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Abstract: The detection of irrigated areas by means of remote sensing is essential to improve
agricultural water resource management. Currently, data from the Sentinel constellation offer
new possibilities for mapping irrigated areas at the plot scale. Until now, few studies have used
Sentinel-1 (S1) and Sentinel-2 (S2) data to provide approaches for mapping irrigated plots in temperate
areas. This study proposes a method for detecting irrigated and rainfed plots in a temperate
area (southwestern France) jointly using optical (Sentinel-2), radar (Sentinel-1) and meteorological
(SAFRAN) time series, through a classification algorithm. Monthly cumulative indices calculated
from these satellite data were used in a Random Forest classifier. Two data years have been used,
with different meteorological characteristics, allowing the performance of the method to be analysed
under different climatic conditions. The combined use of the whole cumulative data (radar, optical
and weather) improves the irrigated crop classifications (Overall Accuary (OA) ≈ 0.7) compared to
the classifications obtained using each data separately (OA < 0.5). The use of monthly cumulative
rainfall allows a significant improvement of the Fscore of irrigated and rainfed classes. Our study
also reveals that the use of cumulative monthly indices leads to performances similar to those of the
use of 10-day images while considerably reducing computational resources.

Keywords: irrigation; summer crops; random forest; high spatial and temporal resolution;
temperate areas

1. Introduction

Human activities have an impact on the different components of the hydrosphere, and 80%
of the world’s population is now facing water shortages that will worsen with global warming [1].
Faced with this emergency situation, it is necessary to develop adaptation strategies to allow access to
water resources for the entire population and to maintain agricultural activity. One of the adaptation
strategies that has been favoured is irrigation. FAO estimates that 80% of the food needs in 2025 will
be covered by irrigated agriculture [2] and more than 324 million hectares are equipped for irrigation
in the world [3]. However, the use of irrigation has led to conflicts on water uses that are likely to
worsen in a context of climate change. Rational and collective management of water resources has
therefore become crucial. To achieve this objective, explicit information on agricultural practices and
on the amount of water needed for crops over large areas is needed [4]. In this context, remote sensing
observation could play an essential role. Many studies have proposed methodologies based on remote
sensing images to derive useful indicators for water management [4–6]. Many of them have used
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multispectral and multi-temporal remote sensing images to map irrigated areas [7–14], demonstrating
the high potential of remote sensing data. However, most of these studies are conducted in semi-arid
areas [15–23]. Very little research is carried out in temperate areas, which also suffer from water scarcity.
In France, for example, each year, about twenty departments (Nomenclature of Territorial Units for
Statistics level 3) apply water restrictions. This number increases in the driest years: 73 departments
(among 101) in the summer of 2019. In temperate areas, the detection of irrigated plots is difficult
because of the the smaller differences in observed phenology between irrigated and rainfed crops
compared to what is observed in semi-arid zones [24,25]. This smaller differences is related to local
agricultural practices and pedoclimatic conditions.

The launch of the Sentinel constellation gives a new opportunity for the mapping of land cover
and agricultural practices [26,27]. Numerous studies have shown that using temporally dense optical
time series can improve crop mapping over different climates [28–32]. Vogels et al. [33] used a new
approach to map irrigated areas in the Horn of Africa: a Sentinel 2 times series. However, as optical
imagery is affected by cloud cover, the performance of the crop mapping with such data can be
reduced in some cases, particularly for temperate or tropical areas [33] . Other recent studies [34–39]
have shown that the joint use of optical and radar data improves the robustness of the mapping
methods [21,35,37]. Nevertheless, all the studies mentioned above deal with the mapping of irrigated
areas in arid or semi-arid climatic areas. There are few works on mapping irrigated crops in temperate
areas with high spatial and temporal resolution. Demarez et al. [36] demonstrated than combining
high spatial and temporal optical imagery (Landsat-8) and SAR (Synthetic Aperture Radar) imagery
(Sentinel-1) allows to improve the detection of irrigated areas in the southwest of France. However,
in this study the main limiting factor was the temporal resolution of the Landsat-8 images.

In this work, we propose a new methodology for distinguishing irrigated and rainfed crops at plot
scale in temperate areas using the joint use of optical (Sentinel-2), radar (Sentinel-1) and meteorological
(SAFRAN) data. The novelty comes from the combined use of vegetation, polarisation and
meteorological indices. The study area is located in southwest France, and the summer crops to
be classified are maize (both irrigated and rainfed), soybean (both irrigated and rainfed) and sunflower
(rainfed). As only part of the summer crops was irrigated in the study area, one challenging point
was to distinguish between irrigated and rainfed plots of the same species. In order to make this
discrimination, we relied on the phenological development of the vegetation cover as a explanatory
variable. Different scenarios were used to evaluate the performance of classifications models as a
function of the various types and number of features. Different scenarios were evaluated using ground
truth data collected in 2017 and 2018. These two years were characterised by contrasted meteorological
conditions, which allowed to analyse the performance of the method under various climatic conditions.

2. Study Site and Dataset

The study site is a watershed (Adour Amont) located in the southwestern France, west of
Toulouse (city). It covers 1500 km2, as shown in Figure 1. The climate is temperate with continental
and oceanic influences. It is characterised by a hot summer (mean T◦ = 22 ◦C) and a wet spring
(mean rainfall = 108 mm) [40]. In this region, the minimum rainfall occurs between July and
October, which corresponds to the maximum development of summer crops, as shown in Table 1,
making irrigation mandatory. Maize, soybean and sunflower represent, respectively, 82%, 9% and 8%
of the summer crops, i.e., 36% of the whole cultivated crops, according to the agricultural Land Parcel
Information System “Registre Parcellaire Graphique” (RPG) provided by the French Services and
Payments Agency [41]. The RPG contains information on crop types but no information on agricultural
practices. Only maize and soybean are irrigated and the irrigation water needs represent 30 million m3

over the season [42]. The two years studied are characterised by different weather conditions over
the cropping period. The year 2017 can be defined as a dry year, as it has a total rainfall of 424 mm
compared to 573 mm in 2018.
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Figure 1. Location of the study area with footprints of the Sentinel-1, Sentinel-2 images and field data.

Table 1. Theoretical cropping calendar of the studied summer crops: the green squares illustrate the
theoretical period when the crop is sown, and the brown squares illustrate the period when the crop
is harvested.

Growing Year

Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.
Maize
Soybean
Sunflower

2.1. The Reference Dataset

The reference dataset was established from field campaigns carried out at two stages of the
growing season: after sowing (May) and at flowering (July). The identification of the irrigation
practices was based on the presence of irrigation equipment or through declarative information
carried out by the farmer. The reference dataset consisted of 832 plots in 2017 (557 irrigated and
275 rainfed) and 942 plots in 2018 (680 irrigated and 262 rainfed) as shown the Table 2. Within the
dataset, irrigated maize is the most represented crop with 60% of the plots sampled in 2017 and 48%
in 2018. Irrigated soybean is the least represented crop in the dataset with 3% in 2017 and 5.6% of
the plots sampled in 2018. This low sampling of irrigated and rainfed soybean is explained by the
low representativeness of this crop in the territory (<10%), contrary to maize which represents 82% of
the agricultural plots cultivated in summer crops in 2017 and 84% in 2018. Maize and soybean areas
are increasing, while sunflower areas are decreasing between the two years, according to the RPG.
The plots are located on gentle slopes (less than 5%) and on alluvial soil [43]. The dataset represented
21% of the total area of the summer crops in the territory.

Table 2. Distribution of reference dataset by class for 2017 and 2018.

Class Label Number of Plots Total Area Sampled (ha) Distribution (%) RPG (%)

2017 2018 2017 2018 2017 2018 2017 2018

Maize irrigated 526 639 943 727 60 48.1 82.8 84Maize rainfed 198 175 302 500 19.2 33.1
Soybean irrigated 31 41 54 85 3.4 5.6 8.2 9.6Soybean rainfed 27 38 77 151 4.9 10

Sunflower 50 49 120 40 7.6 2.7 8.6 5.5
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2.2. Sentinel-2

The Sentinel-2 (S2A-S2B) images were processed to level 2A with the MAJA processing
chain [44,45], allowing to obtain surface reflectances at top of canopy (TOC). This process presented
in Hagolle et al. and Baetens et al. [44,45], allows the detection of clouds and their shadows,
the correction of the atmospheric effects of the images from an estimation of the aerosol optical
thickness (AOT) and water vapour. This process can be applied to time series of images. 100 images
were processed in 2017 and 124 in 2018, corresponding to the tiles T30TYN and T30TYP, on Theia
website [https://theia.cnes.fr/]. The average number of cloudy pixels was 31% in 2017 and 37% in
2018 over the whole time series, with cloudiness reaching over 85% in June (spring). The obtained
images were temporally aggregated to regular 10-day interval composite datasets using the gapfilling
module Orfeo Toolbox 6.7 (OTB) [46]. This temporal resampling relies on a distance-weighted linear
interpolation of the clear acquisition dates of the optical satellites taking into account cloud and cloud
shadow masks, which is necessary to study very large areas, as it limits the impact of satellite tracks,
clouds and their shadows [28,47].

2.3. Sentinel-1

The Sentinel-1 images came from the C-SAR instrument onboard two Sentinel 1 satellites (S1A-S1B)
(Interferometric Wide Swath mode, IWS-GRD [26]). This mode provides dual-polarisation (VV and
VH) imagery, at resolution of 20 m, with a swath of 250 km. The images were radiometrically
(Multilooking filter 2 × 2) and geometrically corrected using the OTB software [46]. Only Sentinel-1
images acquired in ascending mode (acquisition time: 6.00 pm) and between April and November
were used (i.e., one image every 6 days, i.e., 79 images in 2017 and 100 in 2018 ). The ascending mode
(orbit n◦30) was used in the study, to limit the impact of morning dew and freezing dew, which can
lead to artefacts in the SAR signal. Like Sentinel-2 images, the SAR images were orthorectified on the
S2 grid and with the same pixel size. In addition to the orthorectification process, the SAR images
were linearly interpolated every 10 days to maintain the same temporality in the satellite data between
Sentinel-1 and Sentinel-2.

2.4. Meteorological Data

Rainfall data from the SAFRAN database [40] were used in the classification process. It is defined
in mm/day. SAFRAN is a system for atmospheric analysis of surface meteorological variables based
on the use of homogeneous climatic zones and capable of taking into account altitudinal variations.
These data are spatially interpolated to cover all of mainland France with a regular grid of (8 × 8 km).

3. Methods

Figure 2 illustrates the methodology used. It includes 4 main steps: (1) preprocessing of the
initial images, which enables the calculation of cumulative monthly indices from time series; (2) pixel
classification based on cumulative monthly indices; (3) postprocessing of the classifications, with the
aim of removing of isolated pixels; and (4) validation of the resulting maps.

https://theia.cnes.fr/
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Figure 2. The workflow of the methodology used in this study The grey squares represent the initial
data. The yellow squares are the stacks of monthly cumulative indices after processing by the algorithm,
represented by a red square. The green squares correspond to the different scenarios tested. The blue
squares represent different maps from the classifiers, i.e. classifications and confidence maps
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Figure 2. The workflow of the methodology used in this study. The grey squares represent the initial
data. The yellow squares are the stacks of monthly cumulative indices after processing by the algorithm,
represented by a red square. The green squares correspond to the different scenarios tested. The blue
squares represent different maps from the classifiers, i.e., classifications and confidence maps.

3.1. Feature Computation

3.1.1. Optical Features

As shown on Table 3, the optical features involved into the classification process are
the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Red-Edge (NDRE)
and the Normalized Difference Water Index (NDWI). These indices were selected as they are sensitive
to various characteristics of the plants: the fraction of green vegetation cover [48,49], the foliar
pigment [50,51] and the plant water content [52], respectively. Figure 3 illustrates the dynamics of
vegetation cover growth between irrigated and rainfed crops. A significant difference is observed at
full growth (NDVI > 0.8 and NDWI < −0.40) . This difference is stronger in 2017. It decreases when
entering the senescent phase. The growing cycle is quite synchronous for all crops, as shown in the
Table 1. For sunflowers, the growth cycle is different than for other crops, with lower growth peaks.
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Table 3. Optical and radar features.

Name Description Equation

NDVI Normalized Difference Vegetation Index (NIR − Red)/(NIR + Red)
NDRE Normalized Difference Red-Edge (NIR − Red-Edge)/(NIR + Red-Edge)
NDWI Normalized Difference Water Index (NIR − SWIR)/(NIR + SWIR)
VV Vertical—Vertical Polarisation -
VH Vertical—Horizontal Polarisation -
VH/VV Ratio -

2017

2018

Figure 3. Dynamics of optical indices (Normalized Difference Vegetation Index (NDVI) (a,c) and
Normalized Difference Water Index (NDWI) (b,d)) for maize, soybean and sunflower crops. The solid
line curves represent maize, the dotted line represents soybean, with irrigated blue and rainfed red for
both crops. The black curve represents sunflower. The envelope around the curves corresponds to the
95% confidence interval.

3.1.2. Radar Features

VV and VH polarisations were used into the classification. They are, respectively, sensitive to soil
moisture [53–55] and to the volume scattering of vegetation [53,56]. As SAR backscatter time profiles
in both polarisations are noisy by environmental factors , we used the VV/VH ratio which partially
compensates these effects. The dynamics of SAR polarisations differ between rainfed and irrigated
crops, as shown in Figure 4. This difference is more marked throughout the season than for optical
indices. Moreover, there is a clear difference in the amplitude of the SAR signal between the two types
of crops (soybean and maize) at full growth.
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2017

2018

Figure 4. Dynamics of SAR polarisations (VV (a,c) and VH (b,d)) for maize, soybean and sunflower
crops, The solid line curves represent maize, the dotted line represents soybean, with irrigated blue
and rainfed red for both crops. The black curve represents sunflower. The envelope around the curves
corresponds to the 95% confidence interval.

3.1.3. Cumulative Indices

The use of multispectral (optical and radar) and multi-temporal images products leads to an
increase in the number of features, to be processed, and consequently increase the redundancy of
spectral information and the computation time of the classification process. To avoid these effect,
we computed cumulative monthly indices, correspond to the sum of the spectral information of
each feature (rainfall, optical and radar). We used gap filling for simplicity. The use of cumulative
indices sounds pertinent as they are related to the plant functioning. Indeed, many authors have
demonstrated the link between plant development of the plant and the cumulative spectral indices
provided by remote sensing data [57–59]. For this study, we assumed that the irrigation have an
impact of several irrigation events (4 to 5 irrigations) on crop development could be captured using
the cumulative indices over the growing season. Indeed, we assume that the speed and amplitude of
crop development differs between irrigated and non-irrigated crops at the end of the season.

3.2. Classification

The algorithm used for the classification process is the Random Forest (RF) [60]. It was selected
for its robustness, because it is easier to parametrise and has good performances [29,30,61–64].
The Random Forest library used is the one provided by Shark [65] available through the supervised
classification framework of Orfeo Toolbox 6.7 [46]. The number of trees was set to 100, the maximum
depth to 25 and max-features to

√
number f eatures.

The pixel classification procedure has been fully automated by the Iota2 processing chain
developed by CESBio and available as free software [https://framagit.org/iota2-project/iota2.git].
Each classification was evaluated using the reference data set, which was randomly divided into two
parts: 50% of the plots were used for the training phase and 50% were used for validation. This division
into two parts avoids an optimistic estimate of the performance of the classification, as it ensures that
correlated pixels from the same plot will not be used for training and validation This division into two

https://framagit.org/iota2-project/iota2.git
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parts is performed for each run. RF classifiers can perform poorly when the number of training pixels
for each class is unbalanced. To address this problem, the maximum number of training pixels per
class has been limited to 10,000. Limiting the maximum number of pixels also reduces the training
time of the classifier. For those classes where fewer pixels were available, all the pixels in the training
set were used. In our case, the soybean classes (irrigated and rainfed) had less than 10,000 training
pixels because this crop is poorly represented in the territory.

3.3. Scenarios

Several scenarios were evaluated:

• Scenario 1: with monthly cumulative SAR features only (VH, VV, VH/VV) referenced as
“SAR only” in Figure 2,

• Scenario 2: with monthly cumulative Sentinel 2 features only (NDVI, NDRE, NDWI) referenced
as “Optical only” in Figure 2,

• Scenario 3: with monthly cumulative optical and SAR features referenced as “Optical and SAR”
in Figure 2,

• Scenario 4: scenario 3 with in addition cumulative rainfall referenced as “Optical, SAR and
Rainfall” in Figure 2,

• Scenario 5: 10-day Optical, SAR features referenced as “10-day Optical and SAR” in Figure 2.

The total number of features over the entire study period of each scenario is given the Table 4.

Table 4. Summary of the different scenarios tested, with the number of features over the period from
April to November.

ID Scenario Number of Features

Cumulative

1 SAR only 24
2 Optical only 24
3 Optical and SAR 48
4 Optical, SAR and rainfall data 56

Not cumulative 5 10-day Optical and SAR 385

3.4. Validation

Each metric was averaged over the five runs to obtain a mean value and a confidence interval
per scenario and to measure robustness against the sample selection noise. The global performance
was evaluated using the Kappa coefficient (1) and the Overall Accuracy (OA). The Kappa coefficient
expresses a relative difference between the observed agreement Po and the random agreement which
can be expected if the classifier was random, Pe. The Overall Accuracy (OA), is the total number of
correctly classified pixels divided by the total number of validation pixels.

Kappa =
Po − Pe

1 − Pe
(1)

with Po =
1
n ∑r

i=1 nii and Pe =
1

n2 ∑r
i=1 nini, The performance of the different scenarios was evaluated

using the reference datasets. Table 5 shows the number of pixels used for learning and validation
of the classification model for each class. In view of the strong imbalance between the two datasets
(Training and Validation), we know that the overall accuracy may be biased by the majority classes.
To limit this bias, we decided to use another metric at the class level.

The performance of each class was evaluated using the Fscore (2).

Fscore = 2 × Accuracy × Recall
Accuracy + Recall

(2)
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where

• Accuracy is the ratio between the correctly classified pixels and the sum of all pixels classified as
this class, and

• Recall is the ratio between the correctly classified pixels and the total number of reference data
pixels of that class.

The central processing unit (CPU) time and allocated Random Access Memory (RAM) were
also analysed in order to define a trade-off between classifier performance and use of computational
resources. This evaluation was carried out for the two steps of the classification process: the model
learning and the classification steps.

Table 5. Number of pixels for learning and validation of the model, for each class and for each year.

Class Label 2017 2018

Training Validation Training Validation

Irrigated Maize 10,000 51,731 10,000 33,651
Rainfed Maize 10,000 12,606 10,000 24,899
Irrigated Soybean 3388 2173 3844 4973
Rainfed Soybean 3461 4437 7319 7464
Sunflower 6502 4853 2173 1662

3.5. Confidence Map

The map of irrigated areas contains for each pixel the label selected by the classifier, which is a
majority vote on the labels selected by all the decision trees in the forest. The probability of each class
can be estimated as the proportion of trees in the forest that chose that label. It is therefore possible
to associate a confidence to the decision using the probability of the majority class. Although this
confidence estimate may be valuable to the user, it should be kept in mind that it is an estimate of the
classifier itself, and may therefore be erroneous. The correlation between confidence and classification
quality was assessed by Inglada et al. [47].

3.6. Postprocessing

A regularisation was applied to the final classification in order to remove isolated pixels.
This procedure filters the input labelled image using majority vote in a 3 × 3 neighbourhood.
The majority vote takes the most representative value of all identified pixels and then sets the centre
pixel to this majority label value [46]. The winter crops were also masked using the RPG of the
classified year.

4. Results

4.1. Performance of Each Scenario

The global performances of the classifications are shown in Figure 5. The best results are obtained
with the 10-days scenario 5.
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(a) 2017 (b) 2018

Figure 5. Performance for each scenarios.The orange and blue bars correspond to Overall accuracy and
Kappa respectively. (a) illustrates the results obtained in 2017 and (b) corresponds to those obtained
in 2018.

The classifications with cumulative indices lead to performances slightly inferior to the 10-days
classifications (OA = 0.78 in 2017), while significantly reducing the RAM usage and CPU time, as shown
in the Table 6. RAM is reduced by a factor of 2 for the learning phase. The CPU time is reduced by a
factor of 2 for the learning step and by a factor of 4 for the classification step. Therefore, scenario 4 may
be considered a good trade-off between accuracy and computational resources. However, we should
note that Kappa values (≈0.6) are quite low even for the best configuration. For the further analysis,
we retained the scenarios combining optical and radar features (scenarios 3, 4 and 5) as were supposed
to be more robust to various meteorological conditions.

Table 6. Computational resources for the learning and classification stages, for each scenario.

CPU Time (in Hours) RAM (in GB)

Scenario ID Nb. of Features Model Learning Classification Model Learning Classification

SAR 1 24 4.5 176 0.21 19
Optical 2 24 2.2 150 0.14 19

Optical & SAR 3 48 4.5 181 0.23 21
Optical SAR and Rainfall 4 54 3.5 164 0.22 21
10-days Optical & SAR 5 385 6.6 739 0.57 22

4.2. Fscore Results

Figure 6 shows the Fscores for the three scenarios. The best performances are observed for
sunflower for both years (Fscore > 0.9), irrigated maize in 2017 (Fscore > 0.85) and irrigated soybean in
2018 (Fscore > 0.68). The lowest scores are observed for the irrigated soybean in 2017 (0.28 < Fscore <
0.4). Intermediate Fscore (0.4 to 0.8) are observed for the rainfed maize and rainfed soybean.The same
trends are observed for all scenarios.

Except for sunflower, adding rainfall into the cumulative method (Scenarios 3 and 4) improves
the Fscore and allows to reach performance comparable to the 10-day scenario (Scenario 5).
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(a) Irrigated Maize (b) Rainfed Maize (c) Irrigated Soybean

(d) Rainfed Soybean (e) Sunflower

Figure 6. Fscore by class as a function of the 3 scenarios. The orange and blue bars correspond,
respectively, to the years 2017 and 2018.

4.3. Analysis of Confusion Between Classes for Irrigated Crops

The confusion between classes were analysed for the three scenarios. Figure 7 illustrates the
percentage of confusion between classes for both years, i.e., the percentage of prediction error.

For both years and regardless of the scenario, confusion are observed between practices
(irrigated and rainfed) for a given crop but little confusion occurs between crops. The strongest
confusions (30% < Fscore < 50%) are observed in 2017 between irrigated and rainfed soybean
(Figure 7b,d) as observed on the Fscore values (Figure 6). Lowest confusions are observed between
irrigated and rainfed maize, for both years, with Fscore values varying from 10 to 30%, in average
(Figure 7a,c).

Moreover, the use of rainfall data allows for a reduction in confusions for all classes.
Indeed, the percentages of confusions are almost systematically lower for scenario 4 compared to those
obtained for scenario 3.



Remote Sens. 2020, 12, 3044 12 of 19

Figure 7. Confusion according to the scenarios. The title of each sub-graph corresponds to the real class
and the labels in the horizontal axis refer to the predicted classes. The letter on each graph corresponds
to a crop, with (a): irrigated maize, (b): irrigated soybean, (c): rainfed maize and (d): rainfed soybean.

4.4. Confidence Map

Figure 8 shows the confidence index for each pixel on scenarios 3 (Figure 8a) and 4 (Figure 8b) in
2017. The best confidence for all classes combined is for scenario 4 for both years. Indeed, the average
confidence is 69.5% ± 8% for scenario 4 compared to 63% ± 10% for scenario 3 in 2017 and 63% ± 10%
and 72.10% ± 7% for scenarios 3 and 4, respectively, in 2018. We also see in Figure 8 that some areas,
such as the Northeast, still have low confidence despite the addition of rainfall. These areas remain
difficult to classify by the model. The Table 7 shows the average percentage of confidence for each class.
Irrigated and rainfed maize and sunflower have the highest confidence for both years. Irrigated and
rainfed soybeans have the lowest confidence and those for both years studied.

Table 7. Average confidence for the years 2017 and 2018, with associated standard deviations,
expressed in %.

Class Label 2017 2018

Scenario 3 Scenario 4 Scenario 3 Scenario 4

Irrigated maize 73 ± 10 84 ± 8 70 ± 10 84 ± 7
Rainfed maize 70 ± 11 78 ± 9 62 ± 10 72 ± 11
Irrigated soybean 55 ± 11 61 ± 11 64 ± 12 65 ± 12
Rainfed soybean 53 ± 12 62 ± 14 56 ± 11 59 ± 9
Sunflower 89 ± 8 92 ± 4 56 ± 13 74 ± 12
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Figure 8. Confidence map for 2017: (a) scenario 3 and (b) scenario 4.

4.5. Regional Statistics

Table 8 shows the total areas by crop provided by scenario 4 and 5 and compared to RPG for
the entire study area. The areas estimated were similar to the RPG, with average errors per class not
exceeding ±8% for Scenario 5. However, the errors were higher for Scenario 4. Maize is the crop with
the best area estimated by both scenarios, with an average error of ±2%. In contrast, soybeans have an
average error of ±15%, with the largest gap observed in 2017 in Scenario 4. Scenario 5 produced to
better performances.

Table 8. Summary of areas by class for Scenarios 4 and 5 and the RPG for the years 2017 and 2018.
They are expressed in hectares. The term diff. refers to the difference between the area from the scenario
and the RPG. It is expressed as a percentage.

Class Label 2017 2018

RPG Scenario 4 Diff. Scenario 5 Diff. RPG Scenario 4 Diff. Scenario 5 Diff.

Maize 20,987 21,479 +2% 20,601 −2% 20,242 20,695 +2% 20,149 −1%
Sunflower 2210 1973 −11% 2183 −1% 1242 1131 −9% 1339 +8%
Soybean 2301 1402 −39% 2445 +6% 2326 2001 +2% 2339 0%

Total 25,498 24,854 −3% 25,229 −1% 23,811 23,827 0% 23,827 0%

5. Discussion

5.1. Optical or/and Radar Features

Scenarios 1 and 2, based on single-source use of radiometric information, show the worst
performance in terms of OA and Kappa coefficient (between 0.3 and 0.49). The low Fscore obtained
with the radar data only is due to the large variations in the SAR signal and the lack of spectral
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information that does not allow good discrimination between classes. Indeed, SAR polarisations are
the result of multiple contributions, between rain, vegetation and tillage, leading to classification errors.
The results obtained by this scenario are in agreement with those obtained by Ferrant et al., on the
Telangana province in South India with a Kappa coefficient between 0.3 and 0.49 depending on the
year [35]. The poor performance of scenario 2 is due to the low number of features, caused by cloud
cover (37% in 2017 and 31% in 2018), and the absence of the 2B sensor in 2017 that can make crop
growth detection difficult like frequently observed in [9,10,33,35,36].

Thus so-called “single-source” scenarios are highly dependent on the number and quality of the
dataset. Figure 5 reveals that the synergy optical and radar data permits to limit the impact of cloud
cover, with a gain in all metrics for both years. Similar results were found in the literature with a
significant gain in performance on the detection of irrigated areas in India (more than 74% gain on the
Fscore and 0.20 on the kappa coefficient, when the synergy of the two sensors is used) [35], in Northern
Spain, with a 5% increase in overall accuracy compared to using Sentinel-1 data alone [37].

5.2. Impact of Cumulative Indices

Dealing with the huge number of images available requires optimised computing methods.
To avoid this constraint, we evaluated the performance of classifications with a reduced number of
indices. Results show that cumulative indices lead to similar performances for maize (irrigated/rainfed)
than the overall 10-day features (Figure 5), meaning that these is redundant information when using
all the full spectral bands and dates. The lowest Fscore observed for the minority classes (Soybean and
rainfed maize) is due to a deficit of learning samples. Indeed, the low number of reference dataset for
theses classes does not allow to characterise the whole spatial and temporal variability of these classes,
and consequently leads to a high degree of confusion, as shown in Figure 7. However, Scenario 5 is
seems less sensitive to the size of reference dataset. The addition of the learning data for the soybean
and rainfed maize in 2018, the results were improved with lower confusion (Figure 7) and higher Fscore.
This link between performance of the classification methods and the number of reference data has been
raise by Pelletier et al. [64]. For sunflowers, there is a decrease in Fscore and confidence between 2017
and 2018, which is explained by a smaller sample area in 2018, with only 40 ha, compared to 120 ha in
2017. Nevertheless, this small sample area does not have a significant impact on the results, as the
phenology of this crop is very different from that of the other crops studied, as shown in Figure 3.

Much less computational resources was needed for the cumulative approach, as shown in Table 6.
Classifications based on the use of cumulative indices (56 features) lead to similar performances
to classifications using the 10-days features (385 features), while reducing the consumption of the
computing resources by a factor of 4.

5.3. Contribution of Rainfall Features

The addition of rainfall data into the process slightly enhances the performance of the cumulative
method, as illustrated by Fscore (Figure 6) and confidence (Section 4.4 and Table 7).

Indeed, adding these data improves the separability of the classes (Figure 7), and the possible
noise of labelling present in the reference dataset. Nevertheless, they seem to lose importance during
rainy years, as illustrated by the results on irrigated maize, which show a decrease in the Fscore
between 2017 and 2018. This loss of efficiency can be explained by similar canopy growth dynamics
between irrigated and rainfed crops, as rainfed crops are not subject to water stress limiting their
phenological development during drought periods. These data also show that they can be used
to discriminate rainfed and irrigated crops for near-real-time approaches [37]. Moreover, we note
that scenario 4 is slightly faster compared to scenario 3 during the learning and application phase
of the model (classification). This increase in speed is explained by the addition of rainfall data in
the classification process which seems to simplify the choice of the classifier to assign a class to a
given pixel.
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The analysis of the confidence map illustrated in Section 4.4 confirms these results as
the best confidence values are observed for scenario 4 (Figure 8) and those for both years.
Nevertheless, the contribution of meteorological data does not significantly increase confidence
for minority classes as shown in the Table 7. There are still areas where uncertainty remains high,
as illustrated in the inserts of the Figure 8. As rainfall exhibits spatial heterogeneities all the ambiguities
between irrigated and rainfed plots might not be removed. Indeed, the rainfall data used in our study
have a low spatial resolution (8 km), which can increase confusions on the distinction between irrigated
and rainfall.

6. Conclusions

The objective of this study was to establish a methodology for detecting irrigated and rainfed
crops in temperate areas, using monthly cumulative of optical vegetation indices and SAR polarisations
together. The use of these cumulative indices allows taking into account discrepancies on canopy
development (speed and amplitude) between various crops and practices (irrigated and rainfed),
while retaining all the spectral information. Classifications with radar only, or optical only, show poor
performances (Kappa and OA < 0.5) caused by the lack of spectral information, not allowing a good
discrimination of classes. The combined use of optical and radar features gives excellent results for
irrigated maize (Fscore > 0.80), which represents 80% of the summer crops in the area. The results
were worse for soybean (Fscore < 0.60), especially in 2017, which is explained by the lack of in situ
reference data, partly due to the low representativeness of this crop on this territory (9%), making in
situ collection difficult. In order to overcome this data constraint and to be able to extend the study area,
the use of an eco-climatic spatial stratification could be envisaged as illustrated by Inglada et al. [47].
The use of spatial stratification would allow an improvement in performance as well as a better
sampling of the minority classes.

In the course of this work, the contribution of rainfall data was also evaluated. The addition of
these data allows a significant improvement of the Fscore for the irrigated and rainfed classes and
a reduction of confusion between classes during dry years. However, the low spatial resolution of
rainfall data used in our study (8 km), can lead to high uncertainties, especially in areas with strong
rainfall heterogeneity. To limit these uncertainties, the use of data with a finer spatial resolution, like the
AROME [66] or the COMEPHORE [67] data distributed by Météo-France, can be considered in a future
work. Our study also reveals that the use of monthly cumulative indices leads to performances similar
to those of the use of gap-filled images every 10 days while reducing the need of computer resources
(×4). A cumulative method would seem to be the best choice for operational application, maintaining
the best classification performances, while reducing the need of computational resources. The approach
developed is valuable for cereal crops in temperate climate but it is might also be valuable for semi-arid
areas where the contrasts between irrigated and rainfed crops are huge. However, that needs to be
confirmed with further studies. The study could also be extended by an in-season study such as
proposed in Demarez et al. [36] that revealed that the use of Landsat-8 and Sentinel-1 images allowed
early detection of irrigated crops.
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