance of the algorithm was still modest since many sequences had to be generated 

to find the required targets. The third mutational strategy remarkably improved the 

search algorithm efficiency by employing spatially targeted mutations that more rapidly 

evolve a sequence towards some desired feature scores target (Figure 6.12B, light blue 

line). Lastly, a fourth strategy using more ‘rational’ mutation operators that orient 
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mutations toward the desired target provided slightly faster dynamics (Figure 6.12A-B, 

orange solid and lines). 

 

Figure 6.12 Mutational strategies performances 
(A) Number of combinations found (out of 125) as a function of the number of generated sequences. Two 
different mutational strategies are depicted: oriented (orange) and random sampling (black). For each 
strategy, we performed 30 different simulation of a full-factorial design (faded lines) using different seed 
sequences. The solid lines represent the average number of target combinations found (across 30 replicates) 
as the number of generated sequences increases. (B) The average performance of the four different 
mutational strategies. (C) The number of generated sequences per target combination found using the 
different mutational strategies. 

One other important functionality available to the user is the option to define the 

selection bias in the heuristic algorithm. The option is configured using the parameter 

selection in the method run(), and there are three different options available:  

• neutral—the sequence for the next mutational iteration is randomly selected 

between the template sequence and newly sequence variant. 

• directional—the sequence with shorter Euclidean distance between the feature 

scores and the desired combination of feature levels is selected. 
• temperature—the sequence is selected based on a temperature schedule that 

allows worse sequence (longer distances) to also be selected. 
To test these different selections, we evolved the previously selected 30 seed sequences 

toward six different target combinations bearing different Euclidean distances to the 

seeds (Figure 6.13). Then, we examined the behavior of the algorithm in response to the 

three contrasted selective regimes: neutral, directional and temperature selection. As 

expected, when using D-Tailor with a less constrained selection (i.e., neutral), it was 

necessary to generate more sequences to find the target combination(s). This relaxed 

selection does not select fitter strains and, hence, takes more evolution cycles to find the 

desired target (Figure 6.13B and D). However, the final designed sequences using the 

neutral selection option will be more similar to the initial seed sequence (measured using 
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the hamming distance to the seed sequence) than when using the option directional 

selection (Figure 6.13A and C). 

Conversely, using more biased selection procedures (i.e., directional or temperature) 

affords the design of sequences bearing the desired combination of feature levels using 

much fewer evolution cycles (Figure 6.13B and D) at the expense of generating sequences 

less similar to the original seed (Figure 6.13A and C). Of note, the directional selection 

shows slightly better performance than the temperature selection once it requires fewer 

sequences to be generated and obtains shorter hamming distances. 

 

Figure 6.13 Selection options in SequenceDesigner 
(A) The different lines show the average hamming distance between the seed and the sequence matching the 
target combination as a function of the Euclidean distance to the target combination using neutral (light 
blue), directional (orange) or temperature (black) selection. (B) The number of generated sequences until 
the desired target is found as a function of the Euclidean distance to the target combination using either 
neutral (light blue), directional (orange) or temperature (black) selection. (C and D) The hamming distance 
(C) and number of generated sequences until target is found (D) for the 30 different simulations using the 
three different selections. 
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6.7.2. Designing bacterial promoter sequences systematically varying cis-
regulatory properties 

The code used to run this design example can be found at 
‘RunningExamples/Designer/BacterialPromotersDesigner.py’ 

In this section, we used D-Tailor to design bacterial promoter sequences varying 

multiple properties. Promoter strength is not only determined by the affinity between 

the sigma factor and binding motifs (-35 and -10 boxes), but also by the presence of an 

UP-element (that can bind the RNA polymerase holoenzyme α subunit carboxy-terminal 

domain) and transcription factor binding sites. To demonstrate its versatility, we used 

D-Tailor to design artificial bacterial promoter sequences varying five different 

regulatory properties (Figure 6.14): 

 

Figure 6.14 Design of artificial bacterial promoter sequences 

(A) Five different regulatory properties can be changed to create promoter diversity: UP-element, -35 motif, 
-10 motif, and the lacI operator motif and its location. (B) The different five design axes (one per property), 
each containing three different levels. A full-factorial design systematically varying these five properties with 
3 levels each yields a total of 243 different combinations. 

Similarly to the previous example, we need to start by implementing the class 

BacterialPromotersDesigner defining the multiple sequence properties of interest and 

their location in the DNA segment (Figure 6.15). Then, we discretized the range of 

sequence property scores into three different levels as detailed in Table 2. Next, we 

configured the designer algorithm with a randomly generated seed sequence (with no 

specific biological function) and the design objective of constructing a full-factorial 

library where all combinations of levels across the five different variables are produced 

(3x3x3x3x3 = 243) (Figure 6.14B).  
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class BacterialPromotersDesigner(SequenceDesigner): 

     

    def __init__(self, name, seed, design, dbfile, createDB=True): 

        SequenceDesigner.__init__(self, name, seed, design, dbfile, createDB) 

        self.max_sol_counter = 1000000 

        self.max_iterations  = 1000 

         

    def configureSolution(self, solution): 

        ''' 
        Solution configuration 

        ''' 

        #Populate solution with desired features 

        solution.mutable_region=range(0,len(solution.sequence)) # whole region 

        solution.cds_region = None 

        solution.keep_aa = False 

         

        # The entire promoter + 5' utr will have 75 nucleotides (and TSS will be at nucleotide 50) 

        #   UP element     -35          spacer        -10                 5' utr 

        # UUUUUUUUUUUUUUU MMMMMM SSSSSSSSSSSSSSSSSSS DDDDDD AAAA OOOOOOOOOOOOOOOOOOOOOOOOO 

         

        #UP element (-50,-36) 

        up_obj = NucleotideContent.NucleotideContent(solution=solution,label="up", 

                               args= {  'ntcontent_range' : (0,14), 'mutable_region' : range(0,15) } ) 

        upat_obj = NucleotideContent.NucleotideContentAT(up_obj) 

        #-35 motif (-35,-30) 

        m35_obj = Motif.Motif(solution=solution,label="m35", 

            args= {  'motif_range' : (15,20), 'pwm' : Data.pwm_35, 'mutable_region' : range(15,21) } ) 

        m35score_obj = Motif.MotifScore(m35_obj) 

        #-10 motif (-10,-5) 

        m10_obj = Motif.Motif(solution=solution,label="m10", 

            args= {  'motif_range' : (40,45), 'pwm' : Data.pwm_10, 'mutable_region' : range(40,46) } ) 

        m10score_obj = Motif.MotifScore(m10_obj) 

        #lacI operator (-6, +25) 

        mlacI_obj = Motif.Motif(solution=solution,label="mlacI", 

            args= { 'motif_range' : (0,74), 'pwm' : Data.pwm_lacI,'mutable_region' : range(0,74) } ) 

        mlacIscore_obj = Motif.MotifScore(mlacI_obj) 

        mlacIpos_obj = Motif.MotifPosition(mlacI_obj) 

             

        solution.add_feature(upat_obj) 

        solution.add_feature(m35score_obj) 

        solution.add_feature(m10score_obj)                     

        solution.add_feature(mlacIscore_obj) 

        solution.add_feature(mlacIpos_obj) 
 

Figure 6.15 Configuration of class BacterialPromoterDesigner 

Table 2 Discretization of sequence properties 

 Level 1 Level 2 Level 3 

UP-element (%AT content) [0 , 0.25] [0.25 , 0.75] [0.75 , 1] 

-35 motif (binding affinity) [-12.0 , -6.81] [-6.81 , 0.63] [0.63 , 11.0] 

-10 motif (binding affinity) [-12.0 , -8.19] [-8.19 , 0.32] [0.32 , 11.0] 

lacI operator (binding affinity) [0 , 4] [4 , 8] [8 , 12] 

lacI operator location -40 -31 -6 

We have repeated the full-factorial design simulation ten different times and the 

number of combinations found as a function of generated sequences is depicted in Figure 

6.16. We saw that D-Tailor took an average of ∼8,000 generated sequence variants to 

find the 243 desired combinations across the ten different simulations. We also observed 

that D-Tailor could find the multiple target combinations at relatively steady rate up to 
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∼80% of the total 243 targets (similar target discovery performance rate was observed 

when designing sequences varying translation-related features (Figure 6.12)). This may 

have to do with the increase in difficulty to attain certain combination of features.  

 

Figure 6.16 Full-factorial design of bacterial promoter sequences 

The number of generated solutions as a function of the number of target combinations found for the ten 
simulations (grey lines). The dotted black line shows the average number of generated solutions across the 
different simulations as a function of the number of targets found. Grey dashed line indicates the total 
number of combinations to be found in the full factorial design (243). 

To evaluate the convergence of the algorithm, we selected three different target 

combinations of sequence properties bearing different Euclidean distances from the 

starting seed. Then, we ran five different simulations for each of the three targets. Figure 

6.17 shows the convergence of the distance between generated sequence variants and 

target combination as measured by the Euclidean distance (or the objective function). 

 

Figure 6.17 Convergence of the search algorithm for three different target combinations 
The Euclidean distance to target combination is depicted for the sequence selected after each iteration. 
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We can see that, for each of the targets, the number of iterations necessary to find 

the desired combination varies across the different simulations (or replicates). This is 

expected given the stochastic nature of the Monte-Carlo algorithm being used. We can 

also see that the average number of iterations (across the five simulations) varies from 

target to target. As expected, targets that are further away from the seed sequence 

require a greater number of iterations than the ones that are closer (e.g., compare 

combination 2.2.2.2.2 with 3.3.3.2.2). 

We further looked at the ruggedness of the landscape to evaluate how the different 

generated sequence variants populate the fitness landscape and get a hint about the 

difficulty to achieve each target combination. Figure 6.18 depicts the fitness landscape, 

as defined by the Euclidean distance between the properties of a generated sequence and 

the desired combination of property scores, for the three different targets already 

explored above. We see that depending on the target combination, the fitness landscapes 

can vary widely. Of course the surface of these landscapes is unpredictable and it will 

vary depending on the sequence properties as well as the target combinations being 

explored. 

 

Figure 6.18 Ruggedness of sequence space for three different targets 
Histograms depict the Euclidean distances between the properties of the generated sequence variants and the 
target combination. To generate each histogram, five different simulations were performed for each target. 
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6.8. Utilities 

D-Tailor uses an SQLite database to store all the generated sequences and their 

features. That way generated solutions can be accessed using a standard SQLite client 

(e.g., SQLite Manager add-on for Firefox) or use some D-Tailor utilities to export the 

generated sequences and retrieve statistics (Figure 6.19). The following utilities are 

available in the package Utils: 
• DB2CSV—exports the tables containing all the generated solutions and 

desired combination to a CSV file specified by the user; 

• DB2FASTA—exports all the generated sequences to FASTA format; 

• DBStatistics—a script that can be used to query a SQLite instance and print 

the number of sequences generated and different combinations found; 

• DBKinetics—prints a time series of defined size (default 50) with the number 

of generated solutions and combinations found over time. 

D-Tailor provides one more tool that will be essential for full-factorial designs. 

Because the number of combinations required by these designs can be extremely hard to 

achieve, many solutions may be generated during the design process. For example, to 

generate a full factorial design for the three features affecting translation with 5 levels 

each (a total of 125 combinations) it was necessary to generate an average of 

approximately 1,500 solutions across 30 different seeds (Figure 6.12). The generation of 

many sequences will pose an a posteriori challenge, which is the selection of only one 

sequence per combination when one has many to choose from. D-Tailor includes one 
utility called ComputeMinimalSet that precisely addresses this problem. This tool 

encodes a Monte-Carlo method to select exactly one sequence for each desired 

combination, such that the total hamming distance between all the sequences is 

minimized (Figure 6.20). 
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###### 

# DB2CSV 

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DB2CSV.py testFiles/outputFiles/tfec_1.sqlite  

Generating CSV files for testFiles/outputFiles/tfec_1.sqlite ... Done! 

 

macbook:D-Tailor jcg$ head -n 3 testFiles/outputFiles/tfec_1.sqlite.generated_solutions.csv  

generated_solution_id,des_solution_id,sequence,sd16sRNADuplexMFE,utrStructureMFE,cdsCAI,sd16sRNADuplex

MFELevel,utrStructureMFELevel,cdsCAILevel,sd16sRNADuplexMFEPosition,utrStructureMFEPosition,cdsCAIPosi

tion,worker_id 

100470516384773921758647475759448978081,1.3.2,ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccc

tgtggatgcgcctcctgcccctgctggcgctgctggccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtgg

aagctctctacctagtgtgcggggaacgaggcttcttctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggg

gccctggtgcaggcagcctgcagcccttggccctggaggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagc

tggagaactactgcaactag,-8.4,-9.9,0.32,1,3,2,0.59,-0.94, 0.72, 249172630681921635831887521585739395265 

285501686618022385962284569925274555241,1.2.2,ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccc

tgtggatgcgcctcttacccctgctggcgctgctggccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtgg

aagctctctacctagtgtgcggggaacgaggcttcttctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggg

gccctggtgcaggcagcctgcagcccttggccctggaggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagc

tggagaactactgcaactag,-8.4,-10.8,0.32,1,2,2,0.59,0.24,0.48, 249172630681921635831887521585739395265 

 

macbook:D-Tailor jcg$ head -n 3 testFiles/outputFiles/tfec_1.sqlite.design_list.csv  

des_solution_id,sd16sRNADuplexMFELevel,utrStructureMFELevel,cdsCAILevel,status,worker_id,start_time 

1.1.1,1,1,1,DONE,249172630681921635831887521585739395265,None 

1.1.3,1,1,3,DONE,249172630681921635831887521585739395265,None 

 

###### 

# DB2FASTA 

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DB2FASTA.py testFiles/outputFiles/tfec_1.sqlite  

Generating FASTA file(s) for testFiles/outputFiles/tfec_1.sqlite ... Done! 
 

macbook:D-Tailor jcg$ head -n 4 testFiles/outputFiles/tfec_1.sqlite.generated_solutions.fa  

>100470516384773921758647475759448978081 | 1.3.2 

TTATTACCGGACAATAATATTTCAATTCATTAAAGAGGAGAAAGGTACCATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGG

ACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACC

CAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCT

GCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG 

>285501686618022385962284569925274555241 | 1.2.2 

TTATTACCGGACAATAATATTTCAATTCATTAAAGAGGAGAAAGGTACCATGGCCCTGTGGATGCGCCTCTTACCCCTGCTGGCGCTGCTGGCCCTCTGGGG

ACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACC

CAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCT

GCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG 
 

###### 

# DBKinetics 

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DBKinetics.py testFiles/outputFiles/tfec_1.sqlite  

Generated Solutions   Desired Solutions Found 

0  0 

148  14 

296  23 

444  32 

… 

7400  124 

7418  125 
 

###### 

# DBStatistics 
 

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DBStatistics.py testFiles/outputFiles/tfec_1.sqlite  

testFiles/outputFiles/tfec_1.sqlite  7418  125  0.0168509032084 
 

Figure 6.19 D-Tailor utilities 

  



 36 

 
 

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/ComputeMinimalSet.py 

./testFiles/outputFiles/tfec_2.sqlite.generated_solutions.csv 

stop random 

1 (1): 550742 -1273 

3 (2): 549469 -156 

5 (2): 549313 -524 

6 (1): 548789 -92 

…  

################### Summary ################### 

number of combinations: 125 

average distance nt: 38.21 +/- 20.25 

############################################### 
 

macbook:D-Tailor jcg$ ls testFiles/outputFiles/ 

tfec_2.sqlite 

tfec_2.sqlite.design_list.csv 

tfec_2.sqlite.generated_solutions.csv 

tfec_2.sqlite.generated_solutions.pkl0 

tfec_2.sqlite.generated_solutions.pkl1 

tfec_2.sqlite.generated_solutions_min_set.fas 

tfec_2.sqlite.generated_solutions_min_set_distance_matrix_nt.csv 

tfec_2.sqlite.generated_solutions_min_set_feats.csv 
 

Figure 6.20 Computing the minimal set 

The tool receives a CSV file with all the sequences generated by D-Tailor (obtained 

using the DB2CSV script) and will generate the following files, where X is the name of 

the CSV file: 

• X.generated_solutions_min_set_feats.csv—CSV file with the final set of 

sequences selected; 

• X .generated_solutions_min_set.fas—FASTA file with final set of sequences 

selected; 

• X.generated_solutions_min_set_distance_matrix_nt.csv—file containing the 

nucleotide distance matrix between all the selected features. 


