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Abstract: The main objective of this study was to propose a novel methodology to approach 
challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and 
are a model for the study of the interactome due to its conserved function in the regulation of 
different biological processes such as immunity and development throughout the metazoan. 
Herein, three visual artists and a music professor collaborated with scientists for the functional 
characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta 
cells. The results served as a methodological proof-of-concept to advance this research area. The 
results showed new perspectives on unexplored characteristics of AKR2 with functional 
implications. These results included protein dimerization, the physical interactions with different 
proteins simultaneously to regulate various biological processes defined by cell type-specific AKR–
protein interactions, and how these interactions positively or negatively regulate the nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-
dependent manner. These results suggested that AKR2-interacting proteins might constitute 
suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical 
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perspective supported AKR/SUB evolutionary conservation in different species and provided new 
mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives 
resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and 
provided new insights into the function of AKR2–protein interactions in the regulation of the NF-
κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing 
on the model proteins AKR/SUB. 

Keywords: akirin; subolesin; interactome; art; evolution; music; yeast two-hybrid; NF-κB; vaccine; 
quantum vaccinomics; protective epitope 

 

1. Introduction 

Biology and art have collaborated before for communication in areas such as human physiology 
and evolution [1–4], even proposing that art may have biological basis [5]. As scientists, art reminds 
us of the power of curiosity, which frequently gets lost during research, and asks questions that are 
relevant for investigation, thus supporting the fact that science benefits when artists get involved in 
research [6,7]. Art visual and musical representations translate into complex or unrecognized 
concepts and provide a way to better understand and approach scientific challenges [8–10]. Art also 
contributes to highlighting social concerns addressed by scientists [4]. In this way, art and science 
converge in the purpose of moving society forward, and both benefit from the learning process [9–
11]. 

In this study, we provided a perspective of the combined scientific and artistic approach to the 
interactome using as a model the regulatory protein Akirin, from the Japanese “akiraka ni suru” 
meaning “making things clear” (AKR; also known as Subolesin (SUB) in ticks). AKR/SUB were first 
identified in Drosophila melanogaster, Mus musculus, and Ixodes scapularis as transcription factors 
involved in the regulation of immune deficiency (IMD) and tumor necrosis factor (TNF)/Toll-like 
receptor (TLR)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (TNF/TLR) 
signaling pathways, and developmental processes [12–15]. Recent results have shown that AKR/SUB 
evolved with conserved sequence and structure, suggesting a functional role in cell interactome and 
regulome in response to pathogen infection and other stimuli [16–18]. Additionally, AKR/SUB have 
shown protection in vaccines for the control of multiple ectoparasite infestations and 
pathogen/infection transmission [17]. Therefore, AKR/SUB constitute a good model for the study of 
structural, functional, and evolutionary biology due to their conserved function in the regulation of 
different biological processes throughout the metazoan [16–18]. However, differences in results 
available on the AKR interactome and its functional implications pose a challenge for the 
understanding of the function of this protein [17–28]. For example, it is unknown how AKR/SUB-
protein interactions regulate signaling pathways such as the NF-κB involved in the regulation of 
immune response. 

To address this question, herein we proposed a novel methodology to approach challenges in 
molecular biology using as a model the characterization of the AKR2 interactome and its functional 
role in the regulation of the NF-κB signaling pathway in human placenta cells. The results of this 
approach advanced our knowledge in this area by showing that AKR/SUB protein 
dimerization/multimerization and the physical interactions with different proteins simultaneously 
are involved in the regulation of various biological processes defined by cell type-specific AKR2-
protein interactions and the role of these interactions in the positive and negative regulation of the 
NF-κB pathway. 

The characterization of protein–protein interactions and vaccinomics have been proposed as 
novel approaches for vaccine development [29]. Considering the structural and functional 
conservation of AKR/SUB proteins [17], the characterization of the AKR2 interactome may have 
implications in quantum vaccinomics as a new approach for the development of vaccines for the 
control of vector infestations and infection/transmission of vector-borne pathogens. In this context, 
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quantum vaccinomics could be focused on cell interactome and regulome for the identification of 
protective epitopes in peptide sequences involved in protein–protein interactions or selected 
interacting domains (SID) that are particularly relevant for proteins such as AKR/SUB that function 
through these interactions. 

2. Materials and Methods  

2.1. Approaching Collaboration between Visual and Musical Artists and Scientists 

The methodological approach used in this study consisted of collaborations between artists and 
scientists to address questions in the molecular biology of interactomes using the regulatory factor 
AKR/SUB as a model. Three visual artists, Israel León Viera, Leandro Soto, and Raúl Cordero were 
selected for participating in this project. Israel León Viera and Leandro Soto participated in a leading 
art group known as “Volumen Uno” (Volume One) who challenged artistic establishment in Cuba in 
the 1980s, and have shown a continued interest in social, historical, and cultural subjects [30]. Raúl 
Cordero is an artist with an interest in science and technical challenges in visual art and 
communication [31]. These artists were invited to read a simplified version of our recent review on 
AKR/SUB functional evolution [17], with special attention paid to the figures included in the paper. 
The artists were posed with the challenge that these model proteins represent based on their 
conserved function in the regulation of different biological processes throughout the metazoan [16–
18]. Artists and scientists were in contact to exchange information regarding these proteins and to 
address artists’ questions. In response to this challenge, the artists contributed the pieces and 
interpretations shown in the paper to provide their view on this matter. Then, these pieces served to 
inspire scientists to discuss and find new perspectives on unexplored characteristics of these proteins 
with putative functional implications. A professor of music and musical education was also invited 
to participate in this research to further develop and apply a musical algorithm developed by us back 
in 1995 to the study of AKR evolution [8]. The results of these musical representations served to 
inspire scientists to propose the possibility of using this approach to further characterize AKR–
protein interactions, which was faced by the artist resulting in additional support for the results 
presented in the paper. 

2.2. Yeast Two-Hybrid Y2H Screening for the Identification of Human AKR2 Interacting Proteins 

The ULTImate Y2H screening was performed by Hybrigenics Services (Paris, France; 
www.hybrigenics-services.com) following previously described methods [32,33]. The human AKR2 
(amino acids 1-203; Uniprot ID Q53H80) bait was PCR-amplified, sequenced, cloned in the pB27 (N-
LexA-AKR2-C fusion) vector, and used for screening using a human placenta RP6 fragment library 
as prey. In the test screen, we found that the bait did not autoactivate the system, but it was inducing 
too much signal. Therefore, we used a medium containing 10 mM of 3-amino-1,2,4-triazole (3-AT), a 
competitive inhibitor of the HIS3 reporter gene product. A total of 330 prey fragments of the positive 
clones were amplified by PCR and sequenced at their 5′ and 3′ junctions. The resulting sequences 
were used to identify the corresponding interacting proteins in the GenBank database (NCBI) using 
a fully automated procedure. 

2.3. Interaction Confidence Scoring 

A confidence score for Predicted Biological Score (PBS) was attributed to each interaction as 
previously described [33] (Data S1). The PBS score represents the probability of an interaction being 
non-specific and is computed to assess the interaction reliability. PBS is an e-value, primarily based 
on the comparison between the number of independent prey fragments found for an interaction and 
the chance of finding them at random (background noise). The value in the scores A to D varies 
between 0 and 1 (A < 1e-10 < B < 1e-5 < C < 1e-2.5 < D < 1). Several thresholds were arbitrarily defined in 
order to rank the results in the following scores: 

 A: Very high confidence in the interaction. 
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 B: High confidence in the interaction. 
 C: Good confidence in the interaction. 
 D: Moderate confidence in the interaction. This category is the most difficult to interpret because 

it mixes two classes of interactions: (i) false-positive interactions and (ii) interactions hardly 
detectable by the Y2H technique (e.g., low representation of the mRNA in the library, prey 
folding, prey toxicity in yeast). 

 E: Interactions involving highly connected (or relatively highly connected) prey domains, 
warning of non-specific interaction. The total number of screens performed on each organism is 
taken into account to set this connectivity threshold to 20 interactions to different bait proteins 
in the entire human database. They can be classified in different categories: (i) prey proteins that 
are known to be highly connected due to their biological function and (ii) proteins with a prey 
interacting domain that contains a known protein interaction motif or a biochemically 
promiscuous motif. 

 F: Experimentally proven technical artifacts. 
 N/A: The PBS is a score that is automatically computed through algorithms and cannot be 

attributed for the following reasons: (i) all the fragments of the same reference coding sequence 
(CDS) are antisense, (ii) the 5p sequence is missing, (iii) all the fragments of the same reference 
CDS are either all out of frame (OOF1 or OOF2), and (iv) all the fragments of the same reference 
CDS lie in the 5′ or 3′ untranslated region (UTR). 

2.4. Annotation of Identified AKR2-Interacting Proteins 

DomSight (Hybrigenics Services) was applied to compare the bait fragment and the selected 
interacting domain (SID) of the prey proteins with the functional and structural domains generated 
by Pfam (https://pfam.xfam.org), SMART (http://smart.embl-heidelberg.de), TMHMM 
(http://www.cbs.dtu.dk/services/TMHMM/), SignalP (http://www.cbs.dtu.dk/services/SignalP/), and 
COILS (https://embnet.vital-it.ch/software/COILS_form.html) algorithms (Figure S1). N/A 
annotations (Data S1) were not considered as interactions. Annotations for biological process and 
subcellular localization were performed according to Uniprot (https://www.uniprot.org; searched on 
October 2018). Comparison with previously published datasets for AKR2-interacting proteins were 
performed using datasets for human AKR2 
(http://www.humanmine.org/humanmine/portal.do?externalids=55122&class=Gene&origin=FlyMin
e) [19–23]. For validation, AKR2–protein interactions were searched in the public databases STRING 
(https://string-db.org/cgi/input.pl?sessionId=BIqHpYhivYPx&input_page_show_search=on) and 
NCBI (https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=55122) reporting 
interactions using alternative interactome models such as ingenuity pathway analysis (IPA). 

2.5. Corroboration of AKR2–Protein Interactions by Protein Pull-Down 

First, the human AKR2-protein interactions identified by Y2H with very high (A-score) and high 
(B-score) PBS were used to corroborate these interactions in vitro. Recombinant human (Myc 
(EQKLISEEDL)-DDK-tagged) AKR2 (Q53H80; RC200881, OriGene, Rockville, MD, USA) was used 
for interactions with the identified AKR interacting recombinant proteins AKR2, actin related protein 
10 (ACTR10; Q9NZ32; H00055860-P01, Novus Biologicals, Littleton, CO, USA), estrogen-related 
receptor gamma (ESRRG; P62508; ab152371, Abcam, Cambridge, United Kingdom), 
phosphatidylinositol transfer protein alpha isoform (PITPNA; Q00169; ab101666, Abcam), RING 
finger protein 10 (RNF10; Q8N5U6; H00009921-P01, Novus Biologicals), splicing factor 3a subunit 1 
(SF3A1; Q15459; ab160931, Abcam), and mediator of RNA polymerase II transcription subunit 16 
(THRAP5/MED16; Q9Y2 × 0; ab132365, Abcam). Additionally, interferon regulatory factor 6 (IRF6; 
O14896; ab132057, Abcam) and protein Wnt-2 (WNT2; P09544; ab152803, Abcam) with moderate 
confidence (D-score) PBS were included in the analysis. The U1 small nuclear ribonucleoprotein 70 
kDa (SNRNP70; P08621; H00006625-P01, Abnova GmbH, Heidelberg, Germany) with score F 
(experimentally proven technical artifact) was included as a negative control. Interacting proteins 
were incubated with AKR2 for 2 h and then for 30 min with c-Myc magnetic beads (c-Myc-Tag IP/Co-
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IP kit, Thermo Fisher Scientific, Waltham, MA, USA) specific for the AKR2 protein tag following the 
manufacturer’s recommendations. A negative control was also performed, incubating only the 
interacting proteins with the c-Myc magnetic beads. Both incubations were performed with shaking 
at room temperature (RT). After immunoprecipitation, protein complexes were eluted using Laemmli 
sample buffer, and the supernatants were used for Western blot analyses. Supernatants derived from 
AKR2–protein interactions and negative controls, together with positive control recombinant protein 
were run and separated by electrophoresis in a 12% sodium dodecyl sulfate (SDS) polyacrylamide 
precast gel (ClearPage, Cole-Parmer, Vermon Hills, IL, USA) and stained with Bio-Safe Coomassie 
Stain (Bio-Rad Laboratories, Hercules, CA, USA) or transferred to a nitrocellulose blotting membrane 
(GE Healthcare Life Sciences, Pittsburgh, PA, USA). The membrane was blocked with 3% bovine 
serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA) in Tris-buffered saline (TBS; 150 mM 
NaCl, 50 mM Tris-HCl, pH 7.5) for 2 h at RT and washed four times with TBS-Tween 20 (150 mM 
NaCl, 50 mM Tris-Cl, pH 7.5, 0.05% Tween 20). Different interacting protein-specific primary rabbit 
or mouse antibodies were used for ACTR10 (mouse H00055860-B01P, Novus Biologicals, 1:500), 
ESRRG (mouse ab171816, Abcam, 1 µg/mL), PITPNA (rabbit ab96519, Abcam, 1:500), RNF10 (mouse 
H00009921-B01P, Novus Biologicals, 1:500), SF3A1 (rabbit ab69903, Abcam, 0.25 µg/mL), 
THRAP5/MED16 (rabbit ab130996, Abcam, 1:2000), SNRNP70 (rabbit VPA00459, Bio-Rad 
Laboratories, 1:1000), IRF6 (mouse ab123880, Abcam, 1:1000), AKR2 (rabbit ab221475, Abcam, 
1:1000), and WNT2/IRP (rabbit ab27794, Abcam, 2µg/mL). Antibodies were diluted in TBS and 
incubated with membranes overnight at 4 °C. Goat anti-mouse or anti-rabbit immunoglobulin (IgG) 
(whole molecule) peroxidase antibody (Sigma-Aldrich) 1:1000 diluted in TBS with 3% BSA were used 
as secondary antibodies and incubated with membranes for 2 h at RT. The membranes were finally 
washed five times with TBS-Tween 20, and immunoreactive proteins were visualized with 
chemiluminescence by incubating the membranes for 2 min with Pierce ECL Western blotting 
substrate (Thermo Fisher Scientific). In order to identify unrelated proteins eluted from the c-Myc 
magnetic beads, a similar experiment was conducted with selected proteins ESRRG and RNF10 but 
incubating only with the secondary antibody. Additionally, c-Myc magnetic beads alone were eluted 
using Laemmli sample buffer and the supernatant analyzed by SDS-PAGE stained with Bio-Safe 
Coomassie Stain. 

2.6. In Vitro Characterization of AKR–AKR Protein Interactions 

Recombinant I. scapularis AKR/SUB (Q4VRW2) and B7PDL0 negative control proteins were 
produced in Escherichia coli using the Champion pET101 Directional TOPO Expression kit 
(Invitrogen, Carlsbad, CA, USA), as previously described [34,35]. These proteins and human AKR2 
(Q53H80) were used for the in vitro characterization of protein–protein interactions. For interactions, 
5 µg of each protein was incubated in 20 µl PBS with shaking at 4 °C overnight. Then, the proteins 
were analyzed by electrophoresis under non-denaturing conditions in 12% polyacrylamide precast 
gels (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and stained with Coomassie-blue. Precision Plus 
Protein Standard (Bio-Rad Laboratories, Inc.) was used as molecular weight marker. For Western blot 
analysis, 10 µg of the interactions (5 µg of each interacting protein) were separated as before, and 
were transferred to a nitrocellulose membrane. The membrane was blocked with 5% BSA (Sigma-
Aldrich) for 2 h at RT and washed three times with TBS (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% 
Tween 20). Rabbit IgG against tick SUB were used as primary antibodies at a 1:300 dilution in TBS, 
and the membrane was incubated overnight at 4 °C and washed three times with TBS. The membrane 
was then incubated with an anti-rabbit IgG-horseradish peroxidase (HRP) conjugate (Sigma-Aldrich) 
diluted 1:1000 in TBS with 3% BSA. The membrane was washed four times with TBS and finally 
developed with TMB (3,3′, 5,5′-tetramethylbenzidine)-stabilized substrate for HRP (Promega, 
Madrid, Spain) according to the manufacturer’s recommendations. 

Size exclusion chromatography (SEC) was performed to provide additional support for AKR2–
AKR2 and SUB–SUB interactions. The SEC experiment was conducted using the GE AKTA Prime 
Plus FPLC System (GE Healthcare Life Sciences, Chicago, IL, USA) and the HiPrep 16/60 Sephacryl 
S-100 HR column (GE Healthcare Life Sciences, 17-1165-01) following the manufacturer’s 
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recommendations for size exclusion chromatography 
(https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-
Aldrich/General_Information/1/ge-size-exclusion-chromatography.pdf). A calibration curve was 
prepared using the gel filtration calibration kit (GE Healthcare Life Sciences) with conalbumin (C; 75 
kDa), ovalbumin (O; 44 kDa), carbonic anhydrase (CA; 29 kDa), ribonuclease A (R; 13.7 kDa), and 
aprotinin (Apr; 6.5 kDa) proteins to calculate the partition coefficient (Kav) following the 
manufacturer’s protocol (Kav = Ve − Vo/Vc – Vo, where Ve is the determined elution volume, Vo is 
the void volume = 36 mL, and Vc is the geometric column volume = 120 mL). The equation of the 
resulting calibration curve (R2 = 0.97) was protein molecular weight (MW) = 166086e−3.377Kav. Individual 
proteins were injected separately for calibration in 0.5 mL sample injection volume (140 ng/mL 
protein concentration in 50 mM sodium phosphate, 150 mM sodium chloride, pH 7.2) at a flowrate 
of 0.8 mL/min. Recombinant AKR2 (30 kDa) and SUB (28 kDa) were incubated in PBS overnight at 4 
°C before dilution in the column buffer for analysis. 

2.7. Prediction Models of Protein–Protein Binding Sites and Structure 

The proteins with a PBS of A, THRAP5 (Q9Y2X0), and RNF10 (Q8N5U6) were selected to model 
interactions with AKR2 (Q53H80). Human interferon alpha 1 (IFN-a1; P01562) was used as a negative 
control protein. For human AKR2 and I. scapularis tick, AKR/SUB (Q4VRW2), AKR2-AKR2, and SUB–
SUB interactions were also modeled. Predictions were made using the iFrag server 
(http://sbi.imim.es/web/index.php/research/servers/iFrag?) [36] at default settings except for e-value 
≥ 10 and identities ≥ 10. Protein structure models were obtained from The Protein Model Portal for 
RNF10 (https://www.proteinmodelportal.org/query/uniprot/Q8N5U6) and THRAP5 
(https://www.proteinmodelportal.org/query/uniprot/Q9Y2X0). 

2.8. Musical Scores and Ensembles 

The algorithm used to translate DNA coding sequences into music was as previously reported 
[8], except that each codon was metrically equivalent to a bar and had a differentiated rhythmic and 
melodic character. The modified algorithm provides for each codon either a constant base of a note 
on which one or two more notes may follow, or a base of two musical notes followed by one or two 
more. We provided a ternary structure (three beats of a quarter note) and a binary subdivision 
measure (3/4), where the base of a single note occupies the entire measure (UGC = T, dotted-half-note 
(underlined base)), and the base of two notes was expressed as a half-plus-quarter-note (CAA = MF). 
If the base is a single note accompanied by others, we always chose to extend the base in the first two 
beats of the measure as half-note when it had the succession of a single note (UCG = SR half-plus-
quarter-note) or two notes (UCC = SMR, half-plus-two-eighth notes). If the base was of two notes, we 
established for its expression a different metrical scheme: dotted-quarter-note-plus-eighth-note 
followed by a quarter-note (GCG = DRR), or by two eighth-notes (GCC = DRMR). When the algorithm 
provided the same melodic formula for a double base (GGA = SL; GGC = SLDR) and for a single base 
(UCA = S; UCU = SL), we opted for the metric scheme half-plus-quarter-note in the first case and 
dotted-quarter-note-plus-dotted-quarter-note in the second case. In this way, each codon had a 
unique rhythmic and melodic definition. All sound files and scores were prepared using the Finale 
(v. 2018) program (https://www.finalemusic.com). Finding the best match by trial and error produced 
musical ensembles. Audio files were uploaded and can be found at 
https://freesound.org/people/josedelafuente/sounds/478998 to 479009. 

2.9. NF-κB Reporter Assay 

The NF-κB reporter kit (BPS Bioscience, San Diego, CA, USA) was used following the 
manufacturer’s recommendations for monitoring the activity of the NF-κB signaling pathway in 
human Hs795.PI (ATCC CRL-7526) placenta cultured cells maintained in Dulbecco’s Modified 
Eagle’s Medium (DMEM) medium supplemented with 10% fetal bovine serum (Thermo Fisher 
Scientific). The reporter contained a firefly luciferase gene under the control of multimerized NF-κB-
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responsive element located upstream of a minimal promoter. The NF-κB reporter and a non-
inducible firefly luciferase vector were premixed with constitutively expressing Renilla luciferase 
vector, which served as an internal control for transfection efficiency. To obtain the normalized 
luciferase activity for NF-κB reporter, the background luminescence was subtracted and then the 
ratio of firefly luminescence from the NF-κB reporter to Renilla luciferase vector control was 
calculated and used for analysis. 

2.10. Gene Knockdown by RNA Interference (RNAi) 

The ON-TARGETplus Human Gene SMARTpool small interfering RNAs (siRNAs) (n = 4 per 
gene) were designed and synthesized by Dharmacon, Inc. (Lafayette, CO, USA) for AKR2 and the 
interacting protein coding genes AKR1, RNF10, WNT2, IRF6, THRAP5, and ESRRG. Transfection of 
human placenta-cultured cells with siRNAs for single or combined gene targets was performed for 
24 h. Combined siRNAs for NF-κB1 (p50) and NF-κB2 (p52) (NF-κB1/B2) and Accell Green Non-
Targeting siRNAs (Dharmacon, Inc.) were used as positive and negative control, respectively. Each 
gene knockdown experiment was performed in both human placenta cells transfected with the NF-
κB luciferase reporter vector and the non-inducible luciferase vector by incubating cells with 25 nM 
of siRNAs diluted in serum-free medium and Lipofectamine 300 (Invitrogen) in 96-well plates using 
6 wells per treatment and following the manufacturer’s recommendations. After 24 h, the Dual 
Luciferase (Firefly-Renilla) Assay System (BPS Bioscience) was performed following the 
manufacturer’s protocol. Luciferase luminescence lecture (kinetic duration 15 s, interval time 2 s, 
integration time 1 s) was determined using a Tecan Infinite M200 lector (Mannedorf, Switzerland). 
Background luminescence was subtracted and then the ratio of firefly luminescence from the NF-κB 
reporter to Renilla luciferase vector control was calculated and used for analysis. The normalized 
luciferase activity for NF-κB reporter was compared between groups by Student’s t-test with unequal 
variance and by one-way ANOVA (https://www.socscistatistics.com/tests/anova/default2.aspx) (p = 
0.05; n = 6 biological replicates). After luciferase detection, cells were collected for RNA extraction for 
analysis of mRNA levels by qRT-PCR. Normalized Ct values were compared between test siRNA-
treated placenta cells and controls treated with non-targeting siRNA by Student's t-test with unequal 
variance (p = 0.05; n = 6). 

2.11. Treatment of Human Placenta Cells with Lipopolysaccharides (LPS) 

Human placenta cells were treated with 10 µg/mL of LPS from Salmonella enterica serotype 
typhimurium (L6143; Sigma-Aldrich) in a 24-well plate using 6 wells per treatment. LPS-treated and 
PBS-treated control cells were harvested after 24 h of treatment. Total RNA was extracted from 
placenta cells using TriReagent (Sigma-Aldrich) following the manufacturer’s recommendations and 
was used to characterize the mRNA levels of AKR2, AKR1, ESRRG, RNF10, THRAP5, IRF6, WNT2, 
IFN-β, and IL-6 genes by qRT-PCR. Normalized LPS- to PBS-treated control (C-) Ct values were 
calculated, and normalized Ct values were compared between LPS-treated and C-cells by chi2 test (* 
p = 0.01; n = 6 biological replicates). 

2.12. Analysis of Gene Expression by qRT-PCR 

Total RNA was extracted from placenta cells using TriReagent (Sigma-Aldrich) following the 
manufacturer’s recommendations, and was used to characterize the mRNA levels of selected genes 
by qRT-PCR using gene-specific oligonucleotide forward (F) and reverse (R) primers (AKR2, F: 5′-
CGGAGCCACTCTGAAAAGGA-3′, R: 5′-GAGATACTTCTGCGGCGAGG-3′; AKR1, F: 5′-
CCCTCCGACAAGTTGGCATA-3′, R: 5′-TAGCTTGTTGGCCTTGTCCC-3′; RNF10, F: 5′-
GCTGGAGTATCTGTCTGCCT-3′, R: 5′-TCAGTGCAAATGGTCCCCTC-3′; THRAP5, F: 5′-
CTGACCCGCATGATCCACAT-3′, R: 5′-CTATTAGCCAGGTGGTCCGC-3′; ESRRG, F: 5′-
CAGCCAGCCAAAAAGCCATAT-3′, R: 5′-TATGCTTCGCCCATCCAATGA-3′; IRF6, F: 5′-
GCTCATCTGGCTACACAGGG-3′, R: 5′-AGCTGGGCCTTCCATTTAGC-3′; WNT2, F: 5′-
AACCAGGATGGCACAGGTTTC-3′, R: 5′-CCTCTCCCACAGCACATGAC-3′; interferon beta IFN-β, 
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P01574, F: 5′-CGCCGCAGTGACCATCTAT-3′, R: 5′-TCATGCGTTTTCCCCTGGTG-3′; NF-κB1, 
P19838, F: 5′-AATGGGCTACACCGAAGCAA -3′, R: 5′-CTGTCGCAGACACTGTCACT-3′; NF-κB2, 
Q00653, F: 5′ GCGTTGTCAACCTCACCAAC -3′, R: 5′-GAGTCTCCATGCCGATCCAG-3′; 
interleukin-6 (IL-6), P05231, F: 5’ CCTGAGAAAGGAGACATGTAACAAGA-3’, R: 5’ 
GGCAAGTCTCCTCATTGAATCC3′), using the Kapa SYBR Fast One-Step qRT-PCR Kit (Sigma-
Aldrich) and the Rotor-Gene Real-Time PCR Detection System (Qiagen, Hilden, Germany). A 
dissociation curve was run at the end of the reaction to ensure that only one amplicon was formed 
and that the amplicons denatured consistently in the same temperature range for every sample. The 
mRNA levels were normalized against human β-actin (F: 5′-CTCGCCTTTGCCGATCC-3; R: 5′-
CGCCCACATAGGAATCCTTC-3′) using the genNorm Delta-Delta-Ct (ddCt) method as described 
previously [37]. 

2.13. Protein Transfection 

After 24 h of NF-κB reporter transfection as described above, human placenta cells were 
transfected with 0.5 ng proteins per well of AKR2, RNF10, WNT2, IRF6, and combinations with AKR2 
using the Pierce Protein Transfection Reagent Kit (Thermo Scientific). Proteins were diluted in HEPES 
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer (10 mM HEPES, 150 mM NaCl, pH 7.0) 
and used as solvent for transfection reagent. Transfection reagent/protein complexes were 
resuspended in serum-free medium and delivered to the cells. After 4 h of incubation at 37 °C, one 
volume of 20% serum-containing medium was added directly to the wells. As a positive control, 0.25 
µg per well of fluorescein isothiocyanate (FITC)-antibody was transfected following the same 
protocol. Negative control cells were transfected with 0.5 ng ESRRG protein. After 24 h, the Dual 
Luciferase (Firefly-Renilla) Assay System (BPS Bioscience) was performed following the 
manufacturer’s protocol. Luciferase luminescence lecture (kinetic duration 15 s, interval time 2 s, 
integration time 1 s) was determined by a Tecan Infinite M200 lector. Background luminescence was 
subtracted and then the ratio of firefly luminescence from the NF-κB reporter to Renilla luciferase 
vector control was calculated and used for analysis. The normalized luciferase activity for NF-κB 
reporter was compared between groups by Student’s t-test with unequal variance (p = 0.05; n = 4 
biological replicates). Protein transfection was confirmed in positive control-transfected cells and in 
comparison with untreated negative control cells by fluorescence microscopy. Cells were mounted 
in ProLong Antifade with 4’-6-diamidino-2-phenylindole (DAPI) reagent (Molecular Probes, Eugene, 
OR, USA) and examined using a Zeiss LSM 800 laser scanning confocal microscope (Carl Zeiss, 
Oberkochen, Germany) with a 63× oil immersion objective. 

2.14. Prediction and Characterization of AKR/SUB Protective Epitopes 

The identification and prediction of protective linear B-cell epitopes, mimotopes, and 
conformational discontinuous epitopes were previously described using overlapping oligopeptides 
scan (pepscan), solution-phase panning with affinity bead capture, and phage-display screening [38]. 
Protein disorder regions and three-dimensional models were predicted using Disopred [39], Robetta 
server [40], I-TASSER [41], Lomets [42], Qmean server [43], and FirstGlance in Jmol 
(http://firstglance.jmol.org), as previously reported [17,38]. The design, production, and 
characterization of Q38 and Q41 chimeric antigens based on AKR/SUB protective linear B-cell, 
mimotopes, and conformational discontinuous epitopes was reported by Moreno-Cid et al. [34]. 
Protein sequence alignment was performed with human AKR2 (Q53H80), human AKR1 (Q9H9L7), 
and Ixodes scapularis SUB (Q4VRW2) using the constraint-based multiple alignment tool (COBALT; 
https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?LINK_LOC=BlastHomeLink). 

3. Results 

3.1. Artist New Perspectives AKR Dimerization and Multiple Simultaneous AKR2–Protein Interactions 
with Functional Implications 
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The objective of this study was to provide a multidisciplinary approach complementing 
scientific and artistic perspectives to address a challenging biological question posed by the 
functionality of multiple AKR2–protein interactions. Initially, two visual artists were invited to read 
a simplified version of our recent review on AKR/SUB functional evolution [17]. The artists were 
posed with the challenge that these model proteins represent based on their conserved function [16–
18]. In response to this challenge, the artists provided their perspectives on AKR/SUB structure and 
function. Then, these pieces served to inspire scientists to discuss and find new perspectives on 
unexplored characteristics of AKR/SUB interactome with putative functional implications. To 
address this question, a Y2H screening was performed with the human AKR2 as a LexA-bait fusion 
in a human placenta cell library, and results were corroborated by in vitro studies and modeling. A 
professor of music and musical education was also invited to participate in this study to further 
develop and apply a musical algorithm proposed by us previously to AKR/SUB [8]. The results of 
these musical representations also led scientists to propose the possibility of using this approach to 
further characterize AKR–protein functional interactions. Finally, a third visual artist was invited to 
further contribute to the functional characterization of AKR2–protein interactions in the regulation 
of the NF-κB signaling pathway. 

In the piece “El Beso” (The Kiss) (Figure 1A), the artist represented protein–protein interactions 
that appear to play a key role in the evolution and function of AKR/SUB regulatory factors [17]. 
According to artist’s statement, “this piece talks about the origins of life, with multiple geometric 
images that interact to illustrate in different species the conserved function of these proteins in 
biological processes represented by the sea, paper boat, Picasso’s dove, and a fetus growing in 
mother’s womb while opening the eyes to the world”. However, from a scientist’s perspective, a new 
and unexplored facet of possible AKR dimerization was also proposed in this piece (Figure 1A). This 
structural conformation and its functional implications have not been investigated before. Herein, 
the results from the Y2H experiment supported this prediction by showing AKR2–AKR2 and AKR2–
AKR1 interactions and confirmed previous reports for AKR2–AKR1 interactions [23] (Figures 1B and 
S1, Table 1, and Data S1). The SID of AKR1 (aa 132–192) binds to the coiled-coil domain of AKR2 (aa 
145–165) and the SID of AKR2 (aa 136–203) binds to the coiled-coil domain of AKR2 (aa 157–177) 
(Figure 1B). Additionally, in vitro experiments using PAGE and Western blot (Figure 1C,D) or SEC 
(Figure 1F) and predictive models (Figure 1G) supported AKR–AKR interactions resulting in protein 
dimerization/multimerization that require attention. 



Vaccines 2019, 8, 77 10 of 27 

 
Figure 1. Akirin (AKR) dimerization/multimerization. (A) The piece “El Beso” (The Kiss) by Israel 
León Viera (mixed media on canvas, 2018, 150 × 133 cm; dedicated to his daughter Sofía León Jorge; 
courtesy KGJ Collection, Spain) represents protein–protein interactions that play a key role in AKR 
function, and a new and unexplored facet of possible AKR dimerization. (B) Protein interacting 
regions identified by Y2H. SID (selected interaction domain) is the amino acid sequence shared by all 
prey fragments matching the same reference protein, which have been found to contain structural or 
functional domains. Only regions containing bait fragments, SIDs, or predicted functional and 
structural domains were considered. (C,D) In vitro characterization of AKR–AKR protein interactions 
using Ixodes scapularis SUB (Subolesin; Q4VRW2), human AKR2 (Q53H80), and I. scapularis B7PDL0 
negative control. SUB, AKR2, and B7PDL0 were incubated alone and SUB also in combination with 
B7PDL0 (SUB + B7PDL0), followed by analysis in (C) polyacrylamide gels or (D) Western blot using 
anti-SUB polyclonal IgG antibodies. (E) Protein gel filtration calibration curve (R2 = 0.97) using 
conalbumin (C; 75 kDa), ovalbumin (O; 44 kDa), carbonic anhydrase (CA; 29 kDa), ribonuclease A (R; 
13.7 kDa), and aprotinin (Apr; 6.5 kDa). (F) Size exclusion chromatography (SEC) analysis of AKR2 
and SUB. The milli absorbance units (mAu) and elution volume (Ve) are shown. The partition 
coefficient (Kav) and molecular weight (MW) of AKR2/SUB proteins’ monomer and dimer were 
calculated using the equations derived from the calibration curve, Kav = Ve − Vo/Vc − Vo and MW = 
166086e−3.377Kav. (G) Predicted model of the percentage of amino acids involved in residue–residue 
interactions for tick SUB–SUB and human AKR2–AKR2 interactions. Predictions were made using 
the iFrag server (http://sbi.imim.es/web/index.php/research/servers/iFrag?). 

The piece “La Danza Molecular” (Molecular Dance) (Figure 2A) also represents protein–protein 
interactions, which the artist describes according to his words, “the constant movement of these 
proteins translated into the visual rhythm of repetitive interconnected interactions of forms and 
colors”. Again, in this case the artist suggested a new structural and functional component of 
AKR/SUB, which from a scientist’s perspective translates into the possibility that AKR/SUB 
physically interacts with different proteins simultaneously to regulate various biological processes 
defined by cell-specific AKR–protein interactions (Figure 2A). 
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Figure 2. Human AKR2–protein interactions. (A) The piece “La Danza Molecular” (Molecular Dance) by 
Leandro Soto (mixed media on paper, 2018, 51 × 71 cm; courtesy KGJ Collection, Spain) also represents protein–
protein interactions, and the possibility that AKR/SUB physically interacts with different proteins 
simultaneously to regulate various biological processes defined by tissue/cell-specific protein–protein 
interactions. (B) Results of the Y2H analysis of human AKR2 interactions in human placenta cells. Only proteins 
identified with A–D scores as potential candidates for interactions with AKR2 are shown. The full description 
of the proteins is shown in Table 1, Figure S1, and Data S1. 
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Table 1. Proteins identified with A–D scores as candidates for interactions with AKR2. 

Name Description Protein/Gene ID Interaction Score (PBS) 
AKR1 § Akirin1 Q9H9L7 A 

ACTR10 Actin related protein 10 Q9NZ32 A 
RNF10 § RING finger protein 10 Q8N5U6 A 
SF3A1 Splicing factor 3a subunit 1 Q15459 A 

THRAP5 § Mediator of RNA polymerase II transcription subunit 16 Q9Y2X0 A 
AKR2 § Akirin2 Q53H80 B 

ESRRG § Estrogen related receptor gamma P62508 B 
PITPNA Phosphatidylinositol transfer protein alpha isoform Q00169 B 

ATF4 Cyclic AMP-dependent transcription factor ATF-4 P18848 D 
C12orf10 Chromosome 12 open reading frame 10 Q86UA3 D 
CCNE1 G1/S-specific cyclin-E1 P24864 D 
CDC23 Cell division cycle protein 23 homolog Q9UJX2 D 
CLIC3 Chloride intracellular channel protein 3 O95833 D 

CLTCL1 Clathrin heavy chain 2 P53675 D 
CNOT3 CCR4-NOT transcription complex subunit 3 O75175 D 
EXPH5 Exophilin 5 Q149M6 D 

EZR Ezrin P15311 D 
FNTA Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha P49354 D 
HEG1 Protein HEG homolog 1 Q9ULI3 D 

HNRPF Heterogeneous nuclear ribonucleoprotein F P52597 D 
IFT57 Intraflagellar transport protein 57 homolog Q9NWB7 D 
INTS2 Integrator complex subunit 2 Q9H0H0 D 
IRF6 § Interferon regulatory factor 6 O14896 D 

KLHL5 Kelch-like 5 isoform 2 variant Q59HD9 D 
LIMS1 LIM and senescent cell antigen-like-containing domain protein 1 P48059 D 
LNX1 E3 ubiquitin-protein ligase LNX Q8TBB1 D 
PKM Pyruvate kinase PKM P14618 D 

SCFD1 Sec1 family domain-containing protein 1 Q8WVM8 D 
SERPINE2 Glia-derived nexin P07093 D 

SF3B1 Splicing factor 3B subunit 1 O75533 D 
SPG21 Maspardin Q9NZD8 D 
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SPTBN1 var 1 Spectrin beta chain, non-erythrocytic 1 Q01082 D 
TOPBP1 DNA topoisomerase 2-binding protein 1 Q92547 D 

URB2 Unhealthy ribosome biogenesis protein 2 homolog Q14146 D 
USP7 Ubiquitin carboxyl-terminal hydrolase 7 Q93009 D 
VPS39 Vam6/Vps39-like protein Q96JC1 D 

WNT2 § Protein Wnt-2 P09544 D 
ZNF862 Zinc finger protein 862 O60290 D 

GAREM1 * GRB2-associated and regulator of MAPK protein1 Q9H706 D 
Mitochondrion * Mitochondrion, complete genome MF992925 D 

RBPMS * RNA binding protein, mRNA processing factor (RBPMS), on chromosome 8 NG_029534.1 D 
BRD7 * Bromodomain containing 7 (BRD7), on chromosome 16 NG_023418.1 D 
LSS * Lanosterol synthase (LSS), on chromosome 21 NG_011510.1 D 

DRC3 * DRC3 gene, complete cds AF282168.1 D 
AF-6 * AF-6, complete cds AB011399.1 D 

DAPK1 * Death-associated protein kinase 1 (DAPK1) gene, complete cds DQ436495.1 D 
EDH17B2 * 17-beta-hydroxysteroid dehydrogenase (EDH17B2) gene, complete cds U34879.1 D 

PBS: A, very high confidence in the interaction; B, high confidence in the interaction; D, moderate confidence in the interaction. § Proteins previously described as 
involved in the regulation of the NF-κB signaling pathway. * Entries with gene sequence matches (Data S1). 
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In the Y2H screening used in this study, we did not detect any toxicity, and more than 77 million 
interactions were tested, which corresponds to a high library coverage (approximately sevenfold the 
complexity of the library). The results confirmed that the bait was well produced and folded in yeast. 
A total of 330 prey fragments of the positive clones were amplified by PCR and sequenced at their 
5′ and 3′ junctions (Data S1 and Figure S1). Of them, 47 proteins were identified with A–D scores as 
candidates for interaction with human AKR2 (Figure 2B and Table 1). Focusing on the proteins with 
very high (A-score) and high (B-score) confidence of interactions, eight interacting proteins were 
identified (Figure 3A and Table 1). Among the identified prey proteins, AKR1 and AKR2 represented 
56% of the interactions (Figure 3A). The AKR2-interacting proteins were annotated as located in the 
cytoskeleton, cytoplasm, and nucleus (Figure 3B), suggesting that interactions with AKR2 may occur 
not only in the nucleus but also in other cell compartments. Functionally, these proteins were 
annotated as involved in multiple biological processes (Figure 3C). The regulation of transcription by 
RNA polymerase II, mRNA splicing, and interleukin (IL)-6/IL-12 pathways were the most 
represented processes, supporting AKR2 role in the regulation of transcription and immune response 
among other biological processes [17]. To further validate the interaction of these proteins with AKR2 
(Figure S1), prediction models illustrated the interacting regions (Figure 3D) and the percent of 
residue–residue interactions for selected identified proteins but not for the human interferon alpha 1 
(IFN-α1) used as negative control (Figure 3E). 

 
Figure 3. Characterization of human AKR2–protein interactions with highest confidence. (A) 
Representation of the percentage of total interactions after Y2H by proteins with very high and high 
confidence of interactions with human AKR2 in human placenta cells. (B) Subcellular localization of 
AKR2-interacting proteins. (C) Biological processes associated with AKR2-interacting proteins. (D) 
Prediction of specific interacting residues of human AKR2 with THRAP5 (Q9Y2X0) and RNF10 
(Q8N5U6) proteins. The interacting residues formed by AKR2 dimer (amino acids 59-159) are not 
shown. (E) Predicted model of the percentage of amino acids involved in residue–residue interactions 
for human AKR2–interferon alpha 1 (IFN-a1) (negative control), AKR2–RNF10, and AKR2–THRAP5. 
Predictions in (D,E) were made using the iFrag server 
(http://sbi.imim.es/web/index.php/research/servers/iFrag?), and protein structure models were 
obtained from The Protein Model Portal. 

Finally, AKR2–protein interactions were confirmed in vitro with recombinant proteins for 
identified prey and including the SNRNP70 protein with score F (experimentally proven technical 
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artifact) as negative control (Figure 4A–D). A protein pull-down approach was used with c-Myc 
magnetic beads specific for the AKR2 protein tag and followed by immunoprecipitation of AKR2-
interacting recombinant proteins with antibodies specific for the interacting proteins (Figure 4A). The 
results showed that all AKR2-interacting protein bands were identified in the interaction (I) and with 
a similar size to the positive control (C+), except for the interactions with the c-Myc magnetic beads 
only (C-) and the non-interacting SNRNP70 negative control (Figure 4B,C). However, other protein 
bands were observed in both (I) and (C-) lanes at lower molecular weight than the AKR2-interacting 
proteins (Figure 4B,C). In order to identify these unrelated proteins eluted from the c-Myc magnetic 
beads, a similar experiment was conducted with selected proteins but incubating only with the 
secondary antibody. The results suggested that these bands corresponded to fragments of the mouse 
anti-c-Myc antibody attached to magnetic beads, which was further supported by the fact that these 
bands were more evident when using mouse-derived anti-interacting protein antibodies and the 
mouse secondary antibody with higher reactivity to the mouse anti-c-Myc antibody attached to 
magnetic beads (Figure 4A,D). Finally, this experimental approach provided additional support for 
AKR2–AKR2 interactions by identifying not only the AKR2 monomer, but also protein dimer and 
trimer (Figure 4C). 

 
Figure 4. Corroboration of human AKR2–protein interactions with highest confidence. (A) 
Representation of the components of the protein pull-down experiment using c-Myc magnetic beads 
with Myc-tagged human AKR2. (B) Western blot analysis of AKR2–protein interactions. Interacting 
proteins were incubated with AKR2 and immunopresipitated with c-Myc magnetic beads specific for 
the AKR2 protein tag (I) or with the c-Myc magnetic beads only as negative control (C-). Recombinant 
interacting proteins were included as positive control (C+). Mouse or rabbit antibodies specific for 
each protein were used as primary antibodies and then anti-mouse or anti-rabbit secondary 
antibodies were used to identify the presence of the interacting proteins (red arrow). The origin of the 
primary antibody is shown. (C) Corroboration of human AKR2–AKR2 interaction using protein pull-
down with c-Myc magnetic beads with human Myc-tagged AKR2. The experiment was conducted as 
described in (B). The origin of the primary antibody and predicted size for AKR2 monomer, dimer, 
and trimer together with bands corresponding to fragments of the mouse anti-c-Myc antibody 
attached to magnetic beads are shown. (D) In order to identify unrelated proteins eluted from the c-
Myc magnetic beads, a similar experiment was conducted with selected proteins but incubating only 
with the secondary antibody. A lane of SDS-PAGE stained with Bio-Safe Coomassie Stain 
corresponding to c-Myc magnetic beads alone eluted using Laemmli sample buffer was included (C-
-). The bands corresponding to fragments of the mouse anti-c-Myc antibody attached to magnetic 
beads are shown. 
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Twenty-four AKR2-protein physical interactions have been described before in human kidney, 
colon, lung, and mammary epithelial cells [19–23]. Of them, only three proteins were among the 
identified proteins in human placenta with very high (A; AKR1) or moderate (D; maspardin (SPG21) 
and E3 ubiquitin-protein ligase LNX (LNX1)) interaction scores (Figure 2B, Table 1, and Data S1). In 
STRING and NCBI databases of AKR2–protein interactions using Y2H and other alternative 
interactome models such as IPA, the interactions of AKR2 with AKR1, RNF10, zinc finger protein 862 
(ZNF862), LNX1, and SPG21 were identified. 

3.2. The Sound of the AKR/SUB Coding Sequence Supported Evolutionary Conservation and Functional 
Protein Interactions 

Previously, we proposed an algorithm to characterize genome structural features on the basis of 
the fact that the non-random organization of the genome must have left a structural imprinting in the 
sound of the DNA language [8]. This method was based on the communicative strength of music to 
show the presence of syntactical structures in the DNA language, and some properties of these 
structures [8]. Herein, we applied an improved version of this method to translate AKR/SUB 
sequences into musical scores and music (Figures S2 and S3) to provide an alternative and 
complementary approach to the study of AKR evolutionary relationships and functional protein 
interactions. As shown previously by genetic approaches [17], musical ensembles supported the fact 
that AKR in different species are evolutionarily related and structurally conserved (Figures 5A,B and 
S3). The results showed characteristics of the AKR/SUB proteins evidenced by the predominance of 
certain melodic formulas in each species, the fact that a single melodic form was never repeated more 
than three consecutive times, and that all species showed spaces with lower rhythmic movement 
(Figure 5A). When comparing the AKR/SUB from the six analyzed species (Figure 5A) in a 
polyphonic context, the results showed the presence of unisons, long sequences of unisons, and 
melodic imitation effects even having long canonical structures that represent regions of amino acid 
homology between species (Figure 5B). To use this approach to further characterize the AKR/SUB 
interactome, the sequences of AKR2-interacting proteins RNF10 and THRAP5 (Table 1) and IFN-α1 
as negative control were translated into music (Figure S2) to produce musical ensembles of AKR2–
protein interactions by trial and error. The results showed that both AKR2–RNF10 and AKR2–
THRAP5 but not AKR2–IFN-α1 musical ensembles (Figure S4) predicted protein interactions 
coinciding with those found by Y2H (Figure 5C). 

 
Figure 5. The sound of AKR evolution and protein interactions. (A) Examples of regularities observed 
when comparing AKR/SUB musical scores between different species (Caenorhabditis elegans akr 
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NM_058903.6, Drosophila melanogaster akr NM_139856.4, I. scapularis akr/subolesin AY652654.1, Xenopus 
laevis akr2 NM_001092015.1, Salvelinus alpinus akr2 GQ247760.1, and Homo sapiens akr2 NM_018064.3; 
Figure S2). (B) Examples of the findings when comparing the six species in a polyphonic context 
(Figure S3). (C) The AKR2-RNF10 and AKR2-THRAP5 but not AKR2-IFN-α1 interactions are 
manifested in the higher and repeated presence of unison between both sequences (e.g., AKR2-RNF10 
bars 232–235, AKR2-THRAP5 bars 83–85), as well as a higher presence of fifth and fourth consonances 
(e.g., AKR2–RNF10 bars 210–219, AKR2–THRAP5 bars 67–78) (Figure S4). Audio files were uploaded 
and can be found in Figure S4 (78998 to 479009). 

3.3. AKR2–Protein Interactions Positively and Negatively Regulated the NF-κB Signaling Pathway 

The next step in the characterization of AKR2–protein interactions was to address the question 
of how these interactions functionally regulate specific signaling pathways. In the piece “Nothing 
wants to say something” (Figure 6A), the artist proposed a new approach to address scientific 
challenges on the basis of “visual vibrations” that somehow should modify the experience and 
internal chemical processes that occur when looking at a piece of art. According to the artist’s 
statement, “what you are looking for is also looking for you, highlighting that nothing wants to tell 
you something and it is only a matter of finding how to perceive the message”. From a scientist’s 
perspective, this message challenges the view that AKR/SUB–protein interactions occur randomly, 
and suggests that these interactions are functionally relevant in the regulation of different biological 
processes as occurs with other regulatory factors [44]. To address this question, the NF-κB signaling 
pathway was selected due to its role in the IMD immune response biological process [15–17,26,28]. 
We first identified proteins previously described as implicated in the regulation of the evolutionarily 
conserved NF-κB pathway (Table 1) [45–51]. Then, the interactions between AKR2-IRF6 and AKR2-
WNT2 (D-score moderate confidence of interactions; Table 1) was corroborated in vitro (Figure 6B). 
The characterization of the AKR2-interacting unrelated proteins with lower molecular weight was 
addressed before (Figure 4A,D). The genes coding for these proteins were knockdown (Figures 6C 
and S5) or protein levels increased by protein transfection (Figure 6D) in human placenta cells alone 
and in combination with AKR2 to characterize their role in the regulation of the NF-κB signaling 
pathway. 

 
Figure 6. Function of AKR2 interactome in the regulation of NF-κB. (A) The piece “Nothing wants to 
say something” by Raúl Cordero (acrylic, polyester, oil and metallic pigments on canvas, 210 × 190 
cm; courtesy of the artist) challenges the view of random AKR–protein interactions and suggests that 
these interactions are functionally relevant in the regulation of different biological processes. (B) 
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Western blot analysis of AKR2–IRF6 and AKR2–WNT2 interactions. Interacting proteins were 
incubated with AKR2 and immunoprecipitated with c-Myc magnetic beads specific for the AKR2 
protein tag (I) or with the c-Myc magnetic beads only as negative control (C-). Recombinant 
interacting proteins were included as positive control (C+). Antibodies specific for each protein were 
used to identify the presence of the interacting proteins (red arrow). The origin of the primary 
antibody is shown. (C,D) Regulation of NF-κB in response to AKR2 and interacting proteins. (C) The 
NF-κB reporter was used for monitoring the activity of the NF-κB signaling pathway in human 
placenta-cultured cells after gene knockdown by RNAi. The ratio of firefly luminescence from the NF-
κB reporter to Renilla luciferase vector control was represented as average + SD and compared 
between siRNA-treated groups and the siRNA negative control (C-) (black asterisks), and between 
combined siRNA-treated groups and the AKR2 siRNA (red asterisks) by Student’s t-test with unequal 
variance and one-way ANOVA with similar results (* p < 0.05, ** p < 0.005; n = 6 biological replicates). 
(D) The NF-κB reporter was used for monitoring the activity of the NF-κB signaling pathway in 
human placenta cells after transfection of recombinant proteins AKR2, RNF10, WNT2, IRF6, and 
combinations with AKR2. As a positive control, a FITC-antibody was transfected. Negative control 
cells were transfected with the ESRRG protein. The firefly to Renilla normalized luciferase activity for 
NF-κB reporter was represented as average + SD and compared between protein-treated groups and 
the ESRRG control by Student’s t-test with unequal variance (* p < 0.05, ** p < 0.005; n = 4 biological 
replicates). 

The results of gene knockdown experiments provided evidence for the role of AKR2, IRF6, 
RNF10, and AKR2 interactions with IRF6, RNF10, and IRF6/WNT2 in the positive regulation of NF-
κB, whereas AKR2–WNT2 interactions appeared to negatively regulate the NF-κB signaling pathway 
(Figure 6C). ESRRG alone or in combination with AKR2 did not affect NF-κB regulation (Figure 6C) 
and was used as a negative control in the protein transfection experiment (Figure 6D). The increase 
in protein levels corroborated the NF-κB positive regulation by IRF6 and AKR2–RNF10 interactions, 
whereas transfection of WNT2 and RNF10 proteins resulted in the negative regulation of NF-κB 
(Figure 6D). Transfection of AKR2 alone did not affect NF-κB regulation (Figure 6D). Discrepancies 
between results of gene knockdown (Figure 6C) and protein transfection (Figure 6D) experiments 
may be explained at least in part by the fact that proteins appeared to directly enter cell nucleus after 
transfection (Figure 7A), which may prevent post-translational modifications required for protein 
function. In this case, post-translational modifications would have functional implications for AKR2 
and RNF10. Additionally, differences between results of AKR2 gene knockdown and protein 
transfection may also suggest that AKR2 is necessary but not sufficient to upregulate NF-κB (Figure 
6C,D). 
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Figure 7. AKR2 interactome differentially regulated the NF-κB pathway. (A) Protein transfection was 
confirmed in FITC-antibody positive control-transfected cells and untreated negative control cells by 
fluorescence microscopy. Host cell nucleus was stained with DAPI (blue). Image of negative control 
cells was also collected by phase contrast microscopy and superimposed to FITC/DAPI merged 
image. Bar: 20 µm. (B) The expression of IFN-β was characterized in human placenta cells after gene 
knockdown by qRT-PCR. The IFN-β mRNA levels were normalized against human β-actin, and 
normalized Ct values were compared between test siRNA-treated placenta cells and controls treated 
with non-targeting siRNA (C-) by Student’s t-test with unequal variance (* p < 0.05; n = 6 biological 
replicates). (C) The expression of AKR2; genes coding for interacting proteins AKR1, ESRRG, RNF10, 
THRAP5, IRF6, and WNT2; and regulated genes IFN-β and IL-6 was characterized in human placenta 
cells treated with lipopolysaccharides (LPS) by qRT-PCR. The mRNA levels were normalized against 
human β-actin, the normalized LPS to PBS-treated control (C-) ratio (LPS: C-) Ct values were 
calculated, and normalized Ct values were compared between LPS-treated and C-cells by chi2 test (* 
p < 0.001; n = 6 biological replicates). 

The expression of IFN-β gene regulated by IRF and NF-κB factors [52–56] and therefore 
identified as an NF-κB target gene (https://www.bu.edu/NF-κB/gene-resources/target-genes/) was 
characterized in human placenta cells after gene knockdown (Figure 7B). The knockdown of AKR2, 
IRF6, WNT2, and RNF10 alone and in combination with AKR2 resulted in significant downregulation 
of IFN-β (Figure 7B). This effect was higher for combined AKR2-RNF10, AKR2-WNT2, and AKR2-
IRF6 gene knockdown with a downregulation of IFN-β by 13,400- to 16,750-fold (Figure 7B). 

3.4. LPS Did Not Activate the NF-κB Pathway Via AKR2–Protein Interactions in Human Placenta Cells 

Bacterial LPS binding to Toll-like receptor 4 (TLR4) results in the activation and translocation of 
NF-κB transcription factor into the nucleus, which activates the expression of target genes such as IL-
6, IL-8, IFN-β, and tumor necrosis factor (TNF) [57,58] that have been implicated in the response to 
LPS in placenta cells [59]. However, LPS-mediated TLR4 signaling occurs through the myeloid 
differentiation primary response gene 88 (MyD88) and signaling adaptor protein TIR domain-
containing adaptor-inducing interferon-beta (TRIF), which regulate NF-κB translocation into the 
nucleus to induce gene transcription [60]. 

To explore the possible role of AKR2 and the interacting proteins in the NF-κB signaling 
pathway in response to LPS, human placenta cells were treated with LPS and the expression of 
selected genes characterized by qRT-PCR (Figures 7C and S6). The results showed that LPS treatment 
induced downregulation of genes coding for AKR2 and the interacting proteins AKR1, ESRRG, 
RNF10, IRF6, THRAP5, and WNT2 (Figure 7C). However, the NF-κB-regulated genes IL-6 and IFN-
β were induced in LPS-treated placenta cells, thus supporting NF-κB activation in response to LPS 
(Figure 7C). These results supported the fact that AKR2–protein interactions do not mediate LPS 
activation of the NF-κB pathway in human placenta cells. In these cells, alternative mechanisms such 
as those mediated by MyD88 and TRIF or others still to be characterized may be involved in the 
activation of the NF-κB signaling pathway. Nevertheless, LPS-induced down regulation of AKR2 
interacting proteins with negative regulation of NF-kB may be a compensatory mechanism to favor 
the production of certain NF-kB regulated genes such as IFN-β. The downregulation of genes coding 
for AKR2 and interacting proteins in response to LPS may constitute a mechanism by which placenta 
cells alter NF-κB dynamics. 

3.5. The Characterization of the AKR/SUB Interactome Had Implications for Quantum Vaccinomics 

The proposed pipeline for quantum vaccinomics consisted of the following steps (Figure 8A): 
(a) characterization of cell interactome and regulome in vector–host–pathogen interactions for the 
identification of proteins such as AKR/SUB involved in the regulation of multiple biological processes 
through physical interactions with other proteins; (b) identification, modeling, and characterization 
of protein SID; (c) prediction and characterization of conserved protective epitopes in protein SID; 
and (d) design and production of chimeric protective antigens. 
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Figure 8. SUB/AKR interactome and possibilities for quantum vaccinomics. (A) Pipeline for quantum 
vaccinomics by focusing on protective epitopes in peptide sequences involved in protein–protein 
interactions or SID that are particularly relevant for proteins such as SUB/AKR that function through 
these interactions. (B) Alignment of SID amino acid sequences for human AKR2 and AKR1, and I. 
scapularis tick SUB with the corresponding region in the SUB/AKR chimeric Q38 and Q41 protective 
antigens. The Q38- and Q41-identified and/or predicted protective epitopes are shown. 

As a proof-of-concept, the SID identified here in AKR2 and AKR1, and predicted for tick SUB 
[17] were aligned and showed more than 60% amino acid sequence identity (Figure 8B). Then, the 
protective epitopes included into Q38 and Q41 AKR/SUB chimeras [34,38] were mapped and covered 
more than 75% of the SID (Figure 9B). Considering the protective efficacy of Q38 and Q41-based 
vaccines [34,35,61], these results supported targeting SID in quantum vaccinomics. 
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Figure 9. Model for NF-κB regulation by human AKR2 interactome in human placenta cells after (A) 
gene knockdown by RNAi, (B) protein transfection, (C) IFN-β and IL-6 expression after treatment 
with LPS, and (D) IFN-β expression after gene knockdown by RNAi. Predictions are based on results 
from experiments shown in Figures 6C,D and 7B,C. 

4. Discussions 

Our combined scientific and artistic perspectives provided a multidisciplinary complementary 
approach to advance the knowledge of the AKR/SUB model regulatory factor and supported the 
collaboration between science and art in research (Table 2). It has been proposed that AKR/SUB acts 
through functional interactions with other proteins and chromatin remodeling [16,17,19–28], but 
additional information is needed about the role of AKR/SUB interactome in these processes. Artists 
did not merely illustrate scientific results but provided their perspectives on the AKR/SUB–protein 
interactions, which challenged scientists to provide mechanistic and regulatory insights into the 
functional implications of these interactions. 

Table 2. Highlights of the collaboration between artists and scientists in this study. 

Artist Contribution Scientist Perspective 
Methodological Approach 

Three visual artists and a musician were invited to 
read a simplified version of our recent review on 
AKR/SUB functional evolution [17] and were 
challenged with the conserved function of these 
proteins in the regulation of different biological 
processes throughout the metazoan. 

In response to this challenge, the artists contributed the 
pieces, musical scores, and interpretations shown in 
the paper in order to provide their view on this matter. 
Artists’ contributions served to inspire scientists to 
discuss and find new perspectives on unexplored 
characteristics of these proteins with putative 
functional implications. 

Piece in Figure 1A 
The artist represents the origins of life, with 
multiple geometric images that interact to illustrate 
in different species the conserved function of these 
proteins in biological processes represented by the 
sea, paper boat, Picasso’s dove, and a fetus 
growing in a mother’s womb while opening its 
eyes to the world. 

From a scientist’s perspective, a new and unexplored 
facet of possible functional relevance of AKR 
dimerization was proposed in this piece. 

Piece in Figure 2A 

The artist describes the constant movement of 
these proteins that translate into the visual rhythm 
of repetitive interconnected interactions of forms 
and colors. 

From a scientist’s perspective, the possibility that AKR 
physically interacts with different proteins 
simultaneously to regulate various biological processes 
defined by cell-specific AKR–protein interactions was 
proposed in this piece. 

Piece in Figure 6A 

The artist proposed that what you are looking for 
is also looking for you, highlighting that nothing 
wants to tell you something and it is only a matter 
of finding how to perceive the message. 

From a scientist’s perspective, this message challenges 
the view that AKR–protein interactions occur 
randomly and suggests that these interactions are 
functionally relevant in the regulation of different 
biological processes as occurs with other regulatory 
factors. 

Musical Scores in Figures 5 and S2–S4 

A revised algorithm using musical ensembles was 
applied to translate the AKR and interacting 
protein sequences into music. 

The results supported that AKR in different species are 
evolutionarily related and structurally conserved, and 
confirmed AKR2–protein interactions identified in this 
study. Therefore, this tool may be used for 
evolutionary studies and the prediction of protein–
protein interactions. 
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Phylogenetic or evolutionary trees are the most accepted approach to illustrate the inferred 
evolutionary relationships between different species on the basis of the similarities and differences 
in their physical or genetic characteristics. Furthermore, selective evolutionary pressures have driven 
a non-simple random-based organization of the genome of surviving organisms. Several methods 
have been applied to the formulation of DNA language and encoded information, showing that there 
is at least some degree of organization in the nucleotide sequences found in many organisms [8,62–
64]. Our results advanced the use of the DNA language approach a step forward by characterizing 
not only evolutionary relationships but also functional protein interactions (Table 2). 

The results supported the fact that the multiple interactions between AKR2 and interacting 
proteins differentially regulate the NF-κB pathway by affecting gene expression controlled by NF-κB 
in a biological context-dependent manner (Figure 8A–D). In all experiments, except in LPS-treated 
cells, the results suggested that AKR2 and IRF6 alone and the combination of AKR2–RNF10 
positively regulate the NF-κB signaling pathway. Differences between different experiments support 
the possibility of the differential regulation of the NF-κB pathway in a biological context-dependent 
manner. 

Of the identified AKR2–protein interactions in human placenta cells, five proteins with very 
high confidence in the interactions representing 9.6% of the identified proteins included AKR1, 
ACTR10, RNF10, SF3A1, and THRAP5 (Table 1). Of them, AKR1, RNF10, and THRAP5 have been 
previously described as involved in the regulation of the NF-κB signaling pathway [45–51]. One of 
the remaining challenges addressed in this study by using the NF-κB signaling pathway as a model 
was the characterization of the mechanisms by which AKR2–protein interactions are regulated by 
cell type-specific models that in turn regulate different biological processes (i.e., immune response or 
development). It has been proposed that AKR/SUB specifies NF-κB selectivity of innate immune 
response via chromatin remodeling [25,27]. However, the results of our study provided evidence 
suggesting that in human placenta cells the differential interaction between AKR2 and the interacting 
proteins IRF6, RNF10, and WNT2 differentially regulate the NF-κB signaling pathway. The role of 
AKR dimerization/multimerization in the regulation of these protein interactions is also potentially 
functionally relevant and requires additional research. 

Previously, van Essen et al. [38] proposed that the activation of NF-κB by NF-κB (p65) depends 
on the availability of suitable secondary transcription factors, a process determined by cell-type and 
stimulus. Herein, we showed that some of these secondary transcription factors may be AKR2 and 
interacting proteins, and suggested that AKR2–protein interactions may affect gene expression 
controlled by NF-κB in a biological context-dependent manner. The fact that AKR2 gene knockdown 
but not protein transfection affected NF-κB regulation provided additional evidence that AKR2 needs 
to interact with other proteins to activate the NF-κB pathway [28]. Additionally, the results supported 
the role proposed previously for post-translational modifications in the function of AKR/SUB and 
interacting proteins [17,24]. 

Quantum vaccinomics will advance the design of more effective and safe vaccines to target some 
of the challenges posed for ectoparasite control vaccines [65]. The algorithm for quantum vaccinomics 
proposed here focusses on proteins involved in cell interactome and regulome and functioning 
through protein–protein interactions for the regulation of multiple biological processes involved in 
vector-host-pathogen interactions. In this way, vaccination with AKR/SUB protective epitopes in SID 
will induce an antibody response not only interfering with protein translocation to the nucleus [66], 
but also blocking AKR/SUB–protein interactions involved in the regulation of multiple biological 
processes. Vaccines based on Q38 and Q41 AKR/SUB protective epitopes chimeras have proven 
efficacy for the control of different ectoparasites and infection by vector-borne pathogens [34,35,61]. 
Nevertheless, future experiments should address the effect of these vaccines on the regulation of 
various biological processes to further advance the possibility of developing a vaccine for the control 
of vector infestations and pathogen infection/transmission by multiple species [67]. 
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5. Conclusions 

The results of this study provided a novel combined scientific and artistic multidisciplinary 
approach to address challenging questions in molecular biology. The collaboration between scientists 
and artists provided two main methodological outcomes: (a) the suggestion by visual artists of the 
scientific characterization of previously unexplored properties of AKR/SUB and (b) the application 
of an algorithm using musical ensembles based on AKR/SUB and interacting protein sequences as a 
new method to predict protein–protein interactions (Table 2). The recent review of AKR/SUB 
functional evolution [17] suggested that these proteins evolved with conserved sequence, structure, 
and function, and that there is a need to further characterize its function in different conserved 
biological pathways such as NF-κB. The need to better understand AKR/SUB function was addressed 
in this study, and although further experiments are required to fully characterize the role of the 
AKR/SUB interactome in the regulation of the NF-κB pathway, the results in human placenta cells 
served as a methodological proof-of-concept to advance this research area. The results showed that 
AKR–AKR interactions result in protein dimerization/multimerization with possible functional 
implications that require attention. AKR/SUB physically interacts with different proteins 
simultaneously to regulate various biological processes with cell type differences in AKR2 
interactome that are likely associated with the specific biological processes regulated by this protein 
in each cell type. In this way, multiple interactions between AKR2 and interacting proteins 
differentially regulate the NF-κB pathway by affecting gene expression controlled by NF-κB in a 
biological context-dependent manner. In addition to cell type-specific differences in AKR/SUB-
protein interactions, species-specific differences have been also described and require further 
attention [17]. For example, it has been shown in tick cells that SUB regulome affects multiple 
biological processes that vary in response to infection with the tick-borne pathogen Anaplasma 
phagocytophilum [17]. Therefore, studies in other cells such as lymphocytes or monocytes and 
promyelocytic leukemia HL-60 model cells are required to evaluate cell type-specific differences in 
the function of AKR2–protein interactions in NF-κB signaling. Functionally, AKR2–protein 
interactions in human placenta cells differentially regulate the NF-κB signaling pathway, suggesting 
that AKR2 interacting proteins might constitute suitable secondary transcription factors for cell and 
stimulus-specific regulation of NF-κB. As shown previously by genetic approaches, musical 
ensembles supported the fact that AKR/SUB in different species are evolutionarily related and 
structurally conserved, and also predicted AKR2–protein interactions coinciding with those found 
by genetic approaches such as the Y2H screening used here. The methodological approach proposed 
here for quantum vaccinomics further advances the potential of the vaccinomics pipeline used before 
for the identification of candidate protective antigens [29,68,69]. Furthermore, if combined with 
network analysis for the integration of interactomics and regulomics datasets [70] and big data 
machine learning algorithms to identify candidate protective antigens and epitopes [71], quantum 
vaccinomics would result in designing chimeric antigens based on protective epitopes in SID from 
vector- and pathogen-derived regulatory proteins. Vaccines with these chimeric protective antigens 
would address the possibility of effective and sustainable control of vector-borne diseases by 
targeting multiple ectoparasite and pathogen species in multiple hosts. The collaboration between 
scientists and artists from multiple disciplines has a positive impact on advancing research to address 
scientific challenges. 
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Figure S6: Gene expression in LPS-treated human placenta cells and controls. Data S1: Results of the ULTImate 
Y2H screening of human AKR2 bait vs. human placenta RP6 library prey. 
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