

Urbansimul, de l'observation à l'action foncière: présentation de l'outil

Ghislain Geniaux

▶ To cite this version:

Ghislain Geniaux. Urbansimul, de l'observation à l'action foncière: présentation de l'outil. Journée d'études Numérique et Immobilier (NUMIMMO), Sep 2019, Avignon, France. hal-02952536

HAL Id: hal-02952536

https://hal.inrae.fr/hal-02952536

Submitted on 29 Sep 2020

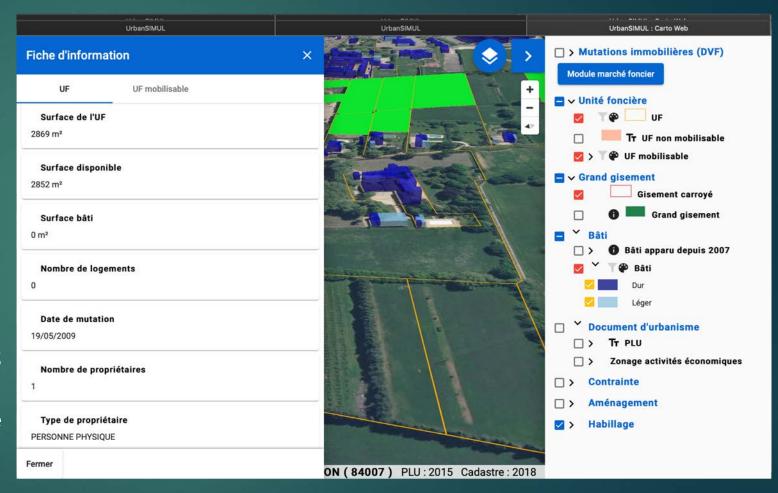
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Urbansimul, de l'observation à l'action foncière : présentation de l'outil

Ghislain Geniaux,

UR Ecodéveloppement 767, INRA Avignon


PLAN

- 1. Panorama du projet UrbanSIMUL
 - 1. Video
- 2. Le module marché foncier
- 3. Le module Dynamique des marchés
- 4. Modélisation statistique
 - 1. Les modèles du module PRONOSTIC
 - 2. Les prix et la simulation de l'étalement urbain
 - 3. L'effet prix de l'offre foncière

VIDEO: https://www.urbansimul.fr/supp ort/presentation

Panorama du projet UrbanSIMUL

- ▶ Un SaaS (software as a service) en ligne, avec plus de 500 utilisateurs.
- il inclut des données sur 6 millions de parcelles suivies annuellement et couvre 2 régions avec 1500 municipalités.
- ► Il s'agit d'un projet gagnant-gagnant entre les chercheurs et les planificateurs/gouverneme nts locaux.

Module marché foncier

- ▶ Améliorer la donnée :
 - Coupler la données DVF à MAJIC, et autres informations sur les unités foncières d'UrbanSIMUL (zonage, équipement, aménités)
 - Mieux qualifier les biens et leur segment de marché notamment pour les terrains à bâtir
- Faciliter la prise en main pour les opérationnels du foncier
 - ▶ En facilitant la sélection et filtrage des biens
 - ▶ Par des statistiques simples
 - Utile pour le montage de dossier à destination des élus de la justice administrative

Module Dynamique des marchés

fonciers URBANSIMUL
Outli collaboratif d'analyse et de prospective sur le toncier

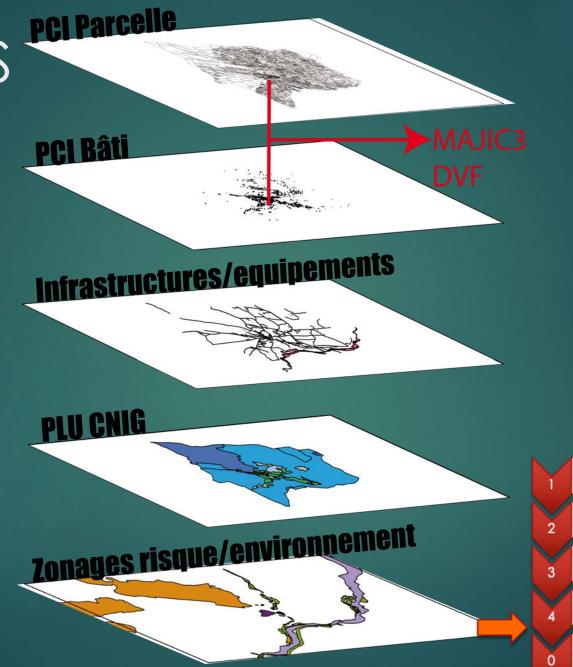
INDA

DYNMARK: un outil d'exploration des dynamiques des marchés fonciers et immobiliers à partir des données DVF

Les courbes prix/volume renseignent sur la dynamique des marchés. Chaque point de la courbe correspond aux prix médian en Euros courrant et au nombre de biens vendus durant les 12 derniers mois. Un label 'T' permet d'indiquer le trimestre tandis que la couleur permet d'identifier l'année. L'épaisseur du trait correspond à la dispersion des prix : plus il est épais plus la dispersion interdécile (10-90) des prix est importante.

Quand la ligne va vers le bas le prix baisse.

Quand la ligne va vers le haut le prix augmente.


Quand la ligne va vers la gauche le nombre de biens vendus baisse.

Quand la ligne va vers la droite le nombre de biens vendus augmente.

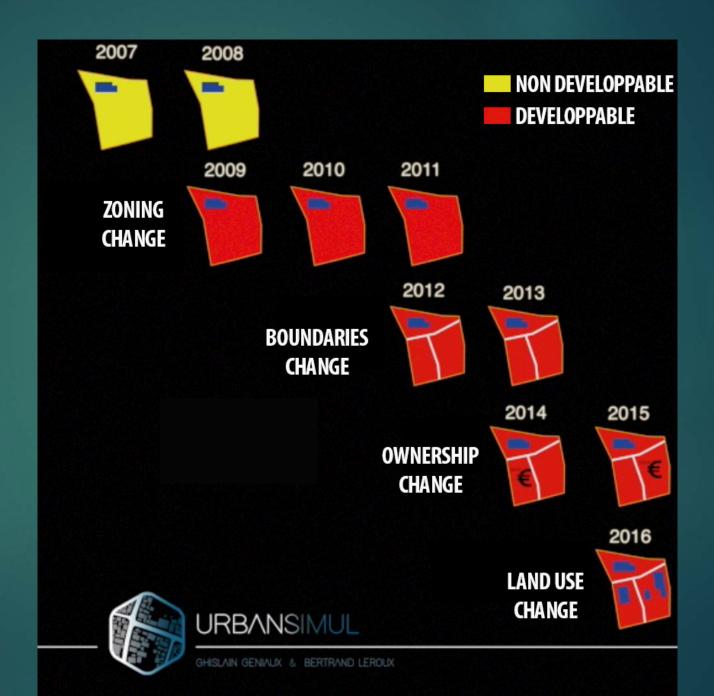
Sur chaque segment, les observations avec les 1% de prix les plus élevés et les plus bas sont retirées.

DONNEES

Base de données GéoHistorique 2007-2017

- Très forte contrainte
- Forte contrainte
- Contrainte moyenne
- Faible contrainte
- Aucune contrainte

DONNEES REMARQUABLES

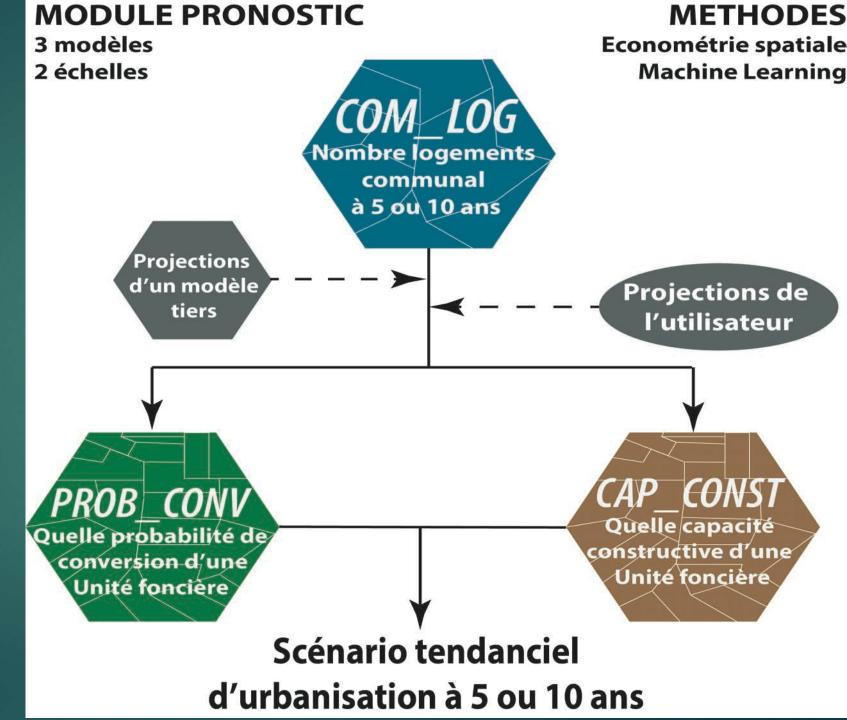

- ▶ Données exhaustives sur :
 - Les parcelles et les bâtis
 - ▶ Les prix,

et surtout sur :

- Les propriétaires
- La règlementation en matière d'urbanisme

Offre foncière communale et portefeuille foncier/immobilier

DES DECISIONS DANS L'ESPACE ET LE TEMPS



Développements de méthodes statistiques sur données de hautes dimension spatiales

- ▶ Modèle de choix discret avec autocorrélation spatiale
 - ▶ Package R *ProbitSpatial* 2016 (7135 téléchargements en 30 mois), Martinetti and Geniaux 2017 RSUE
- Hétérogénéité spatiale + autocorrélation spatiale
 - ▶ Package R mgwrsar 2017 (697 téléchargements en 5 mois), Geniaux and Martinetti 2017 RSUE
 - ▶ + non linéarité Package R *mgwrsar* 2018
- ► En cours de développement :
 - ► Fast-version of *mgwrsar*, CRAN 12/2019
 - ▶ algorithmes de boosting pour données spatiales/spatio-temporelles 2020

Simulation de l'urbanisation

Les variables d'intérêt

CAP_CONST Les capacités constructives des Unités Foncières :

- hblog(t+8,UF) sachant hblog>0 (multinomial, count data)
- ▶ surflog(t+8,UF) sachant nblog>0

PROB_CONV Les probabilités de conversion des Unités Foncières :

 \triangleright Proba(\triangle surflog(†+8,UF)>0)

PROB_CONV Les probabilités de construction des Unités Foncières.

- ▶ Données 2009-2017 : 3 millions d'Ufs, 210 000 Ufs constructibles non bâties
- Construction de l'endogène : projection des nouveaux bâtis 2017 sur les UF de 2009
- X 330 variables initiales sur les Ufs, leur propriétaire, leur environnement, les règles d'urbanisme, les distances minimales à ...
- ▶ 7000 variables de lissage spatio-temporel construites à partir de ces 330 variables initiales
 - ► K premiers voisins : 2,5,10,20,50
 - Noyau bisquare adaptatif
 - sans distinction, et/ou bâti ou pas et/ou de même type de zonage et/ou de taille comparable, en considérant l'évolution du bâti sur 3, 5, 7 ou 9 ans.

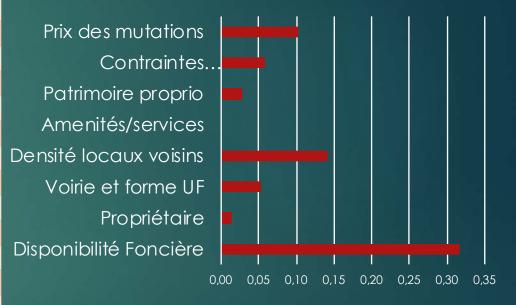
Library(mgwrsar)
W=KNN(coords,k=10,kernel='gauss_adapt')
WX=W %*% X

Méthodes

- 1. Estimation d'un modèle binomial
- Utilisation de méthode de gradient descent boosting (xgboost)
- 3. Modèle Probit Spatial (ProbitSpatial)
- 4. Méthode de Model averaging

Cross validation: binomial prob_conv

```
Reference
Prediction
        216334
                    8256
        3584
                    17593
                    Forte proportion
                     de permis de
                       construire
Overall Statistics
        Accuracy: 0.9583
         95% CI: (0.9574, 0.9591)
  No Information Rate: 0.934
  P-Value [Acc > NIR] : < 2.2e-16
```


Kappa: 0.6042

Statistics by Class: Sensitivity: 0.9887 Specificity: 0.5280 Pos Pred Value: 0.9674 Neg Pred Value: 0.7671 Prevalence: 0.9340 Detection Rate: 0.9234 Detection Prevalence: 0.9546 Balanced Accuracy: 0.7583

4	\sim
41	
ш	
Ш	U

Variables	Type de variables	Variable Importance	
d_bati_pci	densité locaux voisins	0,14080	
surfdispo	disponibilité foncière	0,08432	
cgrnumdtxtTERRAINS_A_BATIR	mutation	0,08106	
surfdispo2	disponibilité foncière	0,08021	
amutp	mutation	0,06921	
surf	disponibilité foncière	0,05205	
ze_min1	contrainte réglementaire	0,04381	
frrue_rel	Voirie et forme UF	0,02706	
prop_spar	patrimoine proprio	0,02101	
is	Voirie et forme UF	0,01557	
ncont_niv1	contrainte réglementaire	0,01371	
mediane	mutation	0,01171	
e_m2_terr	mutation	0,01096	
ispomobilisable_terrain_nu	disponibilité foncière	0,01001	
age	propriétaire	0,00925	
prop_sloc	patrimoine proprio	0,00714	
WK4_e_m2_terr	mutation	0,00677	
long	Voirie et forme UF	0,00592	
libniv1PERSONNE_PHYSIQUE	propriétaire	0,00530	
surf_plane	disponibilité foncière	0,00480	
long2	Voirie et forme UF	0,00468	
ccogrmNA	propriétaire	0,00442	
nb_pro	propriétaire	0,00439	
WK10_r9_ces	disponibilité foncière	0,00414	
WK4_amutp	mutation	0,00367	

Variable Importance

CAP_CONST Les capacités constructives des Unités Foncières.

- ▶ Données 2009-2017 : 3 millions d'Ufs, 40 000 Ufs constructibles non bâties en 2009 devenues construites en 2017
- Même lot de variables que pour le modèle de probabilité de conversion.

Cross validation: multinomial 3 classes

Reference

Prediction 1 2-6 >6

1 23228 3720 194

2-6 3644 5122 764

>6 277 542 1810

Overall Statistics

Accuracy: 0.7674

95% CI: (0.7632, 0.7716)

No Information Rate: 0.6908

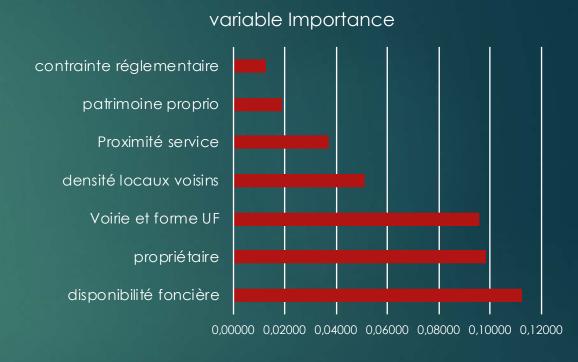
P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.4947

Statistics by Class:

	Class 1	Class2 Class3
Sensitivity	0.8556	0.5458 0.65390
Specificity	0.6779	0.8527 0.97758
Pos Pred Value	0.8558	0.5375 0.68847
Neg Pred Value	0.6775	0.8568 0.97388
Prevalence	0.6908	0.2388 0.07043
Detection Rate	0.5910	0.1303 0.04605
Detection Prevalence	0.6906	0.2425 0.06689
Balanced Accuracy	0.7667	0.6992 0.81574

Cross validation: comptage


Le modèle de comptage produit des erreurs moyennes à l'échelle de l'unité foncière qui ne sont pas encore pleinement satisfaisante avec une erreur moyenne de la prédiction out-sample à 40 % à l'échelle de l'UF. En revanche, on peut voir que lorsqu'on cumule ces prédictions à des échelles supérieures les prédictions deviennent plus satisfaisantes:

Distribution des erreurs cumulées

Échelle	Commun	e x zone_p	olu	Commur	ne:	
Stat	median	mean	p75	median	mean	p75
Err %	0.1852	0.2321	0.3104	0.1005	0.1776	0.2229

Les principaux drivers de la capacité constructive

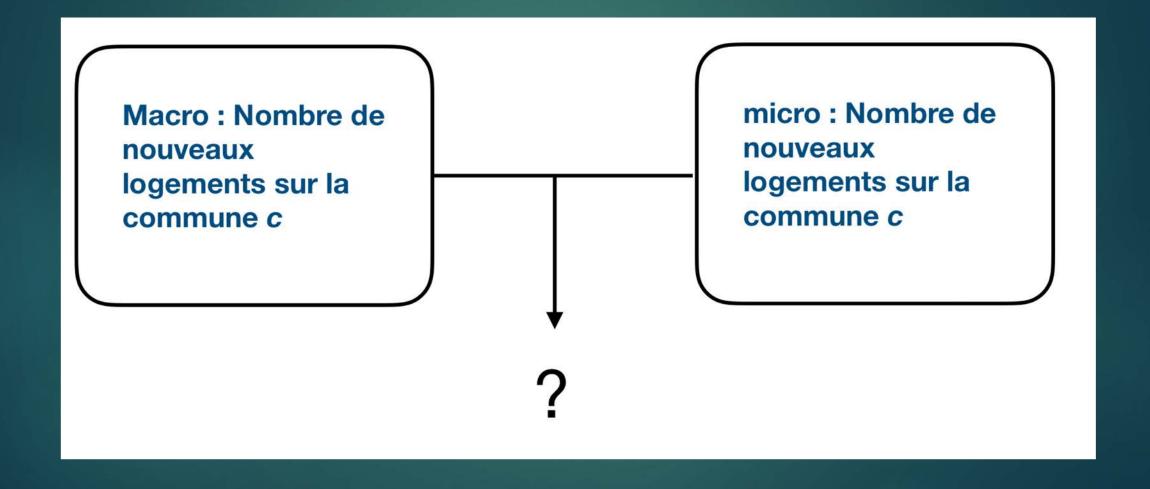
Variables	Type de variables	Variable Importance
frrue_abs	Voirie et forme UF	0,07011
ccogrmNA	propriétaire	0,05679
surf_plane	disponibilité foncière	0,04771
surfdispo2	disponibilité foncière	0,03377
d_bati_pci	densité locaux voisins	0,03255
libniv1PERSONNE_PHYSIQUE	propriétaire	0,02858
frrue_rel	Voirie et forme UF	0,01866
surf	disponibilité foncière	0,01820
d_pharmacie	Proximité service	0,01565
WK50_nlocappt	densité locaux voisins	0,01352
	contrainte	
ncont_niv1	réglementaire	0,01272
surfdispo	disponibilité foncière	0,01270
prop_spar	patrimoine propriétaire	0,01231
WK50_nblocal	densité locaux voisins	0,01202
d_ecole_ma	Proximité service	0,01186
amutp	Date de mutation	0,01104
d_ecole_el	Proximité service	0,00975
dlogtuf_com.mediancom	densité locaux voisins	0,00726
WK4_frrue_rel	Voirie et forme UF	0,00684
age	propriétaire	0,00655
prop_sloc	patrimoine propriétaire	0,00646
dlogtuf_complu.median	densité locaux voisins	0,00624
WBR9S0.85_dlogtuf	densité locaux voisins	0,00616
nb_pro	propriétaire	0,00613
WBR5S0.85_dlogtuf	densité locaux voisins	0,00598

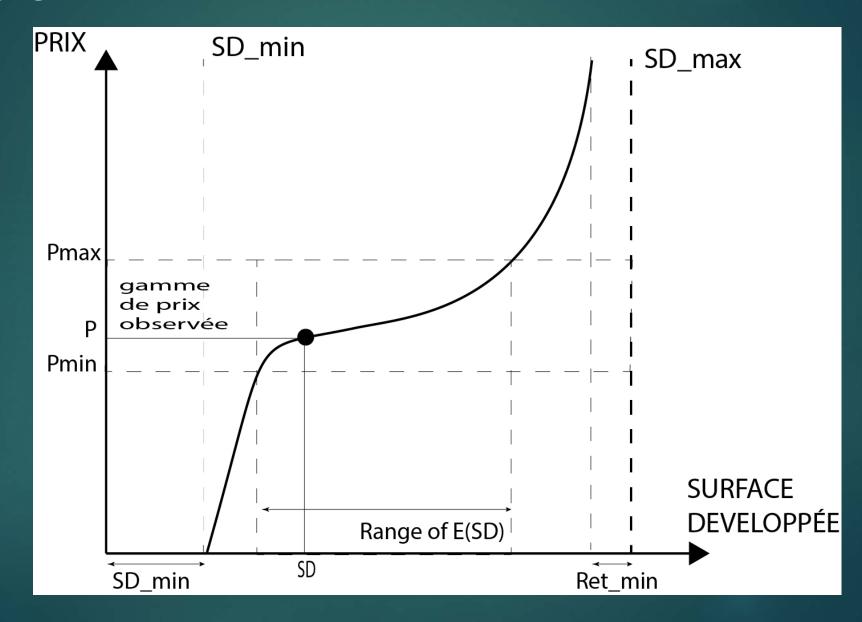
LOG_COM La démographie et le parc de logement

Le nombre de logements, les prix et la population à la commune (~ Jeanty Partridge & Irwin 2010):

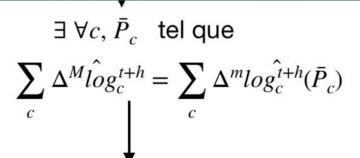
```
 \begin{cases} \Delta \mathsf{pop}_{\mathsf{c}} = f \; (\mathsf{X}_{\mathsf{c}}, \Delta \mathsf{logt}_{c}, \Delta \mathsf{Indiceprix}_{\mathsf{c}}, \Delta \mathsf{OffreFoncière}_{\mathsf{c}}) \\ \Delta \mathsf{logt}_{c} = g \; (\mathsf{X}_{\mathsf{c}}, \Delta \mathsf{pop}_{\mathsf{c}}, \Delta \mathsf{Indiceprix}_{\mathsf{c}}, \Delta \mathsf{OffreFoncière}_{\mathsf{c}}) \\ \Delta \mathsf{IndicePrix}_{\mathsf{c}} = h \; (\mathsf{X}_{c}, \Delta \mathsf{logt}_{c}, \Delta \mathsf{pop}_{\mathsf{c}}, \Delta \mathsf{OffreFoncière}_{\mathsf{c}}) \\ \Delta \mathsf{OffreFoncière}_{\mathsf{c}} = k \; (\mathsf{X}_{c}, \Delta \mathsf{logt}_{c}, \Delta \mathsf{pop}_{\mathsf{c}}, \Delta \mathsf{IndicePrix}_{\mathsf{c}}) \end{cases}
```

Avec f(), g(), h(), k() calibrés à partir de méthodes de boosting.


$$\begin{cases} \Delta^{M} pop_{c}^{t+h} = Fpop(X_{c,t}, h) \\ \Delta^{M} log_{c}^{t+h} = Flog(X_{c,t}, \Delta \hat{pop_{c}^{t+h}}, h) \end{cases}$$


$$\hat{\Delta^M log_c^{t+h}}$$

Macro: Nombre de nouveaux logements sur la commune c


DISCUSION

DISCUSION

DISCUSION

+

$$\tilde{\bar{P}}_c = \underset{\tilde{\bar{P}}_c}{arg \, min} \sum_c (\bar{P}_c - Cost(\tilde{\bar{P}}_c))$$

tel que $\forall c$,

$$\Delta^{M}\hat{log}_{c}^{t+h} = \Delta^{m}\hat{log}_{c}^{t+h}(\tilde{\bar{P}}_{c})$$

Avec $Cost(P_c) = P_c * OC$ Et OC =Ordre de Contiguité

Coté évaluation des politiques publiques.

- ► Effet prix de l'offre foncière (2015),
 - actualisation du papier sur données 2019 avec un plus gros échantillon,
 - Utilisation de méthode contrefactuelle (contrôle synthétique)
- ▶ Effet du patrimoine et prix sur les décisions de zonage (suppression des zones NB).
 - Probit spatial: probabilité d'être du bon coté du trait selon son patrimoine et sa valeur.

Je vous remercie de votre attention

Ces travaux ont bénéficié de fonds issus d'un partenariat entre les institutions suivantes :

