
HAL Id: hal-02950423
https://hal.inrae.fr/hal-02950423

Submitted on 27 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

D-Tailor: automated analysis and design of DNA
sequences

Joao Guimarães, Miguel Rocha, Adam P Arkin, Guillaume Cambray

To cite this version:
Joao Guimarães, Miguel Rocha, Adam P Arkin, Guillaume Cambray. D-Tailor: automated analysis
and design of DNA sequences. Bioinformatics, 2014, 30 (8), pp.1087-1094. �10.1093/bioinformat-
ics/btt742�. �hal-02950423�

https://hal.inrae.fr/hal-02950423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Sequence analysis

D-Tailor: automated analysis and design of DNA sequences
Joao C. Guimaraes

1,2,3
, Miguel Rocha

3
, Adam P. Arkin

1,2,4,*
and Guillaume Cambray

2,*

1
Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.

2
California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.

3
Computer Science and Technology Center, School of Engineering, University of Minho, Campus de Gualtar, Braga,

Portugal.

4
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

ABSTRACT
Motivation: Current advances in DNA synthesis, cloning and
sequencing technologies afford high throughput implementation of
artificial sequences into living cells. However, flexible computational
tools for multi-objective sequence design are lacking, limiting the
potential of these technologies.
Results: We developed DNA-Tailor (D-Tailor), a fully extendable
software framework, for property-based design of synthetic DNA
sequences. D-Tailor permits the seamless integration of multiple
sequence analysis tools into a generic Monte-Carlo simulation that
evolves sequences toward any combination of rationally defined
properties. As proof of principle, we show that D-Tailor is capable of
designing sequence libraries comprising all possible combinations
among three different sequence properties influencing translation
efficiency in E. coli. The capacity to design artificial sequences that
systematically sample any given parameter space should support
the implementation of more rigorous experimental designs.
Availability: Source code is available for download at
https://sourceforge.net/projects/dtailor/
Contact: aparkin@lbl.gov or cambray.guillaume@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online (D-Tailor Tutorial).

1 INTRODUCTION
The accumulation of genomic data has fueled the development of

numerous computational tools that infer functional behavior from

biological sequences. These algorithms essentially capture our

understanding of how functional information is encoded in nucleic

acid and protein sequences. As a result, molecular biologists can

now access a plethora of sequence analysis tools to help them

predict functional behaviors from plain sequences (Altschul, et al.,

1997; Bailey, et al., 2009; Giardine, et al., 2005; Hofacker, 2003;

Kingsford, et al., 2007; Markham and Zuker, 2008; Thomas-

Chollier, et al., 2011). Common tasks comprise the identification

of sequence motifs from nucleic acid (DNA/RNA) or protein

sequences (e.g., promoter or termination activity, recombination or

*To whom correspondence should be addressed.

splicing sites), as well as the computation of sequence properties

that are mechanistically linked to particular phenotypes (e.g.,

codon usage or propensity to form transmembrane protein

domains).

Such sequence analysis tools are usually used to inform

biological discovery in natural genomic sequences. However,

considering recent advances in DNA technologies and the

concomitant rise of synthetic biology applications (Cambray, et al.,

2011; Carr and Church, 2009; Czar, et al., 2009; Endy, 2005; Ma,

et al., 2012), these same tools may also be leveraged to guide the

design of artificial sequences satisfying predefined functions of

interest.

Ideally, elementary biological functions should be contained

within well-defined sequence parts that could be re-used with

acceptable reliability in different contexts (e.g., (Davis, et al.,

2011; Mutalik, et al., 2013)). However, it is becoming increasingly

clear that many molecular behaviors result from the combined

influence of several sequence determinants that cannot be neatly

encapsulated within the physical boundaries of a single part, but

rather emerge at the interface between the different parts

(Cambray, et al., 2013; Kosuri, et al., 2013; Mutalik, et al., 2012;

Salis, et al., 2009). In this context, the multidimensional

examination of DNA sequences becomes necessary to better

capture the inherent complexity of biological behavior and further

enable predictive design of synthetic sequence functions and

activities (e.g. (Allert, et al., 2010; Dvir, et al., 2013; Kinney, et al.,

2010; Na, et al., 2013; Rhodius and Mutalik, 2010; Rodrigo, et al.,

2012; Salis, et al., 2009; Seelig, et al., 2006; Welch, et al., 2009)).

Valuable sequence design tools implementing heuristic searches

have been successfully developed for multi-objective optimization

within specific applications (e.g., protein synthesis optimization

(Chung and Lee, 2012; Dana and Tuller, 2012; Gaspar, et al.,

2013; Gaspar, et al., 2012; Raab, et al., 2010; Racle, et al., 2012;

Salis, et al., 2009; Welch, et al., 2011)). However, application of

such optimization procedures requires an objective function

relating computed sequence properties to an expected performance

score. Unfortunately, the data and models required to describe

these relationships are generally not sufficient to support truly

reliable functional design.

Associate Editor: Dr. John Hancock

© The Author(s) 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-
use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

 Bioinformatics Advance Access published January 6, 2014
 at U

N
IV

ER
SITY

 O
F C

A
LIFO

R
N

IA
 B

ER
K

ELEY
 on January 10, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

2

Interestingly, sequence design tools can also be used upstream of

the optimization process to produce libraries of sequences that are

more suited for the development of predictive models. Although

large-scale studies have mostly used random approaches to

introduce variability in the synthetic sequences to be interrogated

(Dvir, et al., 2013; Quan, et al., 2011), similar endeavours have

greatly benefited from following well-established design of

experiments (DoE) (Allert, et al., 2010; Antony, 2003; Kosuri, et

al., 2013; Sharon, et al., 2012; Smith, et al., 2013).

DoE is a general framework that fully integrates planning and

analysis phases, and comprises three major steps. The first one

consists in identifying the factors of interest and defining the range

of values for each factor. In the case of molecular sequences,

factors are properties of the primary sequence itself and can be

typically identified by reanalysing available functional genomic

data and published mechanistic studies. The second step consists in

implementing a particular experimental design wherein multiple

combinations of factor levels are selected to create an experimental

dataset providing maximal information to relate the design factors

to the response variable(s). For example, one of the most

informative DoE is the full-factorial design, where all possible

combinations of factor levels across the different factors are

performed. The resulting dataset not only permits to estimate the

contribution of each factor to the measured response variable, but

also robustly captures the interactions between the different factors

(Antony, 2003; Mutalik, et al., 2013). Lastly, the third step

includes the collection of experimental data and definition of a

model relating the multiple factors to the response variable(s). Of

note, this can be an iterative process wherein models derived from

the third phase can inform the design of a new set of experiments.

Although implementation of experimental designs systematically

varying easily manipulated factors can be straightforward (e.g.,

growth medium, pH, temperature or oxygen levels), the ability to

design artificial sequences whose intrinsic properties can be

systematically varied is not necessarily trivial (e.g., binding site

affinity or the strength of an RNA secondary structure).

Here, we present D-Tailor, an extendable framework supporting

integration of multiple sequence analysis tools to mine and design

biological sequences. D-Tailor uses a heuristic search algorithm to

enable flexible design of synthetic sequences varying multiple

properties of interest so as to satisfy complex DoEs. We have

validated our tool by successfully designing artificial sequence

libraries conforming to full-factorial designs, which represent the

upper bound of experimental design complexity. More specifically,

we have designed libraries systematically varying multiple

sequence properties known to impact translation efficiency in E.
coli. To further demonstrate the versatility of the algorithm, we

also used D-Tailor to design artificial bacterial promoter sequences

varying multiple cis-regulatory properties (see Supplementary

Information).

2 METHODS
D-Tailor essentially implements the two-step planning process outlined

above (Fig. 1). The analysis mode computes property scores from plain

biological sequences. Here, the user specifies input sequences and a

predefined set of properties to be computed. The design mode integrates the

analysis routines with a parameterizable Monte-Carlo algorithm that

evolves an input sequence (seed) so as to match the specified combinations

of property scores. In a typical workflow, users can use the analysis mode

to identify sequence properties and operational ranges that seem worth

exploring in design mode.

2.1 Sequence analyzer
D-Tailor provides a generic interface for multidimensional interrogation of

DNA sequences. The software is designed with a modular architecture, so

that users with basic programing skills can easily implement or extend

Fig. 1 D-Tailor enables multidimensional analysis and design of DNA sequences. D-Tailor provides a flexible and extendable architecture to interrogate

different sequence properties (box in the middle). The left panel depicts an example of the retrieval process of two properties (RNA structure and motif

prediction) from multiple input sequences that can come from either FASTA or CSV files. The resulting score profile can be used to identify general

trends and further define ideal parameter ranges for the design objectives. The right panel shows the design mode of D-Tailor, wherein a seed sequence is

evolved to meet a user-defined combination of sequence properties. The figure depicts a full-factorial design for two different properties of interest (RNA

structure and motif scores) with three levels each (low, medium and high), which yields a total of nine different combinations (colored areas).

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

3

modules for handling any sequence property of interest. Such modules can

be implemented using custom Python code or scripts connecting to third

party software (see the Tutorial available in the Supplementary

Information). In analysis mode, D-Tailor reads a set of sequences in either

delimiter separated (e.g., CSV) or FASTA format files. A property profile

is then computed for each of the input sequences by successively calling

the analysis modules specified by the user. (Fig. 1, left panel).

 D-Tailor currently comprises 14 different modules to compute various

sequence properties involved in diverse mechanisms of gene regulation.

This collection of sequence property evaluators includes algorithms to

score promoter regions or transcription factor binding sites based on

sequence logos (Thomas-Chollier, et al., 2011), estimate translation

initiation rates based on the Shine-Dalgarno (SD) sequence (Shine and

Dalgarno, 1975), predict propensity to form RNA structures, calculate

nucleotide composition or compute the codon adaptation index (CAI) for a

given gene sequence (Sharp and Li, 1987). Although the implementation of

the different sequence property evaluators is usually self-contained within

D-Tailor, the computation of specific properties may rely on third party

softwares (e.g., UNAfold (Markham and Zuker, 2008) for the prediction of

RNA secondary structure,). Together, these modules illustrate diverse

implementation modalities and provide useful examples to guide future

extensions (see Supplementary Information). The specification of adequate

analysis routines is an essential prerequisite to running the design mode.

2.2 Sequence designer
As capacities for DNA synthesis increase exponentially, the ability to

computationally design artificial sequences need to become more

automated and transparent. The most innovative feature of D-Tailor is to

provide a generic solution of designing synthetic sequences constrained by

multiple properties of interest (Fig. 1, right panel).

The design process in D-Tailor starts with the specification of a seed

sequence and the desired design objective (i.e. the DoE) (Fig. 1, right

panel). Seed sequences serve as a template to bootstrap the evolutionary

design process. Typically, users would use a particular sequence of interest

from which they want to derive a mutational series. The DoE enumerates

combinations of sequence properties that need to be generated, each of

which constitutes a design target. D-Tailor provides a flexible scheme for

the definition of DoE, which can vary from full-factorial to entirely

customized designs.

The definition a finite number of targets requires the discretization of

continuous property scores into a finite number of nominal or ordinal

levels. For example, Fig. 1 shows the discretization of two sequence

property scores into three ordinal levels (low, medium and high). This

framework markedly differs from usual multi-objective optimization

approaches (Chung and Lee, 2012; Raab, et al., 2010; Racle, et al., 2012),

which operate to optimize a single continuous and integrated performance

score rather than explicitly target different regions of the parameter space.

As illustrated in the Results section, natural feature profiles extracted from

available genomic sequences can be used to guide the discretization

processes and ensure biological relevance of the sampled space. For each

sequence property, users may define as many levels as necessary to attain

the desired degree of resolution in the designed sequences. However, since

the number of possible combinations increases geometrically with the

number of properties/levels, their definition must be mindful of

downstream experimental capacities.

Finding a sequence that conforms to an arbitrary combination of

property levels is often computationally infeasible using a brute force

approach. Indeed, the sequence space to be searched is gigantic (4
N
 where

N is the number of nucleotides in the sequence to be designed, more if

indels are allowed). To optimize the search process, D-Tailor uses a Monte-

Carlo algorithm to evolve a given seed sequence towards the set of design

targets (Fig. 2).

More specifically, the algorithm loops through cycles of evolution until

all target combinations of property levels specified by the DoE are found.

Each cycle consists in three consecutive steps: i) a target combination of

property levels is randomly selected; ii) a template sequence is chosen from

the repository of previously generated sequences using fitness

proportionate selection (only seed sequences are available at the very first

iteration); and iii) a predefined number of mutational iterations are

performed until a sequence satisfying the target combination of the

property level is found (Fig. 2, sequence evolver). We use the inverse of the

cumulative Euclidean distance (D) between property levels, as a generic

fitness measure of a sequence relative to a given design target (Eq. 1):

D " #$%d' (t'*+ 																						%Eq. 1*

where n	represents the number of sequence properties; d'	and t'	represent

the levels of the ith sequence property in the designed sequence and the

desired combination, respectively.

Each iteration of the sequence evolver also comprises three steps: i) the

sequence being evolved is analyzed and a property requiring optimization

(i.e., not within the target level) is randomly selected; ii) the template

sequence is then mutated following user-specified mutational rules (see

below); and, iii) the feature scores of the resulting sequence are analyzed

and evaluated with respect to the current design target (Eq. 1). Every

generated sequence is also screened for compliance to a user-

defined set of rules meant to prevent the emergence of undesired

properties in the final designed sequences (e.g., restriction sites,

unexpected promoters or terminators). Only validated sequences

are stored in the database.

Next, if the new sequence matches the target combination (D=0), then

the target is marked as completed and the evolution cycle is terminated.

Otherwise, the algorithm updates the template for the next mutational

iteration, choosing between retaining the current template sequence or

accepting the mutant just derived. At this point, we defined three different

selective regimes: i) directional selection, where the sequence with the

lower Euclidean distance to the target combination is chosen; ii) neutral

selection, where any of the two sequences is selected with predefined

probabilities; or iii) temperature selection, as inspired by simulated

annealing optimization (Kirkpatrick, et al., 1983), where the sequence is

selected based on a temperature schedule that allows worse sequences

(longer distances) to also be selected with a probability that decreases with

the number of iterations performed.

At each of the mutational iterations, new sequences can be generated

through random mutation of the template sequence, as usual in many

sequence optimization tools (Chung and Lee, 2012; Gaspar, et al., 2012;

Fig. 2 Sequence designer algorithm comprised by three different steps

described in the main text. Initially, a target combination of features is

selected and then a sequence that is close (i.e., short Euclidean distance)

to the desired target is chosen to serve as the template in the sequence

evolution step. This last step applies successive mutations until it finds a

sequence matching the target combination of features

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

4

Salis, et al., 2009). In addition, D-Tailor offers the possibility to implement

specialized mutation operators that aim at improving the likelihood to

generate desired property changes. Practically, a mutation operator

randomly selects a property amongst those that are non-optimal in the

current template (d' (t'	 2 0). We then distinguish between: i) targeted

operators, which restrict the mutational space to specific regions of the

sequence that are therefore more likely to affect the property that needs to

be evolved; and ii) oriented operators, which further specify particular

mutation patterns to bias the production of variants toward the current

design target. For example, if the design goal specifies an increase in the

CAI of a gene, the targeted mutation operator restricts the mutable region

to the coding sequence and randomly replaces a codon by another one

irrespective of its usage score. The oriented mutation operator further

constrains the replacement of a randomly chosen codon with one associated

with a higher usage score, thereby enforcing the required increase. For

certain emergent features, the definition of oriented mutation might not be

so straightforward. For example, we implemented oriented mutation

operators for RNA secondary structure by specifically targeting mutations

to bases that are predicted to be paired or unpaired, to respectively decrease

or increase the strength of the mutated RNA structure. Importantly, any

mutation operator targeting gene-coding sequences can be further

constrained to only generate synonymous mutations, thereby preserving the

encoded protein sequence while modifying the underlying DNA properties.

In some applications, it may be desirable to limit the overall divergence

between sequences in the designed library, so that it provides small

variations with respect to a particular reference sequence. Conversely, users

might want to generate sequences that are as dissimilar as possible and,

therefore, share as few confounding factors as possible. In D-Tailor, users

can manipulate mutational patterns and the selective regime—two major

parameters of the evolutionary design process—to indirectly control

sequence diversity, and consequently impact the rate of sequence evolution,

as well as the overall performance of the search algorithm (see below).

3 RESULTS AND VALIDATION
D-Tailor provides an integrated Python-scripting framework for

multidimensional analysis of sequence properties and for the

design of artificial sequences constrained by multiple sequence

properties of interest.

As a case study, we have chosen three different previously

reported sequence determinants of translation efficiency. In E. coli,

two major factors have been shown to modulate the rate of

translation initiation: i) the strength and position of a Shine-

Dalgarno (SD) motif upstream of the start codon (Barrick, et al.,

1994; Shine and Dalgarno, 1975); and ii) the propensity of these

sequence signals to engage in mRNA secondary structures (de

Smit and van Duin, 1994; Hall, et al., 1982; Kudla, et al., 2009).

Subsequent to initiation, the rate of elongation may also affect the

overall translation efficiency and is mainly determined by the

codon usage of the gene (Gustafsson, et al., 2004; Ikemura, 1985;

Kane, 1995; Sharp and Li, 1987; Welch, et al., 2009; Welch, et al.,

2011). We first illustrate how D-Tailor analysis module can be

used to examine such sequence properties in the natural genome of

E. coli. Then, we demonstrate how to use D-Tailor design module

to generate artificial sequence libraries systematically varying the

three properties of interest according to a full-factorial design of

experiments.

3.1 Using D-Tailor to interrogate sequences
We used D-Tailor to re-analyze three different sequence properties

across the entire E. coli W3110 genome (Fig. 3). Mechanistically,

the SD motif stabilizes the initial binding of the 30S subunit of the

ribosome by establishing canonical base pairing with the 3’ end of

the 16S rRNA (anti-SD) (Shine and Dalgarno, 1975). We applied a

sequence property evaluator that calculates the strength of the SD

sequence by searching for a subsequence within the 25 nucleotides

upstream of a start codon with highest affinity to the known anti-

SD (Lithwick and Margalit, 2003). The presence of secondary

structures in this region of the mRNA can hinder initiation by

occluding the SD motif or the nearby start codon from recognition

by the ribosomal subunits. For that purpose, we used an RNA

structure evaluator to compute the minimum free energy of the 60

nucleotides subsequence centered on the start codon (Kudla, et al.,

2009). Finally, we used a CAI calculator to score the codon usage

of a gene sequence (Sharp and Li, 1987). Practically, the usage of

these property evaluators and associated parameters requires a

standard interface, which is provided by extending the abstract

class Feature in D-Tailor (see Supplementary Information).

The sequence property profiles resulting from a genome analysis

give a solid basis to identify trends in the properties of interest, and

to further determine the relevant parameter space to explore during

the design step (Fig. 3A-C). Correlations amongst property scores

may also provide insights onto potential functional interactions

although some may be purely incidental. For example, the modest

correlation between RNA structure in the translation initiation

region and the affinity between ribosomes and the SD sequence

(Fig. 3D) might merely reflect the thermodynamic propensity of G-

rich SD motifs to engage in secondary structures. Similarly, the

peculiar shape of the relationship between CAI and RNA

secondary structure (Fig. 3E) might stem from the joint

contributions of independent evolutionary pressures for expression

levels acting on these two properties to tune expression levels

(highly expressed genes being both under selection for high CAI

and for low structure (Gu, et al., 2010; Kudla, et al., 2009; Plotkin

and Kudla, 2011; Tuller, et al., 2010)). It is then up to the user to

define a DoE containing combinations of sequence property scores

Fig. 3 (A-C) Distribution of the three different sequence properties

(hybridization energy between the 16S rRNA and SD sequence (A),

minimum folding energy of RNA structure in the translation initiation

region (B) and codon adaptation index—CAI—of gene sequences (C))

influencing translation efficiency in E. coli. The dashed lines indicate the

quintile boundaries for the scores of each property, which were later used

in design mode to discretize the parameter space. (D-F) Scatter plots

showing the cross-correlation between the three sequence properties of

interest.

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

5

that are more adequate to test the research hypothesis to be

investigated.

3.2 Using D-Tailor to implement
experimental design on sequence
properties

Although recent advances in DNA synthesis, cloning and

sequencing make it possible to generate and experimentally probe

thousands of custom DNA/RNA sequences (Dvir, et al., 2013;

Kosuri, et al., 2013; Patwardhan, et al., 2012; Patwardhan, et al.,

2009; Quan, et al., 2011; Sharon, et al., 2012; Smith, et al., 2013),

the availability of computational tools to aid the rational design of

large sequence libraries remains very limited.

The main purpose of D-Tailor is to provide a flexible

computational tool to design custom sequences satisfying complex

specifications. Such task can be extremely laborious when the

properties of interest physically overlap in the sequence space. For

instance, in our case study, the subsequence containing the SD

motif influences the formation of RNA secondary structures in that

same region. Likewise, the secondary structure can be affected

when modifying codon usage at the beginning of the gene.

Typically, such optimization problems are best solved using a trial-

and-error approach wherein sequence variants are generated using

random mutations until a desired combination of property scores is

found (Allert, et al., 2010; Gaspar, et al., 2013; Raab, et al., 2010;

Racle, et al., 2012; Salis, et al., 2009). To generalize this process,

the design mode of D-Tailor provides a framework to integrate any

sequence property evaluator into a parameterizable Monte-Carlo

algorithm that iteratively evolves sequences toward a specific set

of design targets (or combinations of property levels).

We used D-Tailor to design sequences that systematically vary

the three properties of interest (or factors) defined above (Fig. 3).

For each of these factors, we defined five contiguous ordinal levels

on the basis of the quintiles observed in the natural genome (Fig.

3A-C, dashed lines). We then instructed D-Tailor to search for

sequences conforming to a full-factorial DoE based on these levels.

This DoE describes a total of 125 design targets corresponding to

all combinations of five levels across the three different properties

(5
3
). To validate our approach, we compared the performance of

four increasingly complex evolutionary strategies available in D-

Tailor at deriving full-factorial libraries for 30 different genes

randomly selected in E. coli (Fig. 4A-B). In these simulations, the

algorithm was run for at most 3,000 generations—with a single

mutational event per generation—allowing for unrestricted

mutations in the 5’ UTR but only for synonymous mutations in the

coding sequence.

We first explored the most rudimentary evolutionary strategy

available in D-Tailor, random sampling, which does not implement

any heuristic search and simply generates random sequences until

all desired design objectives are completed. Every attempt to

complete the full-factorial design before the threshold of 3,000

generated sequences failed (Fig. 4A-B, black line, 54.2 generated

sequences per target found [gspt] on average). The second design

strategy used D-Tailor’s generic heuristic algorithm (Fig. 2 and

Methods) along with the simplest mutational method wherein new

sequence variants are generated by random mutagenesis (Fig. 4A,

yellow line). This strategy improved the efficiency of the search

algorithm by a factor of 2 as compared to that of the random

sampling method (24.8 vs 54.2 gspt on average, Mann-Whitney

test p-value = 2.3×10
-10

, Fig. 4B). Still, many sequences had to be

generated to meet the various design objectives. The third

mutational strategy employed spatially targeted mutation operators

(see Methods) and improved the search algorithm efficiency by

another factor of 2 (13.3 gspt on average, Fig. 4B). The fourth

strategy used more ‘rational’ mutation operators that explicitly

orient mutations toward the desired objective (see Methods) and

provided slightly faster dynamics (Fig. 4A, orange line, 11.8 vs

13.3 gspt on average, Mann-Whitney test p-value = 0.129, Fig.

4B). Since the computational time necessary to achieve a given set

of design targets is dependent on the number of generated

sequences per target, these results illustrate the advantage of

defining specific mutation operators whenever it is possible.

When designing synthetic sequences, users may want to limit the

divergence of the designed sequences with respect to the initial

seed. To roughly control the spread of the generated sequences

during the evolutionary process, users can manipulate the strength

Fig. 4 D-Tailor design simulations. (A) We performed simulations of

full-factorial design using 30 different initial sequences (seeds) and

four different design strategies: random sampling (black) and heuristic

search using random (yellow), targeted (blue) and oriented (orange)

mutations. The different lines represent the average number (across 30

simulations) of target combinations found (out of 125) as a function of

the number of generated sequences (up to 3,000) for the four different

strategies. We observed sizeable variation between seeds (not shown

for clarity, see Supplementary Information for details) (B) Number of

generated sequences per target found (gspt) for the four different

mutational strategies (n=30). (C) We used the same 30 different seeds

to find six different target combinations at various Euclidean distances.

The different lines show the average hamming distance between the

seed and the sequence matching the target combination as a function of

the Euclidean distance to the target combination using neutral (light

blue), directional (orange) or temperature selection (black). (D) The

number of generated sequences until the desired target is found as a

function of the Euclidean distance to the target combination using

either neutral (light blue), directional (orange) or temperature (black)

selection.

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

6

of selection toward the desired target(s). To better illustrate this

point, we evolved each of the 30 seeds previously selected toward

six different target combinations bearing different Euclidean

distances from the seeds (Fig. 4C-D). We then examined the

behavior and results of the algorithm in response to three

contrasted selective regimes: neutral, directional and temperature

selection (Methods).

As expected, we observed that a more relaxed selection process

(neutral) is able to generate sequences matching the desired target

that are more similar to the seed sequence than those resulting

from the directional or temperature selection approach (average

hamming distance of 21 vs 31.3 and 39.2, respectively; Mann-

Whitney test p-value = 0.0005 and 1.03e-13; Fig. 4C).

Nonetheless, the limitation of sequence diversity comes at the cost

of longer computation time (Fig. 4D). In fact, for the 30 seed

sequences, the neutral selection process requires the generation of

8 and 6 times more sequences per target than the directional and

temperature selection approach, respectively and on average. For

large designs, users may have to balance the desired divergence of

the designed sequences with the available computational power. A

hybrid approach, wherein the algorithm is initially set with weak

selection and hard constraints to limit divergence, and then

progressively configured with increased selection bias and/or

relaxed mutational constraints (e.g., allow non-synonymous

mutations in coding sequences if it is acceptable by the user) as the

rate of target discovery slows down may then be recommended.

The details of such procedure are likely specific for each

application, and therefore we have not sought to implement an

automatic schedule to control this behavior. Since the state of a D-

Tailor design mode run is permanently stored in a database, we

suggest users to manually experiment with adjusting these

parameters.

4 CONCLUSION
Advances in DNA reading/writing technologies readily enable the

construction and validation of complex genetic systems (Gibson, et

al., 2010). However, rules to successfully design synthetic

sequences to functional specifications have been limited by

measurements from biased natural samples and/or small scale

controlled synthetic samples comprising at most hundreds of

sequences (e.g., (Allert, et al., 2010; Amit, et al., 2011; Barrick, et

al., 1994; Garcia, et al., 2012; Mutalik, et al., 2012; Na, et al.,

2013; Rhodius and Mutalik, 2010; Rodrigo, et al., 2012; Salis, et

al., 2009)). This lack of knowledge strongly restrains the practical

applications of ab initio design. Innovative experimental

methodologies based on high-throughput technologies are scaling

the characterization process up to tens of thousands of designed

sequence variants, providing larger datasets to better understand

sequence/activity relationships (Dvir, et al., 2013; Kinney, et al.,

2010; Patwardhan, et al., 2012; Patwardhan, et al., 2009; Sharon, et

al., 2012; Smith, et al., 2013). However dramatic, this increase in

throughput remains limited in comparison to the sheer immensity

of the sequence space. It is therefore crucial to reduce the

dimensionality of the design space to a set of sequence properties

of interest that can be independently varied to facilitate estimation

of their individual contribution to the measured phenotype and

further support predictable design of synthetic variants (Allert, et

al., 2010; Sharon, et al., 2012; Smith, et al., 2013).

We developed D-Tailor as an extendable and flexible software

platform for the multi-objective design of artificial sequences. It

provides a generic interface to integrate multiple sequence analysis

tools into a heuristic Monte-Carlo search procedure capable of

evolving sequences towards pre-defined design targets (Fig. 1). D-

Tailor presents significant differences to other multi-objective

sequence optimization tools (Allert, et al., 2010; Chung and Lee,

2012; Dana and Tuller, 2012; Gaspar, et al., 2012; Raab, et al.,

2010; Racle, et al., 2012; Salis, et al., 2009). First, it allows the

definition of multiple design targets as combinations of sequence

properties that embody particular design of experiments. A DoE

can range anywhere from one specific combination of property

levels to a full-factorial design, where the parameter space is fully

explored. In contrast, traditional optimization tools describe design

objectives in terms of desired response performances, which are

linked to the sequence properties by a complex and pre-defined

static objective function. Such formalization is suited for

functional optimization, but do not explicitly support systematic

exploration of the parameter space. Second, D-Tailor provides an

evolutionary algorithm to optimize both coding and non-coding

regions. Third, D-Tailor supports the implementation of advanced

mutational strategies that can significantly enhance the heuristic

search performance (Fig. 4B). Finally, our tool is not application-

specific and provides an open source solution based on an

extendable architecture, such that new sequence property

evaluators can be easily implemented and integrated into the

sequence design engine.

We demonstrate that D-Tailor can efficiently design artificial

sequences to systematically vary any given set of properties of

interest. To this end, we successfully derived full-factorial

sequence libraries, starting from 30 different seed sequences,

exploring the entire parameter space of three intertwined sequence

properties affecting translation efficiency. Interestingly, we

observed that the dynamics of target discovery varies slightly

depending on the input seed (see Supplementary Information for

details). This illustrates that different sequences may have distinct

evolutionary landscapes; some being more amenable to generate

widely variable profiles of property scores, with fewer mutational

cycles than others (Cambray and Mazel, 2008; Wagner, 2008). For

both targeted and oriented mutational methods, the average

dynamics of target discovery revealed a relatively steady rate for

the first ~80% of targets, followed by a sharp decrease in

efficiency—presumably because the remaining targets specify

combinations of property levels that are harder to attain (Fig. 4A,

orange and light blue lines). We also confirmed that more

simplistic design approaches—such as generation of random

sequences—perform poorly in comparison to a heuristic search

(Fig. 4A-B).

In addition to the case study detailed here, we have used D-

Tailor to systematically design synthetic bacterial promoter

sequences varying multiple cis-regulatory properties (see Tutorial

for details), that way demonstrating the generality and flexibility of

our methods and tool.

D-Tailor permits the implementation of advanced experimental

designs into artificial sequence samples that can serve as a basis to

rigorously and consistently test sets of molecular hypothesis. We

believe that comprehensive full-factorial libraries of sequences are

needed to investigate complex biochemical activities and robustly

dissect the contribution of individual factors as well as their

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

7

interactions. Such libraries will aid characterizing complex

multifactorial phenotypes and eventually derive quantitative

relationships between sequence and activity.

Funding: This work was supported by Synthetic Biology Engineering

Research Center under National Science Foundation [04-570/0540879];

Fundação para a Ciência e a Tecnologia (FCT) [SFRH/BD/47819/2008] to

JCG; Human Frontiers Science Program [LT000873/2011-L] and the

Bettencourt Schueller foundation to GC; European Regional Development

Fund (ERDF) through the COMPETE Programme and by the FCT within

projects COMPETE [FCOMP-01-0124-FEDER-015079, PEst-OE/EEI/

UI0752/2011] to MR.

Conflict of interest: none declared.

REFERENCES
Allert, M., Cox, J.C. and Hellinga, H.W. (2010) Multifactorial determinants of protein

expression in prokaryotic open reading frames, J Mol Biol, 402, 905-918.

Altschul, S.F., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs, Nucleic Acids Res, 25, 3389-3402.

Amit, R., et al. (2011) Building enhancers from the ground up: a synthetic biology

approach, Cell, 146, 105-118.

Antony, J. (2003) Design of experiments for engineers and scientists. Butterworth-

Heinemann, Oxford ; Burlinton, MA.

Bailey, T.L., et al. (2009) MEME SUITE: tools for motif discovery and searching,

Nucleic Acids Res, 37, W202-208.

Barrick, D., et al. (1994) Quantitative analysis of ribosome binding sites in E.coli,

Nucleic Acids Res, 22, 1287-1295.

Cambray, G., et al. (2013) Measurement and modeling of intrinsic transcription

terminators, Nucleic Acids Res, 41, 5139-5148.

Cambray, G. and Mazel, D. (2008) Synonymous genes explore different evolutionary

landscapes, PLoS Genet, 4, e1000256.

Cambray, G., Mutalik, V.K. and Arkin, A.P. (2011) Toward rational design of

bacterial genomes, Curr Opin Microbiol, 14, 624-630.

Carr, P.A. and Church, G.M. (2009) Genome engineering, Nat Biotechnol, 27, 1151-

1162.

Chung, B.K. and Lee, D.Y. (2012) Computational codon optimization of synthetic

gene for protein expression, BMC Syst Biol, 6, 134.

Czar, M.J., et al. (2009) Gene synthesis demystified, Trends Biotechnol, 27, 63-72.

Dana, A. and Tuller, T. (2012) Efficient manipulations of synonymous mutations for

controlling translation rate: an analytical approach, J Comput Biol, 19, 200-231.

Davis, J.H., Rubin, A.J. and Sauer, R.T. (2011) Design, construction and

characterization of a set of insulated bacterial promoters, Nucleic Acids Res, 39,

1131-1141.

de Smit, M.H. and van Duin, J. (1994) Control of translation by mRNA secondary

structure in Escherichia coli. A quantitative analysis of literature data, J Mol Biol,
244, 144-150.

Dvir, S., et al. (2013) Deciphering the rules by which 5'-UTR sequences affect protein

expression in yeast, Proc Natl Acad Sci U S A, 110, E2792-2801.

Endy, D. (2005) Foundations for engineering biology, Nature, 438, 449-453.

Garcia, H.G., et al. (2012) Operator sequence alters gene expression independently of

transcription factor occupancy in bacteria, Cell Rep, 2, 150-161.

Gaspar, P., et al. (2013) mRNA secondary structure optimization using a correlated

stem-loop prediction, Nucleic Acids Res.

Gaspar, P., et al. (2012) EuGene: maximizing synthetic gene design for heterologous

expression, Bioinformatics, 28, 2683-2684.

Giardine, B., et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis, Genome Res, 15, 1451-1455.

Gibson, D.G., et al. (2010) Creation of a bacterial cell controlled by a chemically

synthesized genome, Science, 329, 52-56.

Gu, W., Zhou, T. and Wilke, C.O. (2010) A universal trend of reduced mRNA

stability near the translation-initiation site in prokaryotes and eukaryotes, PLoS
Comput Biol, 6, e1000664.

Gustafsson, C., Govindarajan, S. and Minshull, J. (2004) Codon bias and heterologous

protein expression, Trends Biotechnol, 22, 346-353.

Hall, M.N., et al. (1982) A role for mRNA secondary structure in the control of

translation initiation, Nature, 295, 616-618.

Hofacker, I.L. (2003) Vienna RNA secondary structure server, Nucleic Acids Res, 31,

3429-3431.

Ikemura, T. (1985) Codon usage and tRNA content in unicellular and multicellular

organisms, Mol Biol Evol, 2, 13-34.

Kane, J.F. (1995) Effects of rare codon clusters on high-level expression of

heterologous proteins in Escherichia coli, Curr Opin Biotechnol, 6, 494-500.

Kingsford, C.L., Ayanbule, K. and Salzberg, S.L. (2007) Rapid, accurate,

computational discovery of Rho-independent transcription terminators illuminates

their relationship to DNA uptake, Genome Biol, 8, R22.

Kinney, J.B., et al. (2010) Using deep sequencing to characterize the biophysical

mechanism of a transcriptional regulatory sequence, Proc Natl Acad Sci U S A,

107, 9158-9163.

Kirkpatrick, S., Gelatt, C.D., Jr. and Vecchi, M.P. (1983) Optimization by simulated

annealing, Science, 220, 671-680.

Kosuri, S., et al. (2013) Composability of regulatory sequences controlling

transcription and translation in Escherichia coli, Proc Natl Acad Sci U S A, 110,

14024-14029.

Kudla, G., et al. (2009) Coding-sequence determinants of gene expression in

Escherichia coli, Science, 324, 255-258.

Lithwick, G. and Margalit, H. (2003) Hierarchy of sequence-dependent features

associated with prokaryotic translation, Genome Res, 13, 2665-2673.

Ma, S., Tang, N. and Tian, J. (2012) DNA synthesis, assembly and applications in

synthetic biology, Curr Opin Chem Biol, 16, 260-267.

Markham, N.R. and Zuker, M. (2008) UNAFold: software for nucleic acid folding and

hybridization, Methods Mol Biol, 453, 3-31.

Mutalik, V.K., et al. (2013) Quantitative estimation of activity and quality for

collections of functional genetic elements, Nature Methods, 10, 347-353.

Mutalik, V.K., et al. (2012) Rationally designed families of orthogonal RNA

regulators of translation, Nat Chem Biol, 8, 447-454.

Na, D., et al. (2013) Metabolic engineering of Escherichia coli using synthetic small

regulatory RNAs, Nat Biotechnol, 31, 170-174.

Patwardhan, R.P., et al. (2012) Massively parallel functional dissection of mammalian

enhancers in vivo, Nat Biotechnol, 30, 265-270.

Patwardhan, R.P., et al. (2009) High-resolution analysis of DNA regulatory elements

by synthetic saturation mutagenesis, Nat Biotechnol, 27, 1173-1175.

Plotkin, J.B. and Kudla, G. (2011) Synonymous but not the same: the causes and

consequences of codon bias, Nat Rev Genet, 12, 32-42.

Quan, J., et al. (2011) Parallel on-chip gene synthesis and application to optimization

of protein expression, Nat Biotechnol, 29, 449-452.

Raab, D., et al. (2010) The GeneOptimizer Algorithm: using a sliding window

approach to cope with the vast sequence space in multiparameter DNA sequence

optimization, Syst Synth Biol, 4, 215-225.

Racle, J., Overney, J. and Hatzimanikatis, V. (2012) A computational framework for

the design of optimal protein synthesis, Biotechnol Bioeng, 109, 2127-2133.

Rhodius, V.A. and Mutalik, V.K. (2010) Predicting strength and function for

promoters of the Escherichia coli alternative sigma factor, sigmaE, Proc Natl
Acad Sci U S A, 107, 2854-2859.

Rodrigo, G., Landrain, T.E. and Jaramillo, A. (2012) De novo automated design of

small RNA circuits for engineering synthetic riboregulation in living cells, Proc
Natl Acad Sci U S A, 109, 15271-15276.

Salis, H.M., Mirsky, E.A. and Voigt, C.A. (2009) Automated design of synthetic

ribosome binding sites to control protein expression, Nat Biotechnol, 27, 946-950.

Seelig, G., et al. (2006) Enzyme-free nucleic acid logic circuits, Science, 314, 1585-

1588.

Sharon, E., et al. (2012) Inferring gene regulatory logic from high-throughput

measurements of thousands of systematically designed promoters, Nat Biotechnol,
30, 521-530.

Sharp, P.M. and Li, W.H. (1987) The codon Adaptation Index--a measure of

directional synonymous codon usage bias, and its potential applications, Nucleic
Acids Res, 15, 1281-1295.

Shine, J. and Dalgarno, L. (1975) Determinant of cistron specificity in bacterial

ribosomes, Nature, 254, 34-38.

Smith, R.P., et al. (2013) Massively parallel decoding of mammalian regulatory

sequences supports a flexible organizational model, Nat Genet.
Thomas-Chollier, M., et al. (2011) RSAT 2011: regulatory sequence analysis tools,

Nucleic Acids Res, 39, W86-91.

Tuller, T., et al. (2010) Translation efficiency is determined by both codon bias and

folding energy, Proc Natl Acad Sci U S A, 107, 3645-3650.

Wagner, A. (2008) Robustness and evolvability: a paradox resolved, Proc Biol Sci,
275, 91-100.

Welch, M., et al. (2009) Design parameters to control synthetic gene expression in

Escherichia coli, PLoS One, 4, e7002.

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

8

Welch, M., et al. (2011) Designing genes for successful protein expression, Methods
Enzymol, 498, 43-66.

 at U
N

IV
ER

SITY
 O

F C
A

LIFO
R

N
IA

 B
ER

K
ELEY

 on January 10, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

D-Tailor tutorial

Joao C Guimaraes, Miguel Rocha, Adam P Arkin and Guillaume Cambray

10/06/13

Index

1.! Installing D-Tailor ... 2!
1.1.! Prerequisites .. 2!
1.2.! Installation ... 2!
1.3.! License ... 2!

2.! D-Tailor Essentials .. 3!
2.1.! Scope and functionalities ... 3!
2.2.! Project Structure ... 4!

3.! Feature class: handling sequence properties .. 7!
4.! Solution class: handling sequences ... 12!
5.! Sequence Analyzer ... 13!
6.! Sequence Designer ... 16!

6.1.! Definition of features ... 16!
6.2.! Definition of a design objective .. 18!
6.3.! Mutational strategies ... 20!
6.4.! Designer algorithm ... 22!
6.5.! Database of designed sequences ... 24!
6.6.! Configuring and running the designer ... 24!
6.7.! Running examples .. 27!

6.7.1.! Designing sequences systematically varying sequence properties impacting
translation efficiency .. 27!

6.7.2.! Designing bacterial promoter sequences systematically varying cis-regulatory
properties ... 30!

6.8.! Utilities .. 34!

 2

1. Installing D-Tailor

1.1. Prerequisites

D-Tailor is implemented in Python. Python is an interpreted and interactive object-

oriented programming language that is available for several platforms including Unix,

Mac OSX and Microsoft Windows. Before starting to use D-Tailor, you need to install

Python version 2. More information can be found at http://www.python.org.

D-Tailor uses a few command line utilities such as cat or awk that are commonly

available for Unix or Unix-derived operating systems. When using Microsoft Windows it

is necessary to run D-Tailor in a Unix-emulation environment such as Cygwin

(http://www.cygwin.com/).

To have access to certain functionalities in D-Tailor, you will need to install third-

party software to predict RNA structure (UNAFold v3.6 and RNAplfold v1.6) and

transcription terminators (TransTermHP v2.08). The sources for these tools are located

in the folder “3rdParty” and, after installation, the compiled binaries must be copied to

each corresponding folder. For installation instructions of third party software, please

refer to their respective websites:

• UNAFold—http://dinamelt.rit.albany.edu/download.php

• RNAplfold (Vienna RNA package)—http://www.tbi.univie.ac.at/~ivo/RNA/

• TransTermHP—http://transterm.cbcb.umd.edu/

All these tools are optional and hence only necessary if the user wants to use above-

mentioned functionalities, namely predict RNA structure or transcription terminators.

1.2. Installation

D-Tailor is a Python project ready to be used. To start using D-Tailor, simply

download it from https://sourceforge.net/projects/dtailor/ and copy the files to the

destination folder.

1.3. License

D-Tailor is licensed under the BSD 2-Clause License.

 3

2. D-Tailor Essentials

2.1. Scope and functionalities

D-Tailor is an extendable framework that automates the analysis and design of DNA

sequences properties. To this end, it implements two distinct modules: Sequence

Analyzer and Sequence Designer (Figure 2.1). In the Analyzer module, a predefined set

of sequence properties of interest is automatically retrieved and evaluated from plain

DNA sequences. Conversely, the Designer module evolves a DNA sequence to match

specific combinations of sequence properties scores under given mutation constraints

(e.g., sequences regions available for mutation or only synonymous mutations). In

addition, it is possible to constraint diversity of the designed sequences and/or enforce

validation tests to prevent final sequences from comprising undesired elements (e.g.

restriction sites, unexpected promoters, terminators or internal ribosome binding sites).

Figure 2.1 D-Tailor framework
D-Tailor provides automated analysis and design of DNA sequences. Because it is based on a modular
architecture, it enables the independent development of sequence property evaluators that can be easily
plugged-in to the software (Properties library). The left panel depicts an example of the evaluation of two
properties from multiple DNA sequences. The right panel outlines the design mode of D-Tailor, where
designed sequences are generated based on a design objective constraining two different sequence properties.

 4

In summary, D-Tailor provides an integrated framework for the seamless extraction

and evaluation of multiple properties of interest from plain DNA sequences. This

analysis pipeline is also integrated in a Monte-Carlo algorithm that evolves input

sequences under user-defined constraints toward a set of combinations of sequence

properties scores, thereby enabling flexible multi-objective sequence design. D-Tailor is

based on an extendable architecture to allow the independent development of new

sequence property evaluators that can be easily plugged-in to the software (Figure 2.1).

2.2. Project Structure

D-Tailor uses object-oriented design and its core entities are:

• Feature—abstract object encapsulating all relevant attributes and methods to

describe a particular sequence feature or property;

• Solution—concrete object containing all information for a particular sequence.

A Solution can have one or more Feature objects. Solution is a concrete class that

stores a DNA/RNA sequence and corresponding properties of interest. In contrast,

Feature is an abstract class that is extended by concrete property classes. D-Tailor

comes packaged with many ready-to-use concrete properties that extend the abstract

class Feature. We will use a detailed implementation of two of these properties to

exemplify how users can easily implement their own sequence properties of interest

(below).

The two main executable classes of are: SequenceAnalyzer and SequenceDesigner.
These are abstract classes and must be extended by concrete classes implementing user-

defined analyses and designs (e.g., which properties to compute or what are the mutation

constraints). The design mode also requires the definition of a design objective (a class

extending the abstract class Design). Several design methodologies are already

implemented in D-Tailor (see section 6.2).

To provide a flexible storage environment and enable parallel computation, generated

sequences are stored in a database. D-Tailor uses the abstract class DBAbstract to

encapsulate a database management interface. We have extended this class to implement

a storage environment based on SQLite (http://www.sqlite.org/). DBSQLite uses the

built-in Python library sqlite3 to implement a file-based SQL database engine to store

information resiliently and in a structured way without the need to install additional

 5

software. Other database solutions can be implemented by extending DBAbstract to

provide a storage environment compatible with other user preferences (e.g., SQLServer,

MySQL, etc) without impacting the basic functionalities of D-Tailor.

Figure 2.2 depicts a unified model language (UML) class diagram that captures the

multiple dependencies between classes implemented in D-Tailor.

Figure 2.2 UML class diagram of D-Tailor

The two main executable classes (SequenceAnalyzer and SequenceDesigner) contain one or more instances of
the class Solution, which contains a list of one or more instances of the class Feature. The SequenceDesigner
requires the instantiation of the class Design, which provides basic information about the design target(s),
and the class DBAbstract, where designed sequences are stored. The diagram shows examples of classes
extending the abstract classes Design and Feature.

The project itself is organized in a series of folders and packages:

• Root directory: contains several core classes of the software

(SequenceAnalyzer, SequenceDesigner and Solution). It also contains two

auxiliary modules (Data and Functions) with relevant data structures and

functions. Data contains all data variables/structures shared by the many

classes and can be seen as a repository for global variables. Functions provides

a repository for common functions that are used by different classes.

• Packages:

o DBOperation—contains the abstract and concrete classes

implementing the storage management system;

o DesignOfExperiments—includes all classes defining design objectives;

Solution

SequenceDesigner SequenceAnalyzer

Feature

Features

CAI Structure

StructureMFE

Design

DesignOfExperiments

Optimization FullFactorial Random
Sampling

DBAbstract

DBSQLite

 6

o Features—collection of sequence property evaluators implemented in

D-Tailor;

o Running examples—contains usage examples for the two different

modes of D-Tailor (analysis and design);

o Utils—a set of auxiliary tools (e.g., database statistics, below).

• Folders:

o 3rdParty—folder with 3rd party software that may be required to run

certain sequence property evaluators (e.g., UNAFold to predict RNA

structures);

o testFiles—a collection of test files that are used by the running

examples (e.g., sequences for all E. coli genes);

o tmp—a folder where temporary outputs generated by the sequence

property evaluators are saved (e.g., structure files produced by

UNAFold);

o db—where the databases generated in the design mode can be stored;

 7

3. Feature class: handling sequence properties

The class Feature encapsulates the concept of a sequence property (i.e., a variable

whose score can be inferred/calculated from the raw sequence). This class stores all

relevant information about a particular property and contains all methods necessary to

calculate its score(s). In D-Tailor, Feature is an abstract class that must be extended by

classes implementing concrete properties. Figure 3.1 shows an example of a class CAI

that calculates of the codon adaptation index. Basically, this class only needs to

implement a constructor, which has to call the super class constructor from Feature and

further define specific attributes, and the method set_scores, which computes property

score(s). Importantly, the score of a given property needs to be stored in a dictionary

called scores using the appropriate key, which must be a string resulting from

concatenating the given label and the property’s class name (Figure 3.1).

class CAI(Feature):

 def __init__(self, caiObject = None, solution = None, label="",

 args = { 'cai_range' : (0,59), 'mutable_region' : None,

 'cds_region' : None , 'keep_aa' : True }):

 if caiObject == None: #create new instance

 #General properties of feature

 Feature.__init__(self, solution=solution, label=label)

 #Specifics of this Feature

 self.cai_range = args['cai_range']

 self.sequence = solution.sequence[self.cai_range[0]:(self.cai_range[1]+1)]

 self.set_scores()

 self.set_level()

 else: #copy instance

 …

 def set_scores(self, scoring_function=Functions.analyze_cai):

 self.scores[self.label+"CAI"] = scoring_function(self.sequence)

Figure 3.1 Definition of a class implementing a feature (CAI)

The constructor receives three input parameters: a Solution (sequence to evaluate), a

string (label) and a dictionary args with all the parameters necessary to configure the

property. In this case, to calculate CAI score, we only need the region of the sequence

where we want to compute it. This parameter comes in the dictionary args and is

accessed via the key cai_range (a tuple with the starting and ending position). Next, to

calculate CAI score, we implemented the method set_scores (Figure 3.1), which uses the

routine analyze_cai to calculate the geometric mean of the weight associated with each

codon within sequence (Figure 3.2). To enhance software reusability, we decided to

implement functions like this in the Functions module.

 8

def analyze_cai(seq):

 seq = seq.lower();

 score = 0

 len_sq = 0

 for i in range(0,len(seq),3):

 if cai_table.has_key(seq[i:i+3]):

 score += log(cai_table[seq[i:i+3]])

 len_sq += 1

 score /= len_sq

 return exp(score)

Figure 3.2 Calculation of CAI score

Given the simplicity of CAI score calculation, analyze_cai can be entirely

implemented in Python. However, many complex properties require sophisticated

algorithms that are already available in third party software. D-Tailor can also be used

to provide a streamlined way to call such software. For example, we implemented

another property to evaluate RNA secondary structures (Structure) that uses the

external command line tool—UNAfold (Figure 3.3).

class Structure(Feature):

 def __init__(self, structureObject = None, solution = None, label="",

 args = { 'structure_range' : (0,59), 'mutable_region' : None,

 'cds_region' : None,'keep_aa' : True }):

 if structureObject == None: #create new instance

 #General properties of feature

 Feature.__init__(self, solution=solution, label=label)

 #Specifics of this Feature

 self.structurefile = solution.solid + label

 self.structure_range = args['structure_range']

 self.sequence =

 solution.sequence[self.structure_range[0]:(self.structure_range[1]+1)]

 self.set_scores()

 self.set_level()

 else: #copy instance

 …

 def set_scores(self, scoring_function=Functions.analyze_structure):

 scoring_function(self.sequence, self.structurefile)

Figure 3.3 Definition of the class Structure

Similarly to CAI, this class only implements the constructor and the set_scores
method. Here, the parameter specifying the region of the sequence where the structure

should be predicted is given by structure_range (in args). Then, the function

analyze_structure is used to call the external RNA structure prediction tool and process

its output. In this case, the function saves the RNA structure predicted by UNAfold

with a predefined name and moves it to ‘tmp/structures/’ (Figure 3.4).

 9

def analyze_structure(seq,filename,ensemble=False):

 chdir(project_dir)

 system("echo '" + str(seq) + "' > " + filename + ".seq")

 fnull = open(devnull, 'w') # omit output generated by UNAFOLD

 if ensemble:

 call("./3rdParty/unafold/UNAFold.pl -n RNA " + filename + ".seq", shell = True, stdout =

fnull, stderr = fnull)

 else:

 call("./3rdParty/unafold/hybrid-ss-min -n RNA " + filename + ".seq", shell = True, stdout =

fnull, stderr = fnull)

 system("mv %s*.ct tmp/structures/" % filename)

 # remove tmp files

 system("rm %s*" % filename)

 fnull.close()

 return 1

Figure 3.4 Prediction of RNA structure using external software

The class Structure does not compute any specific score per se. This design pattern is

useful when different scores can be derived from the same object, as it avoids re-

instantiating the parent object. For example, multiple scores can be inferred from the

same RNA secondary structure (e.g., minimum free energy or paired/free nucleotides). In

this case, sub-classes implementing the different score calculations should extend the

parent class (Structure). Figure 3.5 shows the class StructureMFE, which computes the

minimum folding energy (MFE) for an RNA structure predicted using the class

Structure. In this particular example, the score is computed by calling another tool of

the UNAFold package that calculates the MFE from a structure file. Finally, since this

class computes a property score, it is required to update the dictionary scores.

class StructureMFE(Structure):

 """

 Manipulate the structure MFE

 """

 def __init__(self, structureObject, label = "", regionOfInterest= None):

 Structure.__init__(self,structureObject)

 self.label = self.label + label

 self.set_scores()

 self.set_level()

 def set_scores(self, scoring_function=Functions.analyze_structure_mfe):

 self.scores.update(Functions.appendLabelToDict(scoring_function(self.structurefile), self.label))

Functions.py:

def analyze_structure_mfe(filename,region = None):

 …

 if path.exists(project_dir+"/tmp/structures/"+filename+".ct"):

 output = check_output(["./3rdParty/unafold/ct-energy" , "tmp/structures/"+filename+".ct"]).rstrip()

 mfe_list = [float(a) for a in output.split('\n')]

 data['StructureMFE'] = mfe_list[0]

 else:

 data['StructureMFE'] = 0
 …

Figure 3.5 Definition of the class StructureMFE extending Structure

 10

In summary, a class extending the abstract class Feature will have the following

attributes:

• label—a user defined label for the property;

• solution—an object of class Solution where the property should be calculated;

• subfeatures—a dictionary with all sub-properties associated with this

property;

• scores—a dictionary containing the score for the property and its sub-

properties.

D-Tailor comes out-of-the-box with several properties implemented. Most of them are

directly related to sequence properties impacting gene expression. As documented above,

the software can easily be extended to implement any other property of interest. A list of

the properties currently implemented in D-Tailor is detailed below. Users are encouraged

to contact the authors if they need help implementing new properties and/or want to

contribute with new ones to future releases of the tool.

Property class Description Parameters
CAI Scores a gene sequence codon usage as compared

to that of highly expressed genes. It computes a
score between 0 and 1, where the higher the
score, the closer is the overall codon usage to the
reference set.

cai_range : a pair of integers
with starting and ending
nucleotide positions of the sub-
sequence where the CAI should
be calculated.

Structure This property evaluator uses UNAFold to predict
the MFE RNA secondary structure. It uses
UNAfold and stores the generated
structure-related files to the folder
‘tmp/structures/’. Structure class can then be
accessed by inheriting sub-classes that compute
specific feature scores (see below).

structure_range : a pair of
integers with starting and
ending nucleotide positions of
the sub-sequence where the
structure should be predicted

StructureMFE Extends the class Structure to retrieve the MFE
structure score, as defined by the Gibbs free
energy (ΔG).

None

Structure
SingleStranded

Extends the class Structure to compute a list and
count the total number of single stranded bases
(i.e., free) in the MFE structure.

None

Structure
DoubleStranded

Extends the class Structure to compute a list and
count the total number of double stranded bases
(i.e., paired) in the MFE structure

None

StructureEnsemble This property evaluator uses UNAFold to
compute an ensemble of RNA structures. The
predicted structures are stored to
‘tmp/structures’.

structure_range : a pair of
integers with starting and
ending nucleotide positions of
the sub-sequence where the
structure should be predicted

 11

StructureEnsemble
Accessibility

Extends the class StructureEnsemble to calculate
the average accessibility for each nucleotide (i.e.,
probability of a nucleotide being free across all
structures in the ensemble) and overall average.

None

StructureProb This class uses the software RNAplfold from the
Vienna RNA package to calculate the average
probability of unpaired bases across a sliding
window of RNA structures.

structure_range : a pair of
integers with starting and
ending nucleotide positions of
the sub-sequence where the
structure should be predicted
acc_region : a list with
nucleotide positions if the
average of a specific region is
desired
window : window size

HydropathyIndex This class calculates the average hydropathy
index of a peptide based on the properties of its
amino acids. Larger scores indicate more
hydrophobic properties.

hi_range : a pair of integers
with starting and ending
nucleotide positions of the
amino acid subsequence

NucleotideContent This property evaluator calculates the nucleotide
content of a particular sequence (% of A, C, G,
T, AT, GC)

ntcontent_range : a pair of
integers with starting and
ending nucleotide positions of
the subsequence of interest.

RNADuplex This class predicts the hybridization of any two
RNA molecules. This structure is then saved to
‘tmp/structures’.

rnaMolecule1region : a pair of
integers with starting and
ending nucleotide positions of
the first RNA molecule
rnaMolecule2region : as above
but for second RNA molecule

RNADuplex
Ribosome

Extends the class RNADuplex to implement the
interaction between an RNA molecule and the
16S rRNA.

rnaMolecule1region : a pair of
integers with starting and
ending nucleotide positions of
the RNA molecule

RNADuplexMFE Extends the class RNADuplex to calculate the
MFE of the duplex.

None

Motif This class implements the search for a given
motif (as defined by a position weight matrix
(PWM)). D-Tailor comes with pre-configured
PWMs for E. coli, namely for SD and promoter
regions (see module Data).

pwm : a dictionary where the
keys (1-letter conventional
symbols for DNA, RNA or
amino acids) are associated
with a list of weights (one per
position)
motif_range : a pair of integers
with starting and ending
nucleotide positions of the
sequence to be searched

MotifScore Extends the class Motif to calculate motif score None
MotifPosition Extends the class Motif to calculate motif

position
None

 12

4. Solution class: handling sequences

The class Solution is the realization of a particular sequence along with all the

properties of interest that are computed from it, and it has the following basic

attributes:

• solid—unique solution identifier;

• sequence—the full sequence to be analyzed, subsequences being specified at

feature level;

• features—a dictionary filled with pairs (Feature’s label, Feature object);

• scores—a dictionary that aggregates all scores for the features of this Solution

(keys are the labels defined for each feature concatenated with class name);

Some of these attributes are defined when the object is created, namely solid and

sequence. Following the creation of a Solution, objects of type Feature can be added

using the generic method add_feature. This method will automatically update features
and scores dictionaries. This way Solution objects can be easily created and further

populated with an arbitrary set of properties of interest (Figure 4.1).

>>> from Solution import Solution

>>> from Features.CAI import CAI

>>> from Features.Structure import Structure, StructureMFE, StructureDoubleStranded

≥≥≥ from Features.NucleotideContent import NucleotideContent

Instantiate an object of type ‘Solution’

>>> solution = Solution(sol_id = ‘b0001’, sequence = ‘TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAA

CATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGA’)

Instantiate Feature objects of interest

Feature to calculates the codon adaptation index

>>> cai_obj = CAI(solution=solution,label="cds",args= {'cai_range':(49,115)})

#Feature to predicts RNA Structure

>>> st1_obj = Structure(solution=solution ,label="utrCds",args= { 'structure_range' : (19,78) })

Two sub-features inheriting from the class Structure

>>> st_mfe = StructureMFE(st1_obj)

>>> st_ss = StructureDoubleStranded(st1_obj)

>>> st1_obj.add_subfeature(st_mfe)

>>> st1_obj.add_subfeature(st_ss)

Feature to calculate nucleotide content

>>>nuc_obj = NucleotideContent(solution=solution ,label="utr",args= { 'ntcontent_range':(0,50) })

Add features to solution

>>> solution.add_feature(cai_obj)

>>> solution.add_feature(st1_obj)

>>> solution.add_feature(nuc_obj)

Retrieve feature score

>>> solution.scores

{'cdsCAI': 0.6136121593930156, 'utrCdsStructureDoubleStrandedList':[18, 19, 25, 26, 38, 39, 44, 45],

 'utrCdsStructureDoubleStranded': 8, 'utrCdsStructureMFE': -2.5,

 'utrNucleotideContentAT': 0.63, 'utrNucleotideContentG': 0.16,'utrNucleotideContentT' : 0.18,

 'utrNucleotideContentC': 0.22, 'utrNucleotideContentA' : 0.45, 'utrNucleotideContentGC': 0.37}

Figure 4.1 Definition of an object Solution with multiple features

 13

5. Sequence Analyzer

The sequence analyzer mode of D-Tailor provides an integrated solution for the

multidimensional interrogation of sequences. Sequences to be analyzed can be read from

files in CSV or FASTA format (CSV files must contain the headers ‘name’ and

‘sequence’). Before starting the sequence analyzer, the user needs to extend the abstract

class SequenceAnalyzer and implement the following methods:

• configureSolution—this method instantiates all properties to compute for a

sequence (Solution). Its architecture is similar to the one shown in Figure 4.1;

• outputStart—called once at the beginning of the method to initialize the

output (e.g., open a file and/or write a table header);

• output—called after each sequence is analyzed and can be used to perform

operations on the retrieved features (e.g., print to the screen).

Figure 5.1 shows a schematic workflow for the analysis of three different features

influencing translation efficiency in E. coli:
• CAI, a proxy for the translation elongation rate along the gene;

• Hybridization energy between Shine-Dalgarno (SD) region and 16S rRNA;

• RNA Structure around translation initiation region.

Figure 5.1 Sequence analyzer workflow

The user can read the sequences to analyze from a CSV file. Then, the user selects the sequences properties
to evaluate (three in this case: CAI, 16S:SD hybridization energy and RNA structure) from a large library of
available properties (box with balls). The sequence analyzer module will then extract and evaluate the
sequence property scores for each of the input sequences. The output is a standard table where each row
contains property scores for a given input sequence.

Figure 5.2 depicts the corresponding implementation in D-Tailor—class

TranslationFeaturesEcoli (located in RunningExamples/Analyzer).

Sequence Analyzer

>s001
TATAGGCATAGCGCACAGACAGA
TAAATGTAAATTACAGAGTACAC
AACATCCAACGGTGCGGGCTGA
>s002
GGTGTGAATACAGCTTTTCCGCG
ATAAAAATTGCAGCAGGCTTAAC
CTTGACCGCTGTACAAGGTATAC
TCGGACGATTTTCACTGTTTTGA

...

.csv

Sequences of
E. coli genes

Properties of interest

CAI 16S:SD
hybrid.

Pro

C

Properties
Library

RNA
structure

For each input sequence:
Gene5’UTR

-12.3-5.4 0.43

...

s001

s002

0.2

0.5

-2.4

-5.4

-20.1

-12.2

 14

from SequenceAnalyzer import SequenceAnalyzer

from Features import CAI,Structure,RNADuplex

from Functions import validateCDS

class TranslationFeaturesEcoliAnalyzer(SequenceAnalyzer):

 '''

 Class to analyze CAI, SD strength and structure in E. coli

 '''

 def __init__(self, input_file, input_type):

 SequenceAnalyzer.__init__(self,input_file,input_type)

 def configureSolution(self, solution):

 solution.valid = validateCDS(solution.sequence[49:])

 if solution.valid:

 #CAI

 cai_obj = CAI.CAI(solution=solution,label="cds",args= { 'cai_range' :

 (49,len(solution.sequence)) })

 #Look for RBS

 dup_obj1 = RNADuplex.RNADuplexRibosome(solution1=solution, label="sd16s",

 args = { 'rnaMolecule1region' : (25,48) })

 dup_mfe = RNADuplex.RNADuplexMFE(dup_obj1)

 dup_obj1.add_subfeature(dup_mfe)

 #MFE [-30,30]

 st1_obj = Structure.Structure(solution=solution,label="utr",

 args= { 'structure_range' : (49-30,49+30) })

 st_mfe = Structure.StructureMFE(st1_obj)

 st1_obj.add_subfeature(st_mfe)

 solution.add_feature(cai_obj)

 solution.add_feature(dup_obj1)

 solution.add_feature(st1_obj)

 def outputStart(self):

 print "gene_name,sd_hyb_energy,mfe_structure,cai"

 def output(self, solution):

 if solution.valid:

 print solution.solid,”,”,

 solution.scores['sd16sRNADuplexMFE'],”,”,

 solution.scores['utrStructureMFE'],”,”,

 solution.scores['cdsCAI']

if __name__ == '__main__':

 seqAnalyzerTest = \

 TranslationFeaturesEcoli("../../testFiles/genomes/partial_ecoli_genome.csv","CSV")

 seqAnalyzerTest.run()

Figure 5.2 Class TranslationFeaturesEcoliAnalyzer calculates multiple features for all E. coli genes

This class loads all E. coli gene sequences along with the 49 nucleotides preceding

them (this table can be found at testFiles/genomes/ecoli_genome.csv) into the sequence

analyzer module. The three properties of interest are configured in the configureSolution

method, which also checks if the provided coding sequences are valid (i.e., have start

codon and no in-frame stop codons). The user can further define output options using

the methods outputStart and output. In this example, we simply print the computed

property scores to the screen (note that the key for each score is the label of the feature

 15

concatenated with the property class name, e.g., ‘utrStructureMFE’). The program

above will print to the screen a table-like output that is partially shown in Figure 5.3.

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Analyzer/TranslationFeaturesEcoliAnalyzer.py

gene_name,sd_hyb_energy,mfe_structure,cai

b0001,-1.8,-1.925,0.613612159393

b0002,-7,-9.16,0.34043688741

b0003,-5.7,-13.2,0.341658034933

b0004,-3.2,-5.5,0.385891327353

b0005,-7.3,-6.76,0.377281853234

b0006,-6.1,-14.75,0.342733396212

b0007,-5.6,-8.4,0.319183029826

b0008,-2.7,-8.1,0.604195702312

b0009,-3.5,-7.5,0.396623675448

b0010,-6.2,-9.6,0.574062247682

b0011,-0.3,-4.5,0.286738246339

b0013,-2.3,-7.8,0.362374253526

b0014,-5.4,-7.08333333333,0.723381361599

b0015,-4.8,-6.45,0.525547136369

…

Figure 5.3 Partial output of TranslationFeaturesEcoliAnalyzer

This output can then be easily imported into statistical tools such as SciPy or R for

posterior analysis. For instance, Figure 5.4 shows how three different features impacting

translation efficiency (hybridization energy between 16S and SD sequence, RNA

structure with MFE and CAI score) are distributed and related in E. coli.

Figure 5.4 Distribution (A) and relationship (B) of three different translation features in E. coli

CAI score

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8

0
20

0
40

0
60

0
80

0
10

00

RNA Structure (dG)

Fr
eq

ue
nc

y

-30 -25 -20 -15 -10 -5 0

0
20

0
40

0
60

0
80

0
10

00

16S:SD (dG)

Fr
eq

ue
nc

y

-10 -5 0

0
20

0
40

0
60

0
80

0
10

00

-10 -5 0

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

16S:SD (dG)

RN
A

St
ru

ct
ur

e
(d

G
)

0.2 0.4 0.6 0.8

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

CAI

RN
A

St
ru

ct
ur

e
(d

G
)

-10 -5 0

0.
2

0.
4

0.
6

0.
8

16S:SD (dG)

CA
I

A

B

 16

6. Sequence Designer

The most innovative functionality of D-Tailor is the ability to design sequences that

meet user-defined goals (Figure 6.1). This section provides a detailed description of how

to define a class extending SequenceDesigner to use this functionality. Briefly, the user

needs to provide a starting seed sequence (from which the designed sequences will be

derived), the properties to design for, a design objective (one or more target

combinations of feature scores) and a database filename (where generated sequences will

be stored). Additionally, we describe multiple parameters by which users can constrain

the way sequences are mutated and selected.

Figure 6.1 Sequence designer workflow
The user provides a design objective (indicating the sequence properties and levels he/she wants to design
for—in this example there are 2 properties with 3 levels each [colored rectangles]) and a seed sequence,
which will then be evolved until all combinations of sequence properties levels defined by the user are found.

This chapter provides detailed information about the multiple entities and concepts of

the sequence designer module of D-Tailor. It also contains two case studies for the design

module: 1) design of sequences using the three features analyzed in the previous chapter;

2) designing artificial bacterial promoter sequences varying multiple cis-regulatory

properties.

6.1. Definition of features

Users first need to create a class extending SequenceDesigner. Similarly to the

extension of the SequenceAnalyzer class (above), the concrete class has to implement the

method configureSolution where all the features classes are instantiated and associated

Sequence Designer

Properties
Library

>seed
TATAGGCATAGCGCACAGACAGA
TAAATGTAAATTACAGAGTACAC
AACATCCAACGGTGCGGGCTGA
AGGGTTCAAGATGCATCGATCGA
TGCATCGGGTCAGCTAGCTAGCT

Seed sequence

Design objective

RNA structure score
L H

L
H

M

M

>seed
TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATGTAAATTACAG
AGTACACAACATCCAACGGTGCGGGCTGAAGGGTTCAA
GATGCATCGATCGATGCATCGGGTCAGCTAGCTAGCT

...

Output

RNA structure score
L H

L
H

M

MM
ot

if
sc

or
e

M
ot

if
sc

or
e

TATAGGCATAGCGCACAGACAGATAAATG
TAAATTACAGAGTACACAACATCCAACG
GTGCGGGCTGAAGGGTTCAAGATGCATC
GATCGATGCATCGGGTCAGCTAGCTAGCT

TATAGGCATAGCGCACAGACAGATAAATG
TAAATTACAGAGTACACAACATCCAACG
GTGCGGGCTGAAGGGTTCAAGATGCATC
GATCGATGCATCGGGTCAGCTAGCTAGCT

 17

with a given Solution (Figure 6.2). After that, SequenceDesigner requires the

configuration of three additional parameters to guide the design process:

• mutational_region—a list of all the positions that can be mutated;

• cds_region—a pair of integers defining the starting and ending positions of

the coding sequence, if any;

• keep_aa—a Boolean indicating if only synonymous mutations can be

performed.

 def configureSolution(self, solution):

 '''

 Solution configuration

 '''

 if solution.sequence == None:

 return 0

 ## Designer specific

 solution.mutable_region=range(0,len(solution.sequence)) # whole region

 solution.cds_region = (49,len(solution.sequence))

 solution.keep_aa = True

 ## Populate solution with desired features

 # CAI

 cai_obj = CAI.CAI(solution = solution,label="cds",

 args = { 'cai_range' : (49,len(solution.sequence)),

 'mutable_region' : range(49,len(solution.sequence)) })

 # Search SD

 dup_obj1 = RNADuplex.RNADuplexRibosome(solution1=solution, label="sd16s",

 args = { 'rnaMolecule1region' : (25,48),

 'mutable_region' : range(25,48) })

 dup_mfe = RNADuplex.RNADuplexMFE(dup_obj1)

 dup_obj1.add_subfeature(dup_mfe)

 # MFE [-30,30]

 st1_obj = Structure.Structure(solution=solution,label="utr",

 args = { 'structure_range' : (49-30,49+30)

 'mutable_region' : range(49-30,49+30)})

 st_mfe = Structure.StructureMFE(st1_obj)

 st1_obj.add_subfeature(st_mfe)

 solution.add_feature(cai_obj)

 solution.add_feature(dup_obj1)

 solution.add_feature(st1_obj)

Figure 6.2 Definition of the method configureSolution in TranslationFeaturesEcoliDesigner
This code shows the definition of three sequence features to be computed for a Solution. In design mode,
some constraints have to be defined to guide mutation process. These can be defined in the Solution object
or at the Feature level (e.g., CAI). In this example, we are declaring that the entire solution region can be
mutated, i.e., from position 0 to the length of the entire sequence. Additionally, we define that the gene
starts at position 49 and ends at the end of sequence region (attribute cds_region), and that we only want
to perform synonymous mutations (keep_aa = True). Since CAI is only affected by mutations within the
coding region, we override the mutation constraints for this particular feature and indicate that, to alter this
feature score, we should perform mutations only within the gene sequence by configuring the parameter
mutable_region in the instantiation of the class CAI.

 18

6.2. Definition of a design objective

After the user defines the properties of interest, it is necessary to define a design

objective for D-Tailor. A design objective can be one or more target combinations of

property scores. Alternatively, when using random sampling, the design objective is

simply the number of sequences to be generated. In D-Tailor, a class defining a design

objective extends the abstract class Design and there are already four predefined

methods:

• Optimization—only one specific combination of property scores is desired. For

example, to increase the expression of a given gene, we may want to design a

sequence with high CAI, strong binding between SD and the 16S rRNA and

weak mRNA secondary structure around the initiation region.

• FullFactorial—all possible combinations between the levels of the different

properties are generated. This methodology is appropriate to systematically

vary the multiple properties and quantify their effect the observed phenotype.

• CustomDesign—this is a more flexible design where the user can indicate each

combination of property scores that he/she wants to design for.

• RandomSampling—this method does not enforce any particular combination

of properties a priori. It can be used to generate a predetermined number of

new sequence variants and observe how they scatter across the property space.

Design methods are based on the concept of property levels, which are obtained by

discretization of the scores (if necessary), allowing users to define design targets in a

more coarse-grained fashion and to yield finite full-factorial designs. The user freely

defines the number of levels for each property. Here, the more levels are defined, the

higher the resolution (and the smaller the predicted functional difference between levels).

A set of properties and their respective levels need to be inputted to instantiate a

sub-class of Design. This is given in the form of a dictionary, where for each property it

is necessary to define a type (REAL, INTEGER or TEXT) and a list of levels containing

the respective lower and upper bounds (Figure 6.3). As mentioned before, the user can

freely decide how to discretize the levels for each property, but to ensure biological

relevance it may be useful to perform that based on the analysis of natural genomes. For

example, let’s use the sequence properties influencing translation efficiency analyzed in

the previous chapter to discretize the scores space and define a design objective (i.e., one

 19

or more combinations of property levels). First, we need to decide in how many levels we

want to split each of the properties of interest. Here, we chose to divide each property

into 5 different categorical levels (very low, low, medium, high and very high) and used

the quintiles identified in the genomic analysis to define their boundaries (Table 1).

Table 1 Definition of feature levels

 Very low

(0-20%)

Low

(20-40%)

Medium

(40-60%)

High

(60-80%)

Very high

(80-100%)

16S:SD [-12.7, -7.3[[-7.3, -5.8[[-5.8, -5.2[[-5.2, -3.3[[-3.3,2.0]

RNA structure [-29.2, -12.2[[-12.2, -9.95[[-9.95, -8.4[[-8.4, -6.73[[-6.73, 0.65]

CAI [0.13, 0.29[[0.29, 0.33[[0.33, 0.37[[0.37, 0.42[[0.42, 0.86]

Second, we need to define a design objective by instantiating one class of type Design.

The design methods implemented in D-Tailor are located in the package

DesignOfExperiments. These classes have an attribute (listOfDesigns), which is a vector

of strings containing the multiple target combinations of property levels (e.g., ‘1.1.1’

indicates a combination where all scores are within level 1—or very low).

Figure 6.3 also shows the definition of a full-factorial design by instantiating the class

FullFactorial, which only needs to be parameterized with the three sequence properties

and the respective level thresholds. Of note, level identifiers must be ordered. To

perform a full-factorial design it is necessary to generate all combinations between the 5

levels for each of the 3 properties (i.e., 5*5*5 = 53 = 125 combinations).

>>> from DesignOfExperiments.Design import FullFactorial

#Design Methodology and thresholds

>>> design_param = {

 "sd16sRNADuplexMFE": { 'type' : 'REAL' ,

 'thresholds' : { '1': (-12.7,-7.3), '2': (-7.3,-5.8),

 '3': (-5.8,-5.2), '4': (-5.2,-3.3), '5': (-3.3, 2.0) } },

 "utrStructureMFE": { 'type' : 'REAL' ,

 'thresholds' : { '1': (-29.2,-12.2), '2': (-12.2,-9.95),

 '3': (-9.95,-8.4), '4': (-8.4,-6.73), '5': (-6.73,0.65) } },

 "cdsCAI" : { 'type' : 'REAL' ,

 'thresholds' : { '1': (0.13,0.29), '2': (0.29,0.33),

 '3': (0.33,0.37), '4': (0.37,0.42), '5': (0.42,0.86) } } }

>>> design = FullFactorial(["sd16sRNADuplexMFE","utrStructureMFE","cdsCAI"],design_param)

>>> design.listDesigns

['1.1.1','1.1.3','1.1.2','1.1.5','1.1.4','1.3.1','1.3.3','1.3.2','1.3.5','1.3.4','1.2.1','1.2.3',

'1.2.2','1.2.5','1.2.4','1.5.1','1.5.3','1.5.2','1.5.5','1.5.4','1.4.1','1.4.3','1.4.2','1.4.5',

'1.4.4','3.1.1','3.1.3','3.1.2','3.1.5','3.1.4','3.3.1','3.3.3','3.3.2','3.3.5','3.3.4','3.2.1',

'3.2.3','3.2.2','3.2.5','3.2.4','3.5.1','3.5.3','3.5.2','3.5.5','3.5.4','3.4.1','3.4.3','3.4.2',

'3.4.5','3.4.4','2.1.1','2.1.3','2.1.2','2.1.5','2.1.4','2.3.1','2.3.3','2.3.2','2.3.5','2.3.4',

'2.2.1','2.2.3','2.2.2','2.2.5','2.2.4','2.5.1','2.5.3','2.5.2','2.5.5','2.5.4','2.4.1','2.4.3',

'2.4.2','2.4.5','2.4.4','5.1.1','5.1.3','5.1.2','5.1.5','5.1.4','5.3.1','5.3.3','5.3.2','5.3.5',

'5.3.4','5.2.1','5.2.3','5.2.2','5.2.5','5.2.4','5.5.1','5.5.3','5.5.2','5.5.5','5.5.4','5.4.1',

'5.4.3','5.4.2','5.4.5','5.4.4','4.1.1','4.1.3','4.1.2','4.1.5','4.1.4','4.3.1','4.3.3','4.3.2',

'4.3.5','4.3.4','4.2.1','4.2.3','4.2.2','4.2.5','4.2.4','4.5.1','4.5.3','4.5.2','4.5.5','4.5.4',

'4.4.1', '4.4.3','4.4.2','4.4.5','4.4.4']

Figure 6.3 Defining a class of type Design (Full-Factorial)

 20

6.3. Mutational strategies

During the design process, our algorithm applies mutations to generate sequence

variants that match desired combination of property levels. Commonly, a random

mutation approach is used to generate the multiple variants. However, this can be

inefficient because properties are usually located in different regions of the sequence. To

optimize this mutational process, different properties can be configured with different

mutational regions, that way targeting mutations toward regions of the sequence that

are more susceptible to affect the feature score. For example, we can define the

mutable_region for the 16S:SD hybridization energy feature to comprise the region

between [25,48] nucleotides, i.e., where the SD sequence is located. We call this guided

procedure: targeted mutagenesis.

In some cases, a good knowledge of the relationship between sequence and property

score might allow to devise smart operators that ‘rationally’ guide the mutation process

and increase the likelihood of producing new sequences with the desired score using fewer

mutational steps. For example, if meeting the design goal requires CAI to increase, a

smart mutation operator can readily replace a poor codon by an alternative one with a

higher CAI score. We call this guided procedure: oriented mutagenesis.

Oriented mutational strategies provide some improvements over random and target

mutation operators, and therefore should be implemented whenever possible.

The default mutation operator defined in the abstract class Feature implements the

‘targeted’ mutation operator with equiprobable mutation at all predefined mutable

positions. When developing a new property, users can override this operator with an

oriented one by implementing the method mutate in the respective feature (Figure 6.4).

Specific instruction regarding the direction the target score can be defined in the method

defineTarget and stored in the class variable targetInstructions (note that abstract class

Feature implements a minimal version of this method, where the direction is set to ‘+’ if

increasing the feature score is needed, or ‘-‘ otherwise) (Figure 6.4).

The code implementing oriented RNA structure mutations is depicted in Figure 6.4.

Here, we mutate either paired or unpaired bases if we want to decrease or increase

structure strength, respectively.

 21

Feature.py:

 def defineTarget(self,desiredSolution):

 '''

 Function that determines if a target wasn't hit and, if not, updates target instructions

 '''

 if desiredSolution == None:

 return True

 #check if there is a target

 if not desiredSolution.has_key(self.label+self.__class__.__name__+"Level"):

 return False

 else:

 target_level = desiredSolution[self.label+self.__class__.__name__+"Level"]

 if target_level == 0:

 return False

 if target_level != self.level:
 level_info =

 self.solution.designMethod.thresholds[self.label+self.__class__.__name__][target_level]

 if isinstance(level_info, tuple): #Then it's a numeric range

 if level_info[0]-self.scores[self.label+self.__class__.__name__] > 0:

 self.targetInstructions['direction'] = '+' #increase

 elif level_info[0]-self.scores[self.label+self.__class__.__name__] < 0:

 self.targetInstructions['direction'] = '-' #decrease

 else:

 self.targetInstructions['direction'] = 'NA' #not applicable

 return True

 return False

Structure.py:

 #Overriding the mutation method to implement oriented mutation

 def mutate(self, operator=Functions.SimpleStructureOperator):

 if not self.targetInstructions:

 return None

 ss_bases = None if not self.scores.has_key(self.label+'StructureSingleStrandedBasesList') else

self.scores[self.label+'StructureSingleStrandedBasesList']

 ds_bases = None if not self.scores.has_key(self.label+'StructureDoubleStrandedBasesList') else
self.scores[self.label+'StructureDoubleStrandedBasesList']

 new_seq = operator(self.solution.sequence, self.structurefile, self.structure_range,

self.mutable_region, self.cds_region, self.targetInstructions['direction'], ss_bases=ss_bases,

ds_bases=ds_bases)

 if not new_seq:

 return None

 return Solution.Solution(sol_id=str(uuid4().int), sequence=new_seq, cds_region =

self.cds_region, mutable_region = self.mutable_region, parent=self.solution,

design=self.solution.designMethod)

Functions.py:

def SimpleStructureOperator(sequence, structurefile, structure_range, mutable_region, cds_region,

direction, keep_aa = True, ss_bases=None, ds_bases=None):

 if not mutable_region: #it's not possible to mutate

 return None

 # get single stranded bases

 if ss_bases == None:

 ss_bases = structureAnalysis(structurefile, "ss")

 # get double stranded bases

 if ds_bases == None:

 ds_bases = structureAnalysis(structurefile, "ds")

 # for structure, increasing structure score (MFE) (+) means that we want to produce weaker

structures, so we will mutate double stranded bases

 22

 if direction == '+':

 #get double stranded bases

 baseToMutate = [(b+structure_range[0]-1) for b in ds_bases \

 if (b+structure_range[0]-1) in mutable_region]

 # conversely to increase structure we mutate single stranded bases

 elif direction == '-':

 #get single stranded bases

 baseToMutate = [(b+structure_range[0]-1) for b in ss_bases \

 if (b+structure_range[0]-1) in mutable_region]

 else:

 sys.stderr.write("Direction Unknown")

 mutated = False

 iteration = 0

 #try to mutate up to 100 different times

 while not mutated and iteration <= 100:

 #select a position to mutate at random

 index_to_mutate = baseToMutate.pop(randint(0,len(baseToMutate)-1)) if len(baseToMutate) != 0

else mutable_region.pop(randint(0,len(mutable_region)-1))

 #mutate base keeping amino acids (omitted)

 if keep_aa == True and index_to_mutate >= cds_region[0] and index_to_mutate <= cds_region[1]:

 …

 #mutate without keeping amino acids

 else:

 mutated = True

 new_seq = list(sequence)

 if direction == '+':

 comp = complementary(sequence[index_to_mutate])

 else:

 comp = randomMutation(sequence[index_to_mutate])

 new_seq[index_to_mutate] = comp

 #print sequence

 #print "".join(new_seq)

 iteration+=1

 return "".join(new_seq)

Figure 6.4 Definition of the method mutate in Structure

6.4. Designer algorithm

The algorithm that generates desired sequences is implemented by the method run in

SequenceDesigner. Briefly, the algorithm loops through an evolution cycle until it finds

all the user-defined combinations of property scores. The pseudocode and a schematic of

the algorithm are presented in Figure 6.5 and Figure 6.6, respectively.

Each evolution cycle consist of three steps: i) a particular target that is yet to be

found is selected (step 1); ii) the repository of sequences previously generated (including

the seed sequence) is searched to select a template sequence based on a fitness

proportionate method, where the fitter the sequence, the shorter the Euclidean distance

between its feature scores and the target combination (step 2); iii) a defined number of

mutational iterations starting with the selected template sequence is performed (step 3).

 23

In each mutational iteration, the current sequence is evaluated and a property, whose

score does not match the desired combination, is randomly selected and a mutation is

applied. As mentioned before, two types of mutations can be applied: 1) targeted

mutation, and 2) oriented mutation. Briefly, the former specifically targets sequence

regions that are more likely to alter the score, whereas the latter applies mutations that

will specifically move a property score toward the desired level. Next, the scores for the

new sequence variant are evaluated and if the new sequence matches the target

combination, then the sequence is validated and the evolution cycle is terminated.

Otherwise, one of the two sequences (the template or the mutated one) is chosen as the

template for the next iteration of the evolution cycle depending on the selection option:

• neutral—one of the sequences is randomly selected;

• directional—the sequence with shorter Euclidean distance between the feature

scores and the desired combination of feature levels is selected;
• temperature—the sequence is selected based on a temperature schedule.

while combinations_to_find != []:

 desired_combination = getElement(combinations_to_find)

 #get a sequence already generated that is close to the desired combination in the feature space.

 solution = getSolutionFromDataBaseCloserTo(desired_combination)

 #Evolution cycle

 while solution != desired_combination or iteration != MAX_ITERATIONS:

 old_solution = solution

 solution = solution.mutate() #mutate current solution to get a new sequence

 DataBase.store(solution)

 If solution.combination in combinations_to_find:

 Combinations_to_find.remove(solution.combination)

 #select sequence for next iteration

 #The “selectionMethod” can be either directional or neutral or based on temperature schedule

 solution = selection(old_solution,solution,”selectionMethod”)

Figure 6.5 Pseudocode of SequenceDesigner algorithm

Figure 6.6 Schematic of the SequenceDesigner algorithm

List of target
combinations to

be found

List of target
combinations
already found

Select a
combination

1

Select a solution
close to target

2

Solution DB

Sequence evolver
3

Template
sequence

+

Store solution

Current
solution

Sequence
features

Target
found?

Y N

Updated
template

Feature
evaluation

M
utation

Selection

 24

6.5. Database of designed sequences

D-Tailor uses an SQLite database engine to store solutions generated during the

design process. This database contains three different tables:

• desired_solution—dynamic table created on-the-fly during initialization of the

database containing user-defined target combinations of feature levels;

• generated_solution—dynamic table where all generated solutions are stored;

• worker—table stores the SequenceDesigner programs that already ran.

D-Tailor can be easily extended to other database engines. For that, it is only

necessary to extend abstract class DBAbstract and implement the required methods.

6.6. Configuring and running the designer

To start running the algorithm we need a seed sequence from which the designed

sequences will be generated, a design objective (from the class Design), a file path to

create a database containing all the generated sequences (Figure 6.7). In the example

below, we used a seed sequence that contains a 5’UTR of 49 nucleotides including a SD

region, followed by the gene sequence encoding human insulin (NCBI: NM_000207.2).

>>> from RunningExamples.Designer.TranslationFeaturesEcoliDesigner import

TranslationFeaturesEcoliDesigner

>>> from DesignOfExperiments.Design import FullFactorial

#Seed sequence from which mutants will be derived

>>> seed='ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccctgtggatgcgcctcctgcccctgctggcgctgctgg

ccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtggaagctctctacctagtgtgcggggaacgaggcttct

tctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggggccctggtgcaggcagcctgcagcccttggccctgg

aggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagctggagaactactgcaactag'

#Design Methodology and thresholds

>>> design_param = { "sd16sRNADuplexMFE": { 'type' : 'REAL' ,

 'thresholds' : { '1': (-12.7,-7.3), '2': (-7.3,-5.8),

 '3': (-5.8,-5.2), '4': (-5.2,-3.3),

 '5': (-3.3, 2.0) } },

 "utrStructureMFE" : { 'type' : 'REAL' ,

 'thresholds' : { '1': (-29.2,-12.2), '2': (-12.2,-9.95),

 '3': (-9.95,-8.4), '4': (-8.4,-6.73),

 '5': (-6.73,0.65) } },

 "cdsCAI" : { 'type' : 'REAL' ,

 'thresholds' : { '1': (0.13,0.29), '2': (0.29,0.33),

 '3': (0.33,0.37), '4': (0.37,0.42),

 '5': (0.42,0.86) } }

 }

>>> design = FullFactorial(["sd16sRNADuplexMFE","utrStructureMFE","cdsCAI"],design_param)

>>> tirap_designer = TranslationFeaturesEcoliDesigner("tfec", seed, design,

"/Users/jcg/Documents/workspace/D-Tailor/testFiles/outputFiles/tfec_1", createDB=True)

>>> tirap_designer.run()

Figure 6.7 Running the SequenceDesigner

 25

Please note that the regions of the seed sequence that can be mutated were already

defined in the class method configureSolution (Figure 6.2). Additionally, the user may

also want to implement the method validateSolution, which is called every time a new

sequence is generated. This validation step is fundamental to avoid undesired properties

in new sequence variants (e.g., a spurious restriction site). Only validated sequences will

be stored in the database. Our exemplary class TranslationFeaturesEcoliDesigner
implements a series of validation tests that one may want/need (Figure 6.8). Specifically,

it checks if the new sequence does not include internal promoters, terminators and

undesirable restriction enzymes sites (in this case BsaI sites).

 def validateSolution(self, solution):

 '''

 Solution validation tests

 '''

 if solution.sequence == None or ('?' in solution.levels.values()):

 solution.valid = False

 return 0

 #check if solution is valid

 valid = True

 designed_region = solution.sequence

 #No internal Promoters

 (score, position, spacer) = Functions.look_for_promoters(designed_region)

 if score >= 15.3990166: #~0.95 percentile for Promoter PWM scores

 valid = False

 sys.stderr.write("SolutionValidator: High Promoter score\n")

 #No internal Terminator

 score = Functions.look_for_terminators(designed_region)

 if score >= 90: #90% confidence from transtermHP

 valid = False

 sys.stderr.write("SolutionValidator: High Terminator score\n")

 #No BsaI sites

 if 'ggtctc' in designed_region or 'gagacc' in designed_region:

 sys.stderr.write("SolutionValidator: Restriction enzyme found\n")

 valid = False

 solution.valid = valid

 return valid

Figure 6.8 Definition of the method validateSolution

The parameter createDB in the SequenceDesigner constructor (Figure 6.7) should be

set to ‘True’ when a new empty database is desired. Otherwise, if the database is already

created and we want to resume the designer algorithm or start multiple concurrent

algorithms, we must to set this parameter to ‘False’.

When the method run() is invoked in SequenceDesigner, the program will only stop

when the design objective is achieved (i.e., all combinations are found). While running,

the program will output the particular target combination it is looking for and statistics

 26

about generated sequence (Figure 6.9). When Optimization design is selected, the

program will additionally print the final designed sequence (Figure 6.10).

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py

fullfactorial

looking for combination: 2.3.5

SolutionValidator: Restriction enzyme found

No solution could be found...

looking for combination: 3.2.5

No solution could be found...

looking for combination: 4.4.3

No solution could be found...

time elapsed: 76.58 (s) solutions generated: 385 rate (last min.): 5.03 sol/s rate

(overall): 5.03 sol/s

looking for combination: 3.5.3

…

Program finished...

Figure 6.9 Running TranslationFeatureEcoliDesigner (FullFactorial design)

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py

optimization 1.2.3

looking for combination: 1.2.3

Solution found... inserting into DB...

###########################

Optimized solution:

ID: 46124799975394009622803191427036818508

Sequence:

ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggcactttggatgcgcctcctgcccttactggcattactggcgctgtgggg

ccctgacccggccgccgccttcgtgaatcaacatctgtgcggatcacacttggttgaggctctttacttagtgtgcggggaacgcggttttttctacacacc

aaaaacgcgccgggaagcagaagacctgcaggttgggcaggtagaattaggtgggggccctggtgctggcagcctgcagcccctggccctggaaggatccct

gcagaaacgtggaattgttgaacaatgctgcaccagcatctgttcgttataccagttagagaactactgcaactag

Scores: ['sd16sRNADuplexMFE: -8.4', 'utrStructureMFE: -10.4', 'cdsCAI: 0.346776020332']

Levels: ['sd16sRNADuplexMFELevel: 1', 'utrStructureMFELevel: 2', 'cdsCAILevel: 3']

Number of generated solutions: 66

Distance to seed: 49

###########################

Program finished...

Figure 6.10 Running TranslationFeatureEcoliDesigner (Optimization design)

Lastly, when using D-Tailor to randomly sample the sequence space, users must

indicate a number of sequences variants to generate (Figure 6.11).

macbook:D-Tailor jcg$ PYTHONPATH=. python RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py

randomsampling 1000

time elapsed: 61.98(s) solutions generated: 297 rate(last min.): 4.79 sol/s rate(overall): 4.79 sol/s

time elapsed: 134.74(s) solutions generated: 665 rate(last min.): 5.06 sol/s rate(overall): 4.94 sol/s

time elapsed: 199.14(s) solutions generated: 962 rate(last min.): 4.61 sol/s rate(overall): 4.83 sol/s

RandomSampling: 1000 solutions generated.

Program finished...

Figure 6.11 Running TranslationFeaturesEcoliDesigner (RandomSampling design)

 27

6.7. Running examples

6.7.1. Designing sequences systematically varying sequence properties

impacting translation efficiency

The code used to run this design example can be found at
‘RunningExamples/Designer/TranslationFeaturesEcoliDesigner.py’

We have already shown how to use D-Tailor to analyze three different sequence

properties impacting translation efficiency across the entire E. coli genome (Figure 5.4).

We then discretized property scores into five different levels based on their respective

quintiles (Table 1). A full-factorial design based on such configuration yields a total of

125 (53) different target combinations of all property levels across the three variables.

To demonstrate flexibility of the software to use different seed sequences, we

randomly selected 30 gene sequences along with their 5’UTR from E. coli and compared

four different strategies within D-Tailor to design a set of sequences conforming to a

full-factorial design for each of the seeds. We also defined that designed sequences could

be generated by unrestricted mutations in the entire 5’UTR region, composed by 49

nucleotides, but only synonymous mutations were allowed in the gene coding sequence.

We first used the most rudimentary design strategy available in D-Tailor, random

sampling, to generate random sequences until the 125 different targets were found. Every

attempt to complete this design goal using this purely random procedure was aborted

after 3,000 generated sequences due to its obvious inefficiency (Figure 6.12A-B, black

solid and faded lines). The second design strategy included the canonical heuristic

algorithm implemented by D-Tailor (Figure 6.6) and used the simplest mutation

method, wherein new sequences are consecutively generated by random mutation (Figure

6.12B, yellow line). This strategy significantly improved the efficiency of the search

algorithm as compared to that of the random sampling method. Nonetheless, the overall

performance of the algorithm was still modest since many sequences had to be generated

to find the required targets. The third mutational strategy remarkably improved the

search algorithm efficiency by employing spatially targeted mutations that more rapidly

evolve a sequence towards some desired feature scores target (Figure 6.12B, light blue

line). Lastly, a fourth strategy using more ‘rational’ mutation operators that orient

 28

mutations toward the desired target provided slightly faster dynamics (Figure 6.12A-B,

orange solid and lines).

Figure 6.12 Mutational strategies performances
(A) Number of combinations found (out of 125) as a function of the number of generated sequences. Two
different mutational strategies are depicted: oriented (orange) and random sampling (black). For each
strategy, we performed 30 different simulation of a full-factorial design (faded lines) using different seed
sequences. The solid lines represent the average number of target combinations found (across 30 replicates)
as the number of generated sequences increases. (B) The average performance of the four different
mutational strategies. (C) The number of generated sequences per target combination found using the
different mutational strategies.

One other important functionality available to the user is the option to define the

selection bias in the heuristic algorithm. The option is configured using the parameter

selection in the method run(), and there are three different options available:

• neutral—the sequence for the next mutational iteration is randomly selected

between the template sequence and newly sequence variant.

• directional—the sequence with shorter Euclidean distance between the feature

scores and the desired combination of feature levels is selected.
• temperature—the sequence is selected based on a temperature schedule that

allows worse sequence (longer distances) to also be selected.
To test these different selections, we evolved the previously selected 30 seed sequences

toward six different target combinations bearing different Euclidean distances to the

seeds (Figure 6.13). Then, we examined the behavior of the algorithm in response to the

three contrasted selective regimes: neutral, directional and temperature selection. As

expected, when using D-Tailor with a less constrained selection (i.e., neutral), it was

necessary to generate more sequences to find the target combination(s). This relaxed

selection does not select fitter strains and, hence, takes more evolution cycles to find the

desired target (Figure 6.13B and D). However, the final designed sequences using the

neutral selection option will be more similar to the initial seed sequence (measured using

B C

0

20

40

60

80

100

120

Number of generated sequences (x1,000)

N
um

be
r o

f t
ar

ge
ts

 fo
un

d
0 1 2 3

oriented
targeted
random
random sampling

oriented targeted random random
sampling

10

20

50

100

Mutational strategy

N
um

be
r o

f g
en

er
at

ed
 se

qu
en

ce
s

pe
r t

ar
ge

t [
gs

pt
]

A

0

20

40

60

80

100

120

Number of generated sequences (x1,000)

N
um

be
r o

f t
ar

ge
ts

 fo
un

d

0 1 2 3

oriented (simulation)
oriented (average)
random sampling (simulation)
random sampling (average)

 29

the hamming distance to the seed sequence) than when using the option directional

selection (Figure 6.13A and C).

Conversely, using more biased selection procedures (i.e., directional or temperature)

affords the design of sequences bearing the desired combination of feature levels using

much fewer evolution cycles (Figure 6.13B and D) at the expense of generating sequences

less similar to the original seed (Figure 6.13A and C). Of note, the directional selection

shows slightly better performance than the temperature selection once it requires fewer

sequences to be generated and obtains shorter hamming distances.

Figure 6.13 Selection options in SequenceDesigner
(A) The different lines show the average hamming distance between the seed and the sequence matching the
target combination as a function of the Euclidean distance to the target combination using neutral (light
blue), directional (orange) or temperature (black) selection. (B) The number of generated sequences until
the desired target is found as a function of the Euclidean distance to the target combination using either
neutral (light blue), directional (orange) or temperature (black) selection. (C and D) The hamming distance
(C) and number of generated sequences until target is found (D) for the 30 different simulations using the
three different selections.

A B

C D

0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

Euclidean distance to target combination

H
am

m
in

g
di

st
an

ce
 to

 se
ed

neutral selection
directional selection
temperature selection

0 1 2 3 4 5 6 7

Euclidean distance to target combination

N
um

be
r o

f g
en

er
at

ed
 se

qu
en

ce
s

un
til

 ta
rg

et
 fo

un
d

100

101

102

103

neutral selection
directional selection
temperature selection

neutral directional temperature

0

20

40

60

80

100

Selection

H
am

m
in

g
di

st
an

ce
 b

et
w

ee
n

ta
rg

et
 a

nd
 se

ed
 se

qu
en

ce
s

neutral directional temperature

Selection

N
um

be
r o

f g
en

er
at

ed
 se

qu
en

ce
s

un
til

 ta
rg

et
 fo

un
d

100

101

102

103

 30

6.7.2. Designing bacterial promoter sequences systematically varying cis-
regulatory properties

The code used to run this design example can be found at
‘RunningExamples/Designer/BacterialPromotersDesigner.py’

In this section, we used D-Tailor to design bacterial promoter sequences varying

multiple properties. Promoter strength is not only determined by the affinity between

the sigma factor and binding motifs (-35 and -10 boxes), but also by the presence of an

UP-element (that can bind the RNA polymerase holoenzyme α subunit carboxy-terminal

domain) and transcription factor binding sites. To demonstrate its versatility, we used

D-Tailor to design artificial bacterial promoter sequences varying five different

regulatory properties (Figure 6.14):

Figure 6.14 Design of artificial bacterial promoter sequences

(A) Five different regulatory properties can be changed to create promoter diversity: UP-element, -35 motif,
-10 motif, and the lacI operator motif and its location. (B) The different five design axes (one per property),
each containing three different levels. A full-factorial design systematically varying these five properties with
3 levels each yields a total of 243 different combinations.

Similarly to the previous example, we need to start by implementing the class

BacterialPromotersDesigner defining the multiple sequence properties of interest and

their location in the DNA segment (Figure 6.15). Then, we discretized the range of

sequence property scores into three different levels as detailed in Table 2. Next, we

configured the designer algorithm with a randomly generated seed sequence (with no

specific biological function) and the design objective of constructing a full-factorial

library where all combinations of levels across the five different variables are produced

(3x3x3x3x3 = 243) (Figure 6.14B).

UP element
(AT content)

UP element
(AT content)

-35 motif
binding affinity

-10 motif
binding affinity

lacI operator
binding affinity

lacI operator
location

Full-factorial design
(3x3x3x3x3 = 243)

A B
+1

-6-31-40

-35 motif
binding affinity
-10 motif
binding affinity

lac operator
binding affinity

lac operator
location

D
es

ig
n

va
ria

bl
es

-35 -10

 31

class BacterialPromotersDesigner(SequenceDesigner):

 def __init__(self, name, seed, design, dbfile, createDB=True):

 SequenceDesigner.__init__(self, name, seed, design, dbfile, createDB)

 self.max_sol_counter = 1000000

 self.max_iterations = 1000

 def configureSolution(self, solution):

 '''
 Solution configuration

 '''

 #Populate solution with desired features

 solution.mutable_region=range(0,len(solution.sequence)) # whole region

 solution.cds_region = None

 solution.keep_aa = False

 # The entire promoter + 5' utr will have 75 nucleotides (and TSS will be at nucleotide 50)

 # UP element -35 spacer -10 5' utr

 # UUUUUUUUUUUUUUU MMMMMM SSSSSSSSSSSSSSSSSSS DDDDDD AAAA OOOOOOOOOOOOOOOOOOOOOOOOO

 #UP element (-50,-36)

 up_obj = NucleotideContent.NucleotideContent(solution=solution,label="up",

 args= { 'ntcontent_range' : (0,14), 'mutable_region' : range(0,15) })

 upat_obj = NucleotideContent.NucleotideContentAT(up_obj)

 #-35 motif (-35,-30)

 m35_obj = Motif.Motif(solution=solution,label="m35",

 args= { 'motif_range' : (15,20), 'pwm' : Data.pwm_35, 'mutable_region' : range(15,21) })

 m35score_obj = Motif.MotifScore(m35_obj)

 #-10 motif (-10,-5)

 m10_obj = Motif.Motif(solution=solution,label="m10",

 args= { 'motif_range' : (40,45), 'pwm' : Data.pwm_10, 'mutable_region' : range(40,46) })

 m10score_obj = Motif.MotifScore(m10_obj)

 #lacI operator (-6, +25)

 mlacI_obj = Motif.Motif(solution=solution,label="mlacI",

 args= { 'motif_range' : (0,74), 'pwm' : Data.pwm_lacI,'mutable_region' : range(0,74) })

 mlacIscore_obj = Motif.MotifScore(mlacI_obj)

 mlacIpos_obj = Motif.MotifPosition(mlacI_obj)

 solution.add_feature(upat_obj)

 solution.add_feature(m35score_obj)

 solution.add_feature(m10score_obj)

 solution.add_feature(mlacIscore_obj)

 solution.add_feature(mlacIpos_obj)

Figure 6.15 Configuration of class BacterialPromoterDesigner

Table 2 Discretization of sequence properties

 Level 1 Level 2 Level 3

UP-element (%AT content) [0 , 0.25] [0.25 , 0.75] [0.75 , 1]

-35 motif (binding affinity) [-12.0 , -6.81] [-6.81 , 0.63] [0.63 , 11.0]

-10 motif (binding affinity) [-12.0 , -8.19] [-8.19 , 0.32] [0.32 , 11.0]

lacI operator (binding affinity) [0 , 4] [4 , 8] [8 , 12]

lacI operator location -40 -31 -6

We have repeated the full-factorial design simulation ten different times and the

number of combinations found as a function of generated sequences is depicted in Figure

6.16. We saw that D-Tailor took an average of ∼8,000 generated sequence variants to

find the 243 desired combinations across the ten different simulations. We also observed

that D-Tailor could find the multiple target combinations at relatively steady rate up to

 32

∼80% of the total 243 targets (similar target discovery performance rate was observed

when designing sequences varying translation-related features (Figure 6.12)). This may

have to do with the increase in difficulty to attain certain combination of features.

Figure 6.16 Full-factorial design of bacterial promoter sequences

The number of generated solutions as a function of the number of target combinations found for the ten
simulations (grey lines). The dotted black line shows the average number of generated solutions across the
different simulations as a function of the number of targets found. Grey dashed line indicates the total
number of combinations to be found in the full factorial design (243).

To evaluate the convergence of the algorithm, we selected three different target

combinations of sequence properties bearing different Euclidean distances from the

starting seed. Then, we ran five different simulations for each of the three targets. Figure

6.17 shows the convergence of the distance between generated sequence variants and

target combination as measured by the Euclidean distance (or the objective function).

Figure 6.17 Convergence of the search algorithm for three different target combinations
The Euclidean distance to target combination is depicted for the sequence selected after each iteration.

0
50

10
0

15
0

20
0

25
0

Number of generated sequences (x1,000)

N
um

be
r o

f t
ar

ge
ts

 fo
un

d

0 1 2 3 4 5 6 7 8 9 10

0 10 20 30 40

0
1

2
3

4

Convergence plot for target combination 3.3.3.2.2

Sequence evolver iteration

replicate 1
replicate 2
replicate 3
replicate 4
replicate 5

0 10 20 30 40 50 60

0
1

2
3

4

Convergence plot for target combination 1.3.3.1.1

Sequence evolver iteration

Eu
cl

id
ea

n
di

st
an

ce
 b

et
w

ee
n

se
qu

en
ce

 a
nd

 ta
rg

et
 c

om
bi

na
tio

n

replicate 1
replicate 2
replicate 3
replicate 4
replicate 5

5 10 15 20 25

0
1

2
3

4

Convergence plot for target combination 2.2.2.2.2

Sequence evolver iteration

replicate 1
replicate 2
replicate 3
replicate 4
replicate 5

 33

We can see that, for each of the targets, the number of iterations necessary to find

the desired combination varies across the different simulations (or replicates). This is

expected given the stochastic nature of the Monte-Carlo algorithm being used. We can

also see that the average number of iterations (across the five simulations) varies from

target to target. As expected, targets that are further away from the seed sequence

require a greater number of iterations than the ones that are closer (e.g., compare

combination 2.2.2.2.2 with 3.3.3.2.2).

We further looked at the ruggedness of the landscape to evaluate how the different

generated sequence variants populate the fitness landscape and get a hint about the

difficulty to achieve each target combination. Figure 6.18 depicts the fitness landscape,

as defined by the Euclidean distance between the properties of a generated sequence and

the desired combination of property scores, for the three different targets already

explored above. We see that depending on the target combination, the fitness landscapes

can vary widely. Of course the surface of these landscapes is unpredictable and it will

vary depending on the sequence properties as well as the target combinations being

explored.

Figure 6.18 Ruggedness of sequence space for three different targets
Histograms depict the Euclidean distances between the properties of the generated sequence variants and the
target combination. To generate each histogram, five different simulations were performed for each target.

Ruggedness of sequence space (3.3.3.2.2)

Euclidean distance between
sequence and target combination

0 1 2 3 4

0
10

20
30

40
50

60
70

Ruggedness of sequence space (2.2.2.2.2)

Euclidean distance between
sequence and target combination

0.0 0.5 1.0 1.5 2.0 2.5

0
10

20
30

40

Ruggedness of sequence space (1.3.3.1.1)

Euclidean distance between
sequence and target combination

Fr
eq

ue
nc

y

0 1 2 3 4

0
20

40
60

80

 34

6.8. Utilities

D-Tailor uses an SQLite database to store all the generated sequences and their

features. That way generated solutions can be accessed using a standard SQLite client

(e.g., SQLite Manager add-on for Firefox) or use some D-Tailor utilities to export the

generated sequences and retrieve statistics (Figure 6.19). The following utilities are

available in the package Utils:
• DB2CSV—exports the tables containing all the generated solutions and

desired combination to a CSV file specified by the user;

• DB2FASTA—exports all the generated sequences to FASTA format;

• DBStatistics—a script that can be used to query a SQLite instance and print

the number of sequences generated and different combinations found;

• DBKinetics—prints a time series of defined size (default 50) with the number

of generated solutions and combinations found over time.

D-Tailor provides one more tool that will be essential for full-factorial designs.

Because the number of combinations required by these designs can be extremely hard to

achieve, many solutions may be generated during the design process. For example, to

generate a full factorial design for the three features affecting translation with 5 levels

each (a total of 125 combinations) it was necessary to generate an average of

approximately 1,500 solutions across 30 different seeds (Figure 6.12). The generation of

many sequences will pose an a posteriori challenge, which is the selection of only one

sequence per combination when one has many to choose from. D-Tailor includes one
utility called ComputeMinimalSet that precisely addresses this problem. This tool

encodes a Monte-Carlo method to select exactly one sequence for each desired

combination, such that the total hamming distance between all the sequences is

minimized (Figure 6.20).

 35

DB2CSV

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DB2CSV.py testFiles/outputFiles/tfec_1.sqlite

Generating CSV files for testFiles/outputFiles/tfec_1.sqlite ... Done!

macbook:D-Tailor jcg$ head -n 3 testFiles/outputFiles/tfec_1.sqlite.generated_solutions.csv

generated_solution_id,des_solution_id,sequence,sd16sRNADuplexMFE,utrStructureMFE,cdsCAI,sd16sRNADuplex

MFELevel,utrStructureMFELevel,cdsCAILevel,sd16sRNADuplexMFEPosition,utrStructureMFEPosition,cdsCAIPosi

tion,worker_id

100470516384773921758647475759448978081,1.3.2,ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccc

tgtggatgcgcctcctgcccctgctggcgctgctggccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtgg

aagctctctacctagtgtgcggggaacgaggcttcttctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggg

gccctggtgcaggcagcctgcagcccttggccctggaggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagc

tggagaactactgcaactag,-8.4,-9.9,0.32,1,3,2,0.59,-0.94, 0.72, 249172630681921635831887521585739395265

285501686618022385962284569925274555241,1.2.2,ttattaccggacaataatatttcaattcattaaagaggagaaaggtaccatggccc

tgtggatgcgcctcttacccctgctggcgctgctggccctctggggacctgacccagccgcagcctttgtgaaccaacacctgtgcggctcacacctggtgg

aagctctctacctagtgtgcggggaacgaggcttcttctacacacccaagacccgccgggaggcagaggacctgcaggtggggcaggtggagctgggcgggg

gccctggtgcaggcagcctgcagcccttggccctggaggggtccctgcagaagcgtggcattgtggaacaatgctgtaccagcatctgctccctctaccagc

tggagaactactgcaactag,-8.4,-10.8,0.32,1,2,2,0.59,0.24,0.48, 249172630681921635831887521585739395265

macbook:D-Tailor jcg$ head -n 3 testFiles/outputFiles/tfec_1.sqlite.design_list.csv

des_solution_id,sd16sRNADuplexMFELevel,utrStructureMFELevel,cdsCAILevel,status,worker_id,start_time

1.1.1,1,1,1,DONE,249172630681921635831887521585739395265,None

1.1.3,1,1,3,DONE,249172630681921635831887521585739395265,None

DB2FASTA

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DB2FASTA.py testFiles/outputFiles/tfec_1.sqlite

Generating FASTA file(s) for testFiles/outputFiles/tfec_1.sqlite ... Done!

macbook:D-Tailor jcg$ head -n 4 testFiles/outputFiles/tfec_1.sqlite.generated_solutions.fa

>100470516384773921758647475759448978081 | 1.3.2

TTATTACCGGACAATAATATTTCAATTCATTAAAGAGGAGAAAGGTACCATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGG

ACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACC

CAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCT

GCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG

>285501686618022385962284569925274555241 | 1.2.2

TTATTACCGGACAATAATATTTCAATTCATTAAAGAGGAGAAAGGTACCATGGCCCTGTGGATGCGCCTCTTACCCCTGCTGGCGCTGCTGGCCCTCTGGGG

ACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACC

CAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCT

GCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG

DBKinetics

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DBKinetics.py testFiles/outputFiles/tfec_1.sqlite

Generated Solutions Desired Solutions Found

0 0

148 14

296 23

444 32

…

7400 124

7418 125

DBStatistics

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/DBStatistics.py testFiles/outputFiles/tfec_1.sqlite

testFiles/outputFiles/tfec_1.sqlite 7418 125 0.0168509032084

Figure 6.19 D-Tailor utilities

 36

macbook:D-Tailor jcg$ PYTHONPATH=. python Utils/ComputeMinimalSet.py

./testFiles/outputFiles/tfec_2.sqlite.generated_solutions.csv

stop random

1 (1): 550742 -1273

3 (2): 549469 -156

5 (2): 549313 -524

6 (1): 548789 -92

…

################### Summary ###################

number of combinations: 125

average distance nt: 38.21 +/- 20.25

macbook:D-Tailor jcg$ ls testFiles/outputFiles/

tfec_2.sqlite

tfec_2.sqlite.design_list.csv

tfec_2.sqlite.generated_solutions.csv

tfec_2.sqlite.generated_solutions.pkl0

tfec_2.sqlite.generated_solutions.pkl1

tfec_2.sqlite.generated_solutions_min_set.fas

tfec_2.sqlite.generated_solutions_min_set_distance_matrix_nt.csv

tfec_2.sqlite.generated_solutions_min_set_feats.csv

Figure 6.20 Computing the minimal set

The tool receives a CSV file with all the sequences generated by D-Tailor (obtained

using the DB2CSV script) and will generate the following files, where X is the name of

the CSV file:

• X.generated_solutions_min_set_feats.csv—CSV file with the final set of

sequences selected;

• X .generated_solutions_min_set.fas—FASTA file with final set of sequences

selected;

• X.generated_solutions_min_set_distance_matrix_nt.csv—file containing the

nucleotide distance matrix between all the selected features.

