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Highlights 14 

� Our Fourier transform-based method detects changes in circadian rhythm 15 

� Circadian changes in cows link to disease, stress, or calving/oestrus events 16 

� The method detects 95% of the rhythm anomalies due to reproductive or 17 

disease events and 60–70% due to stress events, with less than 20% false-18 

positives (non-event-related anomalies) 19 

� It can help detect animals needing care. 20 

� It can also assess overall animal welfare status or health/stress-sensitive 21 

phenotypes 22 
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Abstract  24 

Disease and stress can disrupt the circadian rhythm of activity in animals. Sensor 25 

technologies can automatically detect variations in daily activity, but it remains 26 

difficult to detect exactly when the circadian rhythm disruption starts. Here we report 27 

a mathematical Fourier-Based Approximation with Thresholding (FBAT) method 28 

designed to detect changes in the circadian activity rhythm of cows whatever the 29 

cause of change (typically disease, stress, oestrus). We used data from an indoor 30 

positioning system that provides the time per hour spent by each cow resting, in 31 

alleys, or eating. We calculated the hourly activity level of each cow by attributing a 32 

weight to each activity. We considered 36-h time series and used Fourier transform 33 

to model the variations in activity during the first and last 24 h of these 36-h series. 34 

We then compared the Euclidian distance between the two models against a given 35 

threshold above which we considered that rhythm had changed. We tested the 36 

method on four datasets (giving a cumulative total of ~120000 cow*days) that 37 

included disease episodes (acidosis, lameness, mastitis or other infectious diseases), 38 

reproductive events (oestrus or calving) and external stimuli that can stress animals 39 

(e.g. relocation). The method obtained over 80% recall of normal days and detected 40 

95% of abnormal rhythms due to health or reproductive events. FBAT could be 41 

implemented in precision livestock farming system monitoring tools to alert 42 

caretakers to individual animals needing specific care. The FBAT method also has 43 

the potential to detect anomalies in humans to guide healthcare intervention or in wild 44 

animals to detect disturbances. We anticipate that chronobiological studies could 45 

apply FBAT to help relate circadian rhythm anomalies to specific events. 46 

 47 
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1 Introduction 53 

Circadian rhythms of activity are observed in most vertebrate and invertebrate 54 

animals and even in plants. Circadian rhythm is triggered by internal clocks that — in 55 

the absence of external cues — repeat a rhythm of about 24 h. In vertebrates, the 56 

main pacemaker is situated in the suprachiasmatic nucleus of the brain and 57 

coordinates peripheral clocks that are found in a majority of cells [1, 2].  58 

Disruption of circadian rhythms can have far-reaching effects on physical and mental 59 

health, even leading to cancer and depression [2, 3]. In turn, stress or disease 60 

episodes in animals disrupt their circadian rhythm of activity. Circadian activity 61 

disruption is thus a proxy of these disorders. For instance, we observed that circadian 62 

variations in activity were less marked in diseased cows [4] but more marked when 63 

calves are regrouped with other calves, which is known to induce stress [5]. Such 64 

effects may involve glucocorticoids, which are significantly released during stress or 65 

disease and which help coordinate circadian rhythms by resetting cellular clocks 66 

downstream of the brain [6]. Identifying disruptions in circadian rhythm could serve to 67 

detect cases of stress or disease and, in turn, prompt animal caretakers to address 68 

such problems, determine their causes, and take remedial action.  69 

Detecting disruption in activity rhythms requires continuous monitoring. There are 70 

sensor systems available that enable continuous monitoring and automatic detection 71 

of variations in daily activity in animals and in humans. For instance, Real-Time 72 



Locating Systems (RTLS), accelerometers, automatic image analysis, and sound 73 

analysis all provide information on animal activity by distinguishing basic activities 74 

such as resting, standing, walking, and eating [7, 8]. However, interpreting the data 75 

from these tools remains difficult, as these basic activities depend on a cluster of 76 

factors including animal age and breed, design of the barn (e.g. number and location 77 

of resting and feeding areas), animal management variables (e.g. food distribution or 78 

milking time), diet, season, and more. Basic activities can also change in frequency 79 

from one day to another, which interferes with the way the rhythms are patterned, 80 

e.g. a low-frequency activity will also show only small variations during the day. 81 

Summarising the activity of an animal into an activity level can help identify the 82 

activity rhythm. Day–night cycle variations in activity level appear to be less 83 

dependent on factors that affect basic activities. In addition, the activity level is 84 

expressed in absolute terms, i.e. has no frequency. Calculating this circadian activity 85 

level could therefore serve to highlight differences between diseased or stressed 86 

animals and normal-status animals [4, 9]. However, it remains difficult to detect 87 

exactly when the rhythm starts to become disrupted. 88 

There are numerous methods proposed to detect anomalies in time series. We first 89 

tested traditional machine learning methods (K Nearest Neighbours for Regression 90 

(KNNR), Decision Tree for Regression (DTR), MultiLayer Perceptron (MLP), Long 91 

Short-Term Memory (LSTM) [10] and then went on test the most promising methods 92 

available according to the latest literature reviews [11, 12], namely the Bag Of SFA 93 

Symbols (BOSS), Hierarchical Vote Collective Of Transformation-based Ensembles 94 

 (Hive-Cote), Dynamic Time Warping (DTW), Fully Convolutional Network (FCN) and 95 

Residual Network (ResNet) algorithms [13]. As these methods require large 96 

datasets, data from several animals has to be processed together, making it difficult 97 



to identify the rhythm of each animal. Also, they do not always factor the cyclic 98 

aspects (here, circadian rhythm) into the time series. 99 

We developed a mathematical Fourier transform-based method to detect changes in 100 

the circadian activity rhythm of animals, called ‘Fourier-Based Approximation with 101 

Thresholding’ (FBAT [13]). Fourier analysis is a powerful tool to analyse continuous 102 

cyclic functions. The assumption is that all cyclic signals ���� with a frequency � can 103 

be decomposed into a cosine function of frequency � and with an infinity of other 104 

cosine curves called harmonics ℎ� (� represents the rank of the harmonic), i.e. 105 

���� = 
 |ℎ�|�
��2π��� + ����ℎ�����
����  106 

where ℎ�is the harmonic of rank � represented by a complex number with |ℎ�| its 107 

modulus and ����ℎ�� its argument.  108 

The rationale for FBAT is as follows. Fourier transform is used to extract the cyclic 109 

component that reflects the circadian rhythm of two days. If the difference between 110 

the two days is higher than a certain threshold, then we consider that the rhythm has 111 

changed. The FBAT method proved to outperform the machine learning methods that 112 

we tested (see above) in terms of accuracy of the detection of deviations due to 113 

health or other disorders. 114 

Here, we present the FBAT method and then test it on four datasets obtained on 115 

cattle farms. The datasets span various daily routines that include various disease 116 

episodes (acidosis, lameness, mastitis and other infectious diseases), reproductive 117 

events (oestrus, calving) or external stimuli that can stress animals. We assess the 118 

performance of the method by its capacity to detect activity-rhythm anomalies caused 119 

by such events, and we check whether performance varies between causes. FBAT is 120 



tested here on data from a commercial RTLS but it could easily be implemented on 121 

other animal (or human) behaviour recording devices to automatically detect 122 

individual disturbances.  123 

2 Material and methods 124 

2.1 Equipment used to detect cow activity and calculate activity level 125 

We used data from the CowView system (GEA Farm Technology, Bönen, Germany), 126 

which is an RTLS that gives the position of each cow in a barn every second. Each 127 

cow is equipped with a tag on its neck collar. The position of the cow is determined 128 

by triangulation based on radio waves emitted by the tag and captured by fixed 129 

antennas in the barn. The cow’s activity is inferred from its position: ‘eating’ if the cow 130 

is positioned at the feeding table, ‘resting’ if the cow is in a resting area (typically 131 

cubicles), else ‘in alleys’. The time spent in each activity (expressed in seconds) is 132 

used to calculate the level of activity of the cow for each hour of the day by attributing 133 

a weight to each activity. The weights are derived from a factorial correspondence 134 

analysis (see [4] for details on the calculations). This analysis was performed on 135 

three farms with a total of more than 800 cows that were managed under different 136 

conditions (e.g. conventional vs. automatic milking, mixed diet vs. roughage and 137 

concentrate distributed separately). As the weights obtained on each farm showed 138 

good closeness, we elected to use averaged weights that can be applied on any 139 

dataset, i.e. -0.23 for resting, +0.16 for in alleys, and +0.42 for eating. All weights are 140 

expressed in s-1, and hence activity level is unitless. Each cow is then represented by 141 

a time series of its level of activity for each hour. 142 

2.2 Data processing to detect changes in circadian rhythm 143 



The data are analyzed as sliding 36-h time series with a 1-h step between series: the 144 

data obtained from a cow over 30 days of monitoring produces 685 36-h time series 145 

(30 days × 24 h/day - 35 h). Each of these 36-h time series contains two 24-h sub-146 

series A and B with a 12-h time lag (Fig 1).  147 

 148 

**** Fig. 1 here **** 149 

 150 

We use Fast Fourier Transform [14] to extract the harmonics and create a model 151 

���� of each sub-series A and B according to the formula: 152 

���� = 
 |ℎ�|�
� �2π� �24 + ����ℎ����
���� ,  " ∈ [0,12] 153 

where ℎ� is the harmonic of rank � (|ℎ�| is its modulus and ����ℎ�� is its argument) 154 

and " is a parameter that corresponds to number of harmonics to keep in the model.  155 

Working with a high " value, the resulting model is close to the original time series. 156 

Working with a low " value erases the time-series noise and the model is smooth. We 157 

limit our study to " = 1, which corresponds to a period of 24 h and thus reflects the 158 

circadian cycle. Higher values would reflect ultradian rhythms. Because of the 12-h 159 

time lag between the two sub-series A and B, their models need to be synchronized 160 

before we compare them. We therefore add – π to each cosine component of the 161 

model for B. We then calculate the Euclidean distance between the two models: 162 

*+�����,�-, .� = /
�.0 − -0�223
0�4  163 



where Ai and Bi are the values of models for A and B for each point in time.  164 

A threshold τ is defined (see Section 2.5). If the distance between the two models is 165 

below τ, then the series is considered normal, else it is considered that the circadian 166 

rhythm has changed (Fig. 2). 167 

 168 

***** Fig. 2 here **** 169 

 170 

2.3 Datasets 171 

We used four datasets to test our method. Two datasets are from the INRAE 172 

Herbipôle experimental unit (DOI: https://doi.org/10.15454/1.5572318050509348E12) 173 

and include data from experiments carried out for other purposes unrelated to this 174 

study. Two datasets are from commercial farms. All the data are from dairy cows. 175 

- Dataset 1 includes 28 cows monitored for 6 months. The cows were 176 

administered lipopolysaccharide (LPS) in the mammary gland on one day to 177 

induce inflammation. They were milked at fixed times twice a day. The food 178 

was delivered in the morning then pushed back close to the feeding gates 179 

three times in the afternoon. 180 

- Dataset 2 includes 28 cows monitored for 3 months. Half of the cows received 181 

a high-starch diet during 1 month to induce sub-acute ruminal acidosis. They 182 

were milked at fixed times twice a day, and fed twice a day. 183 

- Dataset 3 comes from three commercial farms on which a total of 40 dairy 184 

cows were monitored for 1 month to detect oestrus from their milk 185 

progesterone profile (i.e. sudden drop in progesterone for at least 3 186 



consecutive days). On two farms, the cows were milked at fixed times twice or 187 

three times a day, and food was delivered twice a day or only once in the 188 

morning then pushed back after each milking. The third farm was equipped 189 

with an automatic milking system, so the cows had no fixed milking times. 190 

Food was delivered in the morning and regularly pushed back by a robot. 191 

- Dataset 4 comes from a commercial farm with 300 cows monitored for 12 192 

months. Like above, the farm was equipped with an automatic milking system, 193 

and food was delivered in the morning and regularly pushed back by a robot. 194 

On each farm, the caretakers logged any event as soon as it was observed (oestrus, 195 

calving, lameness (scored visually as per Welfare Quality protocol [15]), clinical 196 

mastitis, clinical signs of other disease, accident-related health problems, 197 

disturbances such as handling for vaccination, change of pen, mixing of animals) in a 198 

logbook, together with the treatment applied to the animal. In addition, Datasets 1, 2 199 

and 3 provide a labelling of days where inflammation (Dataset 1), acidosis (Dataset 200 

2) or oestrus (Dataset 3) was checked or detected via additional measures. In 201 

Dataset 1, cow body temperature was monitored to check that they reacted to LPS. 202 

In Dataset 2, ruminal pH was monitored using a sensor (eCow bolus, Exeter, UK). 203 

According to the method proposed by Villot et al. [16], we normalized the ruminal pH 204 

values of each cow to take into account inter-individual variability, sensor drift and 205 

sensor noise, and then we considered that a cow was under subacute ruminal 206 

acidosis (SARA) when the normalized ruminal pH (NpH) decreased by at least 0.3 207 

for more than 50 min/d and the daily standard deviation in NpH was above 0.2 or the 208 

daily NpH range was above 0.8. In Dataset 3, progesterone was assayed in the milk, 209 

and oestrus was detected when progesterone concentration dropped dramatically for 210 

several days (e.g. from 20 down to 5 ng/mL). Datasets 1 to 3 can thus be considered 211 



as reference datasets, as the labelling of abnormal days does not depend solely on 212 

visual observations. Dataset 4 from a large commercial farm served to test our 213 

method in real-world field conditions. Based on the available literature [17-19], we 214 

considered a certain number of days before and one day after each type of event 215 

where we suspected modified cow behaviour (Tab. 1). We excluded from analysis 216 

the subsequent days after the event (up to Day 7) because we did not have enough 217 

information to rule on whether or not the behaviour was likely modified and because 218 

our focus was on the early stages when caretakers need to take action. 219 

 220 

**** Tab. 1 here **** 221 

 222 

A 36-h time series was considered abnormal if it contained more than 12 h from a 223 

day labelled abnormal. We split each dataset into two blocks: 30% of all time series 224 

were taken at random and used as training set, from which threshold τ was 225 

calculated (see Section 2.5), and the remaining 70% was used as test set, to test 226 

whether threshold τ can accurately distinguish series labelled normal vs. abnormal.  227 

2.4 Calculation 228 

We assessed the performances of the FBAT method by calculating its recall of 229 

normal and abnormal time series. Abnormal series are those when an event was 230 

recorded, whatever the type of event. Let us consider that the normal series 231 

constitute the negative class and the abnormal series constitute the positive class. 232 

The recall of the normal series (�,��, also known as ‘specificity’) represents the 233 

number of series labelled and detected as normal: true negative (TN) among all 234 

series labelled as normal, i.e. TN plus false positive (FP). The recall of the abnormal 235 



series (�,��, also known as sensitivity) represents the number of series labelled 236 

abnormal and detected with a modified circadian rhythm: true positive (TP) among 237 

the number of all series labelled as abnormal, i.e. TP + false negative (FN): 238 

�,�� = 6767 + 89          ��*         �,�� = 6969 + 87 239 

To estimate threshold τ, we calculate the Euclidian distance between all consecutive 240 

24-h sub-series from the training set. The range between the minimum and maximum 241 

distance is sampled into 10000 values. The average between �,�� and �,�� is 242 

calculated for each of these 10000 values, and τ is the value that obtains the highest 243 

�,�� and �,�� average. An alternative would be to describe the variability in the 244 

Euclidian distance between 24-h sub-series when no event occurred and to set τ at 245 

e.g. twice the standard deviation. We tested this done in a first approach, but it 246 

resulted in a low rate of anomaly detection.  247 

To assess the performance of our method, we calculated �,�� and �,�� on test sets. 248 

We also calculated the proportion of events detected, i.e. events for which we 249 

detected at least one day with a modified circadian rhythm within the sequence of 250 

days surrounding them (as defined in Tab. 1). The performance of the method is also 251 

illustrated by its training time (i.e. time to compute threshold τ) and test time (i.e. time 252 

to detect all changes in circadian rhythm). 253 

 254 

3 Results and Discussion 255 

3.1 Overall performances of FBAT with thresholds adjusted to each dataset 256 

Tab.2 gives the overall performances of FBAT on the four datasets. The results for 257 

threshold τ and �,�� were similar across all datasets, although �,�� was slightly 258 



lower in Dataset 4 than in the other datasets. The method thus appears to perform 259 

equally well in various conditions. The calculation time — especially the time to 260 

calculate Threshold τ — depended on the farm and especially on the size of the 261 

dataset from the farm (see, for instance, Dataset 4, which is far larger than the others 262 

and required a much longer calculation time).  263 

It can be argued that the value of threshold τ can change from one dataset to another 264 

depending on the number and type of events contained in the dataset. However, we 265 

did not observe this kind of effect: there were no marked variations in τ (between 266 

1886 and 2216) between datasets despite their differences in number and type of 267 

events (e.g. Dataset 3 contains 29 oestrus and no other events). Moreover, FBAT 268 

can compute τ without requiring a huge amount of data. Dataset 3 comprised only 40 269 

cows for 1 month and yet produced a similar τ to the other datasets, leading to high 270 

values of �,�� and �,�� . 271 

In all datasets, �,�� was above 75%, which means a farmer would receive less than 272 

25% false alerts. By contrast, �,�� was around 30%, which means that the method 273 

detects less than one third of the series labelled abnormal. At first glance, the method 274 

cannot reliably help farmers detect anomalies in cows. Note, however, that within the 275 

sequence of days surrounding an event — which we labelled abnormal as defined in 276 

Tab. 1 — the circadian activity rhythm of the cows may not be modified on all days, 277 

which could explain the apparent poor performance in terms of �,��. We therefore 278 

questioned whether it was possible to detect at least one day with a modified 279 

circadian rhythm in a sequence surrounding a given event. Furthermore, days on 280 

which circadian activity rhythm changed may have been included in the training set 281 

and were thus excluded from the analyses on the test sets. 282 



 283 

**** Tab. 2 here **** 284 

 285 

3.2 Performance of FBAT for detecting one day with a modified circadian rhythm 286 

within sequences surrounding events, using a fixed threshold 287 

Given that threshold τ varied little between datasets (Tab. 2), we decided to set τ to a 288 

fixed 2000 for all datasets. This allowed us to skip the training phase and use the 289 

whole datasets to test our method. We then explored whether the method could 290 

detect at least one day with a modified circadian rhythm within a sequence 291 

surrounding a given event. We applied this procedure for each type of event.  292 

We obtained a �,�� of 70.1%, 79.1%, 77.9%, and 81.7% for Datasets 1 to 4, 293 

respectively. On all datasets combined, �,�� was 81.1%, which further confirms that 294 

FBAT does not produce many false alerts (less than 20%). We cannot exclude that 295 

part of these alerts are actually not false alerts but correspond to events that 296 

caretakers did not record in the logbooks as they missed or considered unimportant. 297 

For instance, subclinical diseases like SARA are difficult to detect without close 298 

monitoring of the ruminal pH and so are often missed by direct observation. Likely 299 

events such as a power or a mechanical failure cutting the lighting in the barn or 300 

delaying food delivery or the milking may have gone unreported, whereas these 301 

stimuli act as synchronizers of circadian rhythm [2].  302 

The proportion of abnormal sequences in which at least one day was detected with a 303 

modified circadian rhythm was 76%, 71.2%, 69.2% and 61.3% for Datasets 1 to 4, 304 

respectively. This proportion varied according to type of event to be detected (Tab. 305 

3). In very few cases (1.3% of all abnormal cow*days in Dataset 4), there were two 306 



events that co-occurred, e.g. lameness and other disturbances. The corresponding 307 

cow*days were used to calculate the proportion of abnormal sequences detected for 308 

the two types of events.   309 

 310 

**** Tab. 3 here **** 311 

 312 

The rhythm anomalies that were best detected were those due to accidental events: 313 

only Dataset 4 contained accidental events (n=10), and all of them were detected. 314 

Under ‘accidental events’, we included accidental injuries, vaginal laceration, and 315 

retained placenta, all of which occur abruptly on a given day and are likely to cause 316 

cows substantial discomfort, which explains why they are easily detectable through 317 

disruption of the activity rhythm.  318 

Nearly all calvings were detected: only one calving was missed out of the 180 319 

present in the datasets. Next, 90% of oestruses were detected on average. Oestrus 320 

and calving are known to affect cow behaviour: overt oestrus causes hyperactivity, 321 

and cows about to calve lie down or change activity due to a change of pen, the pain 322 

induced by calving, and the presence of the calf [20]. On Dataset 3, where the exact 323 

time of oestrus was detected from milk progesterone on 40 cows, the proportion of 324 

detected oestrus was lower than in the other datasets (only 69.2%). It is likely that 325 

some cows had silent oestrus, i.e. with no overt behavioural signs. Unfortunately, this 326 

dataset does not include records of detection of oestrus by the caretakers (i.e. based 327 

on behavioural observations), so we cannot estimate whether our method detects 328 

more oestrus than a farmer would or only the overt cases of oestrus detectable by 329 

simple visual observation of the animals.  330 



Diseases with inflammation or pain were also well detected, with an average of 331 

97.8%, 84.1%, and 88.2% events detected for lameness, mastitis, and other 332 

diseases, respectively. However, only 81.5% of LPS-induced udder inflammation 333 

events were detected. This slightly lower detection rate may be due to the fact that 334 

the inflammation is less marked when induced by LPS than by pathogens, or that the 335 

sickness behaviour is less marked with a simple inflammation than when pathogens 336 

are present. Indeed, pain, hyperthermia, and decreased rumination last less than 24 337 

h after LPS injection [21]. 338 

Overall, 69% of SARA events were detected (only in Dataset 2 where ruminal pH 339 

was monitored). Animals do not always suffer when their ruminal pH is low. Their gut 340 

flora can adapt to diet containing high amounts of starch and low pH, and animal 341 

behaviour can return to normal from one day to the next [22, 23]. For the moment, we 342 

cannot distinguish whether FBAT underperforms in SARA or whether it is simply a 343 

case of cows with SARA not always suffering. More measurements to identify SARA, 344 

such as milk urea nitrogen and blood bicarbonate [24], are needed in order to refine 345 

the detection of SARA and better calculate how FBAT performs.  346 

The events on which the method underperformed were mixings (68.3% detection) 347 

and other disturbances (60.1% detection). Based on records noted in the farm 348 

logbooks, it was difficult to estimate whether the procedures undergone by the 349 

animals were liable to disturb them. The category ‘other disturbances’ includes 350 

various treatments, such as vaccination, administration of drugs, or relocations from 351 

a pen. These events may or may not disturb the animals depending on how they are 352 

handled and whether treatment induces some pain (an injection, for instance). Mixing 353 

very clearly disturbs the animals, triggering aggressive interactions, weakening group 354 

cohesion, and inducing chronic stress [25, 26]. However, in this study, we inferred the 355 



‘mixing’ category from instances when one or more animals were moved from one 356 

pen to another, and so we thus cannot be sure that these animals were mixed with 357 

unfamiliar pen-mates. Therefore, the moderate proportion of mixings and other 358 

disturbances that FBAT detects likely reflects the fact that not all of them actually 359 

disturbed the cows. 360 

Mixing and other disturbances represented 92% of all events recorded but were not 361 

accurately detected. When mixings and other disturbances are excluded from the 362 

analysis, the overall performance of our method—in terms of proportion of events 363 

detected—reached 94.6% in Dataset 4, which was used for field-validation. The 364 

performance of the method for detecting responses to accidents, LPS injection or 365 

mastitis still needs be estimated on larger datasets, as these events were 366 

underrepresented in our datasets (only 10, 27 and 44 cases, respectively). 367 

3.3 Timing of the detection of abnormal rhythm  368 

Fig. 3 shows the timing of detection of an abnormal rhythm — when detected — in 369 

relation to the logging of events by caretakers in Dataset 4. On these figures, the day 370 

when an event was logged starts at 00:00 because we have no indication as to the 371 

exact moment when the caretaker noticed the event.  372 

Rhythm anomalies due to ’other disturbances‘ started to be detected from 12 h on the 373 

day the event was logged — probably at the time that the event actually occurred —  374 

and continued to be detected up to 2 days after. Likewise, anomalies due to 375 

accidents were detected from 10 h on the day the event was logged, and more than 376 

90% of them were detected within the next 4 h. Therefore, events that occur abruptly 377 

in time likely translate very rapidly into activity rhythm modifications, which means the 378 

method can promptly detect these problems. 379 



In the case of calving, 80% of rhythm anomalies were detected 30 h before logging, 380 

i.e. two days before actually calving. In the case of oestrus, rhythm anomalies were 381 

detected on the day the oestrus was logged, which implies that some cases were 382 

detected during the night, probably before the caretaker detected the oestrus. Such 383 

early detection of calving and oestrus through rhythm anomaly could prove vitally 384 

important for managing reproduction on a farm, since cows may need assistance with 385 

calving and the time-window for insemination is short.  386 

Anomalies due to lameness started to be detected 1.5 days before the lameness was 387 

logged (60% of cases) and more than 80% of these cases were detected no later 388 

than 12 h before the day they were logged. In the case of mastitis, 60% of rhythm 389 

anomalies were detected 24 h before the day they were logged and 90% were 390 

detected no later than the day they were logged. In the case of other diseases, 60% 391 

of anomalies were detected 32 h before the day they were logged and more than 392 

95% of anomalies were detected no later than the day they were logged. The FBAT 393 

method is thus likely to detect anomalies due to diseases one or two days before 394 

clinical signs manifest. This could prompt caretakers to pay closer attention to 395 

animals displaying such anomalies and possibly call in a vet for a diagnosis and rapid 396 

treatment.  397 

   398 

 399 

4 Conclusion and perspectives 400 

Our new Fourier-Based Approximation with Thresholding (FBAT) method can detect 401 

changes in the circadian rhythm of activity. These changes are closely related to 402 

many events experienced by animals, including disease, accident or stressful 403 



disturbance in the barn. The method produces less than 20% false alerts (i.e. 404 

changes unrelated to a problem logged by caretakers) and detects about 95% of 405 

rhythm anomalies caused by reproductive or health problems. The method can 406 

detect problems at a very early stage of disease, before clinical signs manifest. Alerts 407 

can thus be sent to the animal caretaker to flag animals showing a modified rhythm. 408 

When an alert is sent, the caretaker can take quickly a management decision, e.g. to 409 

check calving progress, inseminate a cow in oestrus, separate the cow from the rest 410 

of the group, or look for clinical signs to identify a disease and engage treatment.  411 

For the moment, FBAT is unable to distinguish between events experienced by 412 

animals. This can be seen as a limitation of the method, as it does not provide a 413 

diagnosis. FBAT uses only the rank-1 harmonic provided by the Fourier transform 414 

corresponding to the circadian rhythm. We did not handle variations that may occur 415 

within a day, which might be relevant to identify a given disorder (e.g. cows under 416 

SARA with a low activity between the two daily meals [27]). To overcome this 417 

limitation, the method could be further developed to take into account harmonics of 418 

rank above 1. An alternative solution could be to use other methods to model the 419 

rhythm, such as wavelet transforms [28][29],.  420 

From another angle, being able to detect any problem whatever the cause may be 421 

seen as an asset. First, the same tool can issuing warning that something is wrong 422 

and that animals need to be checked in case remedial action is needed. Second, this 423 

tool can also serve for assessing animal welfare. Indeed, oestrus and calving 424 

frequency should be about the same across farms, and so any variations between 425 

farms are likely to be due essentially to health disorders and stress experienced by 426 

the animals. FBAT could thus be used as an overall measure of animal health and 427 

stress status, based on the occurrence of disturbing events. Applying FBAT on a 428 



sample of farms along with a reference method for animal welfare assessment such 429 

as the Welfare Quality method [15] would help to check whether it can be used for 430 

such a purpose. FBAT could also be used to phenotype animals according to their 431 

sensitivity to potentially stressful events.  432 

FBAT is easy to implement. The Fourier transform is a well-known technique that can 433 

be readily computed in several programming languages. It is quicker to compute than 434 

machine learning methods: the computation time is 6 to 280 times shorter than the 435 

more advanced machine learning algorithms DTW, Hive-Cote or BOSS, and 13 to 22 436 

times shorter than the neural network methods FCN and Resnet [13].  437 

The farms from which data were used in our study had different routines that may 438 

have affected the rhythm of their cows. The cows were milked at fixed intervals on 439 

some farms vs. with an automatic milking system allowing cows to choose when to 440 

be milked on other farms. Food was delivered two or three times a day on some 441 

farms vs. more evenly distributed across the day by a robot pusher in other farms. 442 

Furthermore, the type of events detected differed between datasets. Despite such 443 

variations, the threshold that optimized the distinction between a normal vs. modified 444 

rhythm was stable, enabling us to apply the same threshold to all datasets, which 445 

resulted in similar performances across all farms except the farms from Dataset 3, as 446 

discussed above. The fact that the threshold does not vary much between farms 447 

should be checked on a larger population of farms. If the stability is confirmed, then a 448 

pre-defined threshold could be used without having to go through training to define 449 

the threshold for a given farm, thus making FBAT very easy to apply. It remains 450 

possible to adjust the threshold to a given farm or even to each cow of that farm, in 451 

which case data will need to be recorded for a few weeks to estimate the threshold 452 

before it can be applied to detect anomalies on that farm or cow.  453 



FBAT is to be applied on data produced by close animal monitoring, which cannot 454 

feasibly be done without activity sensors. We applied FBAT on data from a RTLS 455 

tool. Extending the method to data from other sensors only requires eliciting the 456 

weights attributed to each activity to calculate the activity level and compute the 457 

threshold used to compare daily variations between days. This can be done on a few 458 

datasets, as achieved here. 459 

FBAT was designed to be integrated in precision livestock farming tools to help 460 

farmers manage their animals. However, it has also the potential to detect anomalies 461 

in humans to guide healthcare or in wild animals to detect disturbances (e.g. by 462 

humans or predators). We anticipate that chronobiological studies could apply FBAT 463 

to help relate circadian rhythm anomalies to specific events. 464 

 465 
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Appendix A. Data, equipment, and software 496 

Data: Part of the data are private, and so the datasets cannot be made public. 497 

Equipment: The indoor tracking system is commercialized by GEA Farm technologies 498 

(Bönen, Germany). The manufacturer claims a precision of 50 cm for the detection of 499 

a cow’s position. In the INRAE experimental farm that provided two of the datasets 500 

used here, we observed a precision of 16 cm [30]. 501 



Server and software: FBAT was developed in the Python programming language with 502 

the fast Fourier transform function available in the NumPy library 503 

(https://numpy.org/devdocs/reference/generated/numpy.fft.fft.html#numpy.fft.fft). The 504 

code is available at https://github.com/nicolas-wagner/FBAT. We used a server 505 

composed of an Intel Xeon E7-8890 v3 CPU (2.5 GHz with 46 Mb of cache) and 3 Tb 506 

of RAM, of which we used less than 8 Gb. For field use of FBAT, the detection of 507 

changes in the circadian rhythm will need less than 1 Gb, depending on the size of 508 

the on-farm dataset produced.  509 

 510 
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Illustrations 589 

 590 

 591 

 592 

 593 

Fig. 1. Example of a 36-h time series of cow activity modelled with a Fourier 594 

transform. Solid line: activity level calculated from basic activities (weighted sum of 595 

the time spent ‘resting’, ‘in alleys’ or ‘eating’, unitless). Dotted lines: Fourier transform 596 

of the first and last 24-h segments of this 36-h time series.   597 
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 599 

 600 

 601 

 602 

Fig. 2. Framework of the FBAT method to detect changes in circadian activity rhythm. 603 

Within a 36-h time series, we used Fast Fourier Transform (FFT) to model the 604 

variations in activity during the first and last 24-h segments of this 36-h series. After 605 

aligning the two models in time, we calculate the Euclidian distance between them 606 

and then compare that distance to a given threshold, above which we consider that 607 

the rhythm has changed. 608 

 609 

  610 



Fig. 3. Detection of rhythm anomalies in relation to events logged by caretakers in 611 

Dataset 4 (taken for field validation). Stars represent the hours of the day when an 612 

event was logged, arbitrarily starting from 00:00.  613 



Tab. 1. Days labelled normal vs. abnormal according to type of event recorded on the 614 

farm. Black cells are for the day when the event was logged by caretakers, dark grey 615 

cells are for days when behaviour is likely to be modified (black and dark grey cells 616 

are for days considered abnormal), light grey cells are for days when there is 617 

insufficient literature data to expect or not a change in behaviour (days excluded from 618 

the analysis), and white cells are for days when we expect no change in animal 619 

behaviour (normal days).  620 

Days 
Type of event 

D-3 D-2 D-1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D8 

Accidental event1                           

Calving                           

Oestrus2                           

Lameness                           

Mastitis                           

Other disease                           

LPS injection3                           

Ruminal acidosis4                           

Mixing                            

Other disturbances5                           

1 Injuries, retained placenta, vaginal laceration                   

2 Detected visually by caretakers or from milk progesterone profile             
3 LPS injected in the mammary gland 
4 Detected from ruminal pH 

                    

5 Interventions, e.g. vaccination, oestrus synchronization, anthelmintic treatment, claw trimming, 
relocation 
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Tab. 2. Overall performance of FBAT on four datasets. The threshold τ used to 622 

differentiate normal vs. abnormal time series was computed on training sets (30% of 623 

each dataset). �,�� and �,�� are for the percentage of normal series detected as 624 

normal and the percentage of abnormal series detected as abnormal (i.e. with a 625 

modified circadian rhythm) on test sets (70% of each dataset). Training time is the 626 

time to compute threshold τ. Test time is the time to detect any changes in activity 627 

rhythm.  628 

Dataset No. 

cow*days 

Training time  

(s) 

Test time  

(s) 

: ;<=� ;<=� 

1 5124 2810 25.8 2216 75.8 29.3 

2 2562 1220 10.9 1947 76.4 32.6 

3 1220 781 7.3 1894 75.7 32.4 

4 109800 69300 526 1886 78.6 24.9 

 629 

  630 



Tab. 3. Performance of FBAT expressed in terms of detection of at least one day with 631 

a modified circadian rhythm within a sequence surrounding an event, stratified by 632 

type of events (with a fixed threshold τ = 2000). 633 

Events 
  Datasets 

  1 2 3 4 

Accidental event1 
no. events 0 0 0 10 

% detected na na na 100 

Calving 
no. events 9 0 0 171 

% detected 100 na na 99.4 

Oestrus2 
no. events 41 7 29 257 

% detected 95.1 85.7 69.2 91.4 

Lameness 
no. events 4 16 0 114 

% detected 100 93.8 na 98.2 

Mastitis 
no. events 9 3 0 32 

% detected 100 0 na 87.5 

Other disease 
no. events 10 8 0 66 

% detected 80 75 na 90.9 

LPS injection3 
no. events 27 0 0 0 

% detected 81.5 na na na 

Ruminal acidosis4 
no. events 0 271 0 0 

% detected na 69 na na 

Mixing  
no. events 63 0 0 0 

% detected 68.3 na na na 

Other disturbance5 
no. events 145 667 0 12079 

% detected 69 71.7 na 59.3 
1 Injuries, retained placenta, vaginal laceration 

2 Detected visually by caretakers or from milk progesterone profile 

3 LPS injected in the mammary gland 
4 Detected from ruminal pH 
5 Interventions, e.g. vaccination, oestrus synchronization, anthelmintic treatment, claw trimming, relocation 

na: not applicable 
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Graphical abstract 

 

Within a 36-h time series, we use Fast Fourier transform (FFT) to model the circadian 

rhythm of activity during the first and last 24-h segments. After aligning the two 

models in time, we calculate the Euclidian distance between them and compare it to 

a given threshold, above which we conclude that the rhythm has changed. 

 




