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ABSTRACT 
Dating population divergence within species from molecular data and relating such dating to climatic and 
biogeographic changes is not trivial. Yet it can help formulating evolutionary hypotheses regarding local 
adaptation and future responses to changing environments. Key issues include statistical selection of a 
demographic and historical scenario among a set of possible scenarios, and estimation of the parameter(s) of 
interest under the chosen scenario. Such inferences greatly benefit from new statistical approaches including 
approximate Bayesian computation - Random Forest (ABC-RF), the latter providing reliable inference at a low 
computational cost, with the possibility to take into account prior knowledge on both biogeographical history 
and genetic markers. Here, we used ABC-RF, including independent information on evolutionary rate and pattern 
at microsatellite markers, to decipher the evolutionary history of the African arid-adapted pest locust, 
Schistocerca gregaria. We found that the evolutionary processes that have shaped the present geographical 
distribution of the species in two disjoint northern and southern regions of Africa were recent, dating back 2.6 Ky 
(90% CI: 0.9 – 6.6 Ky). ABC-RF inferences also supported a southern colonization of Africa from a low number of 
founders of northern origin. The inferred divergence history is better explained by the peculiar biology of S. 
gregaria, which involves a density-dependent swarming phase with some exceptional spectacular migrations, 
rather than a continuous colonization resulting from the continental expansion of open vegetation habitats 
during more ancient Quaternary glacial climatic episodes. 
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Introduction 

As in other regions of the world, Africa has gone through several major episodes 
of climate change since the early Pleistocene (deMenocal 1995 and 2004). The 
prevalent climate was colder and drier than nowadays during glaciation periods, and 
became more humid during warmer interglacial periods. These climatic phases 
resulted in shifts of vegetation (de Vivo and Carmignotto 2004) and are most likely at 
the origin of the current isolation between northern and southern distributions of 
arid-adapted species (Monod 1971). In Africa, at least fifty-six plant species show 
disjoint geographical distributions in southern and northern arid areas (Monod 1971; 
Jurgens 1997; Lebrun 2001). Similarly, a number of animal vertebrate species show 
meridian disjoint distributions on this continent, including eight mammals and 29 
birds (Monod 1971; de Vivo and Carmignotto 2004; Lorenzen et al. 2012). The desert 
locust, Schistocerca gregaria, is among the few examples of insect species distributed 
in two distinct regions along the north-south axis of Africa. Other known disjunctions 
in insects are interspecific and concern species of the families Charilaidae 
(Orthoptera) and Mythicomyiidae (Diptera), and of the genus Fidelia (Hymenoptera) 
(Le Gall et al. 2010). Similarities in extant distributions of African arid-adapted species 
across divergent taxonomic groups point to a common climatic history and an 
important role of environmental factors. Yet, to our knowledge, studies relating 
evolutionary history and climatic history have rarely been carried out in this 
continent; but see mitochondrial studies by Miller et al. 2011 on the ostrich, Atickem 
et al. 2018 on the black-backed jackal, and Moodley et al. 2018 on the white 
rhinoceros. 

 
Relating evolutionary and climatic histories often requires dating population 

differentiation events so that species or subspecies divergence can be understood in 
a broad biogeographic context. However, finding a reliable calibration to convert 
measures of genetic divergence into units of absolute time is challenging, especially 
so for recent evolutionary events (Ho et al. 2008). Internal fossil records are often 
lacking and extra-specific fossil calibration may lead to considerable overestimates of 
divergence times (Ho et al. 2008). A sensible approach is to use an evolutionary rate 
estimated from sequence data of a related species for which internal fossil 
calibration is available (Ho et al. 2008). Unfortunately, on the African continent, 
fossils, such as radiocarbon-dated ancient samples, remain relatively rare and are 
often not representative of modern lineages (e.g., Le Gall et al. 2010 for insects). The 
lack of paleontological and archaeological records is partly due to their fragility under 
the aridity conditions of the Sahara. The end-result is that the options to relate 
population divergence to biogeographic events in this region are very limited. Finding 
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a dating strategy that does not rely on fossils would therefore constitute a key 
advance in understanding the region’s biogeography.  

 
In this context, the use of versatile molecular markers, such as microsatellite loci, 

for which evolutionary rates can be obtained from direct observation of germline 
mutations in the species of interest, represents a useful alternative. Microsatellite 
mutation rates exceed by several orders of magnitude that of point mutation in DNA 
sequences, ranging from 10-6 to 10-2 events per locus and per generation (Ellegren 
2000). Such rates allow one to both observe mutation events in parent-offspring 
segregation data of realistic sample size and to reconstruct the recent history of 
related populations. However, the use of microsatellite loci to estimate divergence 
times at recent evolutionary time-scales still needs to overcome significant 
challenges. Since microsatellite allele sizes result from the insertion or deletion of 
single or multiple repeat units and are tightly constrained, these markers can be 
characterized by high levels of homoplasy that can obscure inferences about gene 
history (e.g., Estoup et al. 2002). In particular, at large time scales (i.e., for distantly 
related populations), genetic distance values no longer follow a linear relationship 
with time. Rather, they reach a plateau and therefore provide biased and hence 
unreliable estimation of divergence time over a certain time threshold (Takezaki and 
Nei 1996; Feldman et al. 1997; Pollock et al. 1998). Microsatellites remain 
informative with respect to divergence time only if the population split occurs within 
the period of linearity with time (Feldman et al. 1997; Pollock et al. 1998). The exact 
value of the differentiation threshold above which microsatellite markers would no 
longer accurately reflect divergence times will depend on constraints on allele sizes 
and population-scaled mutation rates (Feldman et al. 1997; Pollock et al. 1998). In 
this context, the approximate Bayesian computation - random forest (ABC-RF) 
approach recently proposed by Raynal et al. (2019) is a singular statistical advance, as 
it allows both to take into account prior knowledge on genetic markers (including 
mutation rate and pattern) and to compute accuracy of parameter estimation at a 
local (i.e., posterior) scale. Using this methodological framework, one can envisage to 
evaluate the divergence time threshold above which posterior estimates of 
divergence time would become biased under a given evolutionary scenario, and 
hence in this way thoroughly evaluate the robustness of inferences about divergence 
time events. 

 
The desert locust, S. gregaria, is a generalist herbivore that can be found in arid 

grasslands and deserts in both northern and southern Africa (Figure 1a). In its 
northern range, the desert locust is one of the most widespread and harmful 
agricultural pest species, with a very large potential outbreak area, spanning from 
West Africa to Southwest Asia. The desert locust is also present in the south-western 
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arid zone (SWA) of Africa, which includes South-Africa, Namibia, Botswana and 
south-western Angola. The southern populations of the desert locust are termed S. g. 
flaviventris and are geographically separated by nearly 2,500 km from populations of 
the nominal subspecies from northern Africa, S. g. gregaria (Uvarov 1977). The 
isolation of S. g. flaviventris and S. g. gregaria lineages was recently supported by 
highlighting distinctive mitochondrial DNA haplotypes and male genitalia 
morphologies (Chapuis et al. 2016). Yet, the precise history of divergence remains 
elusive. 

 
The main objective of the present study is to unravel the historical and 

evolutionary processes that have shaped the present disjoint geographical 
distribution of the desert locust and the genetic variation observed both within and 
between populations of its two subspecies. To this aim, we applied an ABC-RF 
approach and show its full potential to help discriminate between alternative 
biogeographic scenarios. We first start by identifying a set of evolutionary 
alternatives relevant to the species from African paleo-vegetation maps that reflect 
potential past distributions of the desert locust. We then used molecular data 
obtained from microsatellite markers for which we could obtain independent 
information on evolutionary rates and allele size constraints in the species of interest 
from direct observation of germline mutations (Chapuis et al. 2015). We applied 
recently available algorithms of the ABC-RF on our microsatellite population genetic 
data to compare a set of thoroughly formalized and justified evolutionary scenarios 
and estimate the divergence time between S. g. gregaria and S. g. flaviventris under 
the most likely of our scenarios. Finally, we interpret our results in light of past 
vegetation cover and desert locust biology. 

Results 

Table 1 shows the values of the summary statistics obtained from the observed 
population dataset consisting in two unstructured pooled samples of the subspecies 
S. g. gregaria and S. g. flaviventris. A total of 170 individuals (i.e., 80 and 90 
individuals for S. g. gregaria and S. g. flaviventris, respectively) were genotyped at 23 
microsatellite markers derived from either genomic DNA (14 loci) or messenger RNA 
(9 loci) resources (hereafter referred to as untranscribed and transcribed 
microsatellite markers, respectively). The level of differentiation between the two 
subspecies (as measured by the parameter FST) was 0.04 and 0.12 for untranscribed 
and transcribed microsatellite markers, respectively. The level of genetic diversity 
was higher within the northern subspecies S. g. gregaria (+7% and +14% for the 
mean number of alleles and expected heterozygosity, respectively). 
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Formalization and choice of evolutionary scenarios 
 
Using a rich corpus of vegetation data, we reconstructed the present time (Fig. 1c) 

and past time (Figs. 1d-f) distribution ranges of S. gregaria in Africa, going back to the 
Last Glacial Maximum period (LGM, 26 to 14.8 Ky ago). Maps of vegetation cover for 
glacial arid maximums (Figs. 1e and 1f) showed an expansion of open vegetation 
habitats sufficient to make the potential range of the species continuous from the 
Horn of Africa in the north-west to the Cape of Good Hope in the south. Maps of 
vegetation cover for interglacial humid maximums (Fig. 1d) showed a severe 
contraction of deserts. These maps helped us formalize twelve competing 
evolutionary scenarios (Figure 2), as well as bounds of prior distributions for various 
parameters (see the section Prior setting for historical and demographical 
parameters in Materials and methods). The twelve competing scenarios were 
generated by the combinations of presence vs. absence of three key evolutionary 
events that we identified as having potentially played a role in setting up the 
observed disjoint distribution of the two locust subspecies: (i) a long population size 
contraction in the ancestral population, due to the reduction of open vegetation 
habitats during the interglacial periods, (ii) a bottleneck in the southern subspecies S. 
g. flaviventris right after divergence reflecting a single long-distance migration event 
of a small fraction of the ancestral population, and (iii) a discrete genetic admixture 
event either unidirectional from the ancestral northern subspecies S. g. gregaria into 
S. g. flaviventris, or bidirectional, in order to consider the many climatic transitions of 
the last Quaternary. 

 
ABC-RF analyses supported the same group of scenarios or the same best 

individual scenario for all ten replicate analyses (Table 2). The classification votes and 
posterior probabilities estimated for the observed microsatellite dataset were the 
highest for the groups of scenarios in which (i) S. g. flaviventris experienced a 
bottleneck event at the time of the split (scenarios SB+SCB+SBAU+SBAB+SCBAU+SCBAB 
in Figure 2; average of 2,829 votes out of 3,000 RF-trees; posterior probability = 
0.926), (ii) the ancestral population experienced a population size contraction 
(scenarios SC+SCB+SCAU+SCAB+SCBAU+SCBAB;  2,035 of 3,000 RF-trees; posterior 
probability = 0.682), and (iii) no admixture event occurred between populations after 
the split (scenarios S+SC+SB+SCB; 2,013 of 3,000 RF-trees; posterior probability = 
0.700). When considering the twelve scenarios separately, the highest classification 
vote was for scenario SCB (1,521 of 3,000 RF-trees), which congruently excludes a 
genetic admixture event and includes a population size contraction in the ancestral 
population as well as a bottleneck event at the time of divergence in the S. g. 
flaviventris subspecies. The posterior probability of scenario SCB averaged 0.564 over 
the ten replicate analyses (Table 2). Table S1.1 (Supplementary Material S1) shows 
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that only two other scenarios (SB and SCBAU) obtained at least 5% of the votes. The 
scenario SB included only a single bottleneck event in S. g. flaviventris (mean of 
15.7% of votes) and the scenario SCBAU included a bottleneck event in S. g. 
flaviventris, a population size contraction in the ancestral population and an 
unidirectional genetic admixture event from S. g. gregaria into S. g. flaviventris 
(mean of 10.8% of votes). All other scenarios obtained less than 5% of the votes and 
were hence even more weakly supported.  

 
We found that the posterior error rates (i.e., 1 minus the posterior probabilities) 

were lower than the prior error rates for the analyses considering either groups of 
scenarios based on the presence (or not) of a bottleneck in S. g. flaviventris (i.e., 7.4% 
versus 19.0%) or the scenarios separately (i.e., 43.6% versus 58.4%). For other groups 
of scenarios, the discrimination power was similar at both the global (prior error 
rates) and local (posterior error rates) scales, with values ranging from 26.1% to 
32.1% (Table 2). Altogether, these results indicate that the observed dataset belongs 
to a region of the data space where the power to discriminate among scenarios is 
higher than the global power computed over the whole prior data space, and that 
the presence or absence of a bottleneck in S. g. flaviventris is the demographic event 
with the most robust prediction in our ABC-RF treatments. These results can be 
visually illustrated by the projection of the reference table datasets and the observed 
one on a single (when analyzing pairwise groups of scenarios) or on the first two 
linear discriminant analysis (LDA) axes (when analyzing the twelve scenarios 
considered separately) (Figure S1.1, Supplementary Material S1).  

 
Figure S1.2, Supplementary Material S1, illustrates how RFs automatically rank the 

summary statistics according to their level of information. It shows that the number 
and set of most informative statistics is different depending on the comparisons 
(groups of scenarios or individual scenarios). Two sample statistics that measure the 
amount of genetic variation shared between populations (FST, DM2 and LIK) were 
among the most informative when discriminating among groups of scenarios 
including or not an admixture event. For groups of scenarios differing by population 
size variation events, statistics summarizing variation between the two subspecies 
samples (FST and DM2 for the bottleneck event in S. g. flaviventris; DAS and LIK for 
the population size contraction in the ancestral population) and statistics 
summarizing genetic variation within subspecies samples (mean expected 
heterozygosity and mean number of alleles for both population size variation events) 
were among the most discriminative ones. Only fifteen single sample statistics were 
not informative (according to their position relatively to the noise statistics added to 
our treatments) when considering the twelve individual scenarios separately. Most of 
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those non informative statistics were associated to the set of transcribed 
microsatellites (Figure S1.3, Supplementary Material S1).  

 
Parameter estimation under the best evolutionary scenario 
 
Figure 3a shows point estimates with 90% credibility intervals of the posterior 

distribution of the divergence time between the two subspecies under the best 
supported scenario SCB. Our estimations point to a young age of subspecies 
divergence, with a median divergence time of 2.6 Ky and a 90% credibility interval of 
0.9 to 6.6 Ky, when assuming an average of three generations per year (Roffey and 
Magor 2003; see Table 3 and Table S1.2, Supplementary Material S1, for details). The 
accuracy of divergence time estimation was almost similar at both the global and 
local scales (i.e., normalized mean absolute errors of 0.369 and 0.359, respectively; 
Table 3). Constraints on allele sizes in conjunction with high population-scaled 
mutation rates potentially strongly affect the linearity of the relationship between 
mutation accumulation and time of divergence estimated from microsatellite data. 
We thus evaluated the accuracy of ABC-RF estimation of the population divergence 
time as a function of the time scale, under scenario SCB. Analyses of simulated 
pseudo-observed datasets showed that the ABC-RF median estimate of divergence 
time reached a plateau for time scales ≥ 100,000 generations (Figure 4). Thus, the 
divergence time between S. g. flaviventris and S. g. gregaria estimated on our real 
microsatellite dataset (~10,000 generations) is positioned within the period of 
linearity with time, well before reaching a plateau reflecting a saturation of genetic 
information at microsatellite markers. It is hence expected to represent a sensible 
estimation of the actual divergence time. 

 
Using the median as a point estimate, we estimated that the population size 

contraction in the ancestor could have occurred at a time approximately three times 
older than the divergence time between the subspecies (cf. estimation of the 
parameter ratio tC / tS in Table 3). Estimations of the ratio of stable effective sizes of 
the S. g. gregaria and S. g. flaviventris populations (i.e., Nf  / Ng) showed large 90% 
credibility intervals and include the rate value of 1 (Table 3). Accuracy analysis 
indicates that our genetic data withhold little information on the composite 
parameter Nf  / Ng (cf. the high associated NMAE values in Table 3). The bottleneck 
intensity during the colonization of south-western Africa (corresponding to the 
composite parameter dB / NB) shows the highest accuracy of estimation among the 
parameters of interest (cf. the lowest associated NMAE values in Table 3). The 
median of 1 and the 90% credibility interval of 0.5 to 2.4 support a strong to 
moderate bottleneck event (Table 3). 
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For the time since divergence between the two subspecies, the most informative 
statistics corresponded to the expected heterozygosity computed within the S. g. 
flaviventris sample and the mean index of classification from S .g. flaviventris to S. g. 
gregaria (Figure S1.4, Supplementary Material S1). The addition of noise variables in 
our treatments showed that most statistics characterizing genetic variation within 
the S. g. gregaria sample were not informative. The most informative summary 
statistics were different depending on the parameter of interest (results not shown).  

Discussion 

A young age of subspecific divergence 
 
With a 90% credibility interval of the posterior density distribution of the 

divergence time at 0.9 to 6.6 Ky, our ABC-RF analyses clearly point to a divergence of 
the two desert locust subspecies occurring during the present Holocene geological 
epoch (0 to 11.7 Ky ago; Figure 3a). The posterior median estimate (2.6 Ky) and 
interquartile range (1.8 to 3.7 Ky) postdated the middle-late Holocene boundary (4.2 
Ky). The latter past time boundary corresponds to the last transition from humid to 
arid conditions in the African continent (Figure 3b). This increasing aridity was shown 
to be a progressive change, with a concomitant maximum in northern and southern 
Africa at around 4.0 to 4.2 Ky ago, where aridity caused a contraction of the forest at 
its northern and southern peripheries without affecting its core region (Guo et al. 
2000; Maley et al. 2018). Interestingly, the earliest archeological records of the 
desert locust found in Tin Hanakaten (Algeria) and Saqqara (Egypt) archaeological 
sites date back to this period (Figure 3b; Meinzingen 1993; Malek 1997; Aumassip 
2002). Pollen records also showed that during this period the plant community was 
dominated by the desert and semi-desert taxa found today, including some species 
of prime importance for the current ecology of the desert locust (Kröpelin et al. 2008, 
Shi et al. 1998, Duranton et al. 2012). Then, the past 4 Ky are thought to have been 
under environmental stability and as dry as at present. One can therefore reasonably 
assume that, at the inferred divergence time between the two locust subspecies, the 
connectivity between the two African hemispheres was still limited by the moist 
equator, in particular at the west, and by the savannahs and woodlands of the 
eastern coast (Figure 1c). Consequently, contrary to most phylogeographic studies on 
other African arid-adapted species (Atickem et al. 2018, Moodley et al. 2018), it is 
unlikely that the rather ancient Quaternary climatic history explained the Southern 
range extension of the desert locust. 

 
Recent geological and palynological research has shown that a brief 

fragmentation of the African primary forest occurred during the Holocene interglacial 
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from 2.5 Ky to 2.0 Ky ago (reviewed in Maley et al. 2018). This forest fragmentation 
period is characterized by relatively warm temperatures and a lengthening of the dry 
season rather than an arid climate. Although this period does not correspond to a 
phase of general expansion of savannas and grasslands, it led to the opening of the 
Sangha River Interval (SRI) in the core of the tropical forest in Central Africa (see Fig. 
1 in Maley et al. 2018). The SRI corresponds to a 400 km wide (14–18° E) open strip 
composed of savannas and grasslands dividing the rainforest in a north-south 
direction. The SRI corridor is thought to have facilitated the southern migration of 
Bantu-speaking pastoralists, along with cultivation of the semi-arid sub-Saharan 
cereal, pearl millet, Pennisetum glaucum (Schwartz 1992; Bostoen et al. 2015). The 
Bantu expansion took place between approximately 5 and 1.5 Ky ago and reached 
the southern range of the desert locust, including northern Namibia for the Western 
Bantu branch and southern Botswana and eastern South Africa for the Eastern Bantu 
branch (Vansina 1995). We cannot exclude that the recent subspecific distribution of 
the desert locust has been mediated by this recent ecological disturbance, which 
included a north-south corridor of open vegetation habitats and the diffusion of 
agricultural landscapes through the Bantu expansion. The progressive reappearance 
of forest vegetation 2 Ky ago would have then led to the present-day isolation and 
subsequent genetic differentiation of the new southern populations from northern 
parental populations. The level of climatic and habitat favorability of the SRI 
environmental disturbance to the species, and thereby the likelihood of a south-
eastern colonization through the SRI corridor, remains however to be evaluated in 
line with further data on this period. 

 
On the role of dispersal on subspecific divergence 
 
Our ABC-RF results indicate that a demographic bottleneck (i.e., a strong 

transitory reduction of effective population size) occurred in the nascent southern 
subspecies of the desert locust. The high posterior probability value (92.6%) shows 
that this evolutionary event could be inferred with strong confidence. This result is 
compatible with the abovementioned colonization hypothesis if the proportion of 
suitable habitats for the desert locust in the SRI corridor was low, strongly limiting 
the carrying capacity during the time for range expansion. This scenario reduces, at 
the same time, the likelihood of a successful colonization through the SRI corridor. A 
more plausible alternative for a bottleneck event in S. g. flaviventris is a southern 
colonization of Africa through an exceptional long-distance migration event. In 
winged migratory species, movements are assisted by high velocity winds and may 
ascend to high altitudes (2000 m in the desert locust; Uvarov 1977) (Pedgley et al. 
1995). Although largest insects exert some control over their direction of migration 
by flying actively, or at least gliding within (Pedgley et al. 1995), accidental 
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displacements in wind directions markedly different from that of seasonal dominant 
winds that assist migrations are likely. Such accidental displacements at long-distance 
(i.e., a few to several thousand km) were recorded in a number of migratory species, 
such as cicadas, butterflies, moths and locusts (Pedgley et al. 1995; Lorenz, 2009).  

 
To survive in its erratic arid and semi-arid habitat, the desert locust migrates 

downwind to reach areas where rain has recently fallen and exploit newly available 
resources. The dynamics of prevailing winds and pressure over Africa predicts the 
likelihood of a south-eastern transport of locusts (Nicholson 1996, Waloff and 
Pedgley 1986). In northern Africa, at least since 2.7Ky, the strong northeast trade 
winds bring desert locust swarms equatorward in the moist intertropical 
convergence zone (Figures 1a-b; Kröpelin et al. 1998). Most winds are westerlies 
(Figures 1a-b), nevertheless easterly winds flow parallel to the eastern coast of Africa 
in northern winter (e.g., January; Figure 1b). In southern Africa, winds blow mostly 
from the north-east toward the extant south-western distribution of the desert 
locust in southern winter (e.g., August; Figure 1a). In agreement with this, southward 
movements of desert locust have been documented along the eastern coast of 
Africa, in southern Tanzania during the plagues of 1926-1934, 1940-1948 and 1949-
1963 (Waloff 1976), and even in Mozambique in January 1945 during the peak of the 
major plague of 1940-1948 (Waloff 1966).  

 
Furthermore, most travels off the range listed in the history of the desert locust 

were associated with plague events (Waloff 1976), with other records including 
Portugal, the British Isles and the famous trans-Atlantic crossing observed in October 
1988, where large numbers of locusts landed in the Caribbean islands (Richardson 
and Nemeth, 1991). Plagues typically culminate several years of above average 
rainfall, resulting in abundant vegetation that supports both cumulative locust 
population growth and full development of gregarious characteristics (Richardson 
and Nemeth, 1991). The gigantic numbers (over a billion) of swarming locusts may 
facilitate the success of long-distance migrations, in spite of high mortality. In 
addition, flight capacity and endurance of the gregarious phase are remarkable, with 
swarms of winged adults regularly travelling up to hundreds km in a day, in case of 
sudden lack of resources (Roffey and Magor 2003). Therefore, out-of-range 
displacements of the desert locust may be explained by the synergistic effects of 
exceptional environmental conditions (e.g., unusual winds in strength or direction, 
rain favorable to plague) and peculiar biology of the gregarious phase of this species 
(e.g., swarming behavior, huge numbers of dispersers).  

 
In conclusion, dynamics of dominant winds in subtropical desert, historical 

records of exceptional migrations in the desert locust, and the very robust prediction 
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for the presence of a bottleneck in S. g. flaviventris right after divergence by our ABC-
RF treatments altogether support that a single or a few swarm(s) from the central 
region of the desert locust range sourced during a plague the colonization of south-
western Africa, suggesting a role of dispersal in the disjoint distribution and 
divergence of desert locust populations. Interestingly, an exceptional trans-Atlantic 
flight of the desert locust from Africa to South America was revealed to give rise to 
the radiation of some 50 Schistocerca species in the western hemisphere (Lovejoy et 
al., 2006).  

 
On the influence of climatic cycles 
 
It may appear surprising, at least at first sight, that the southern colonization of 

the desert locust did not occur during one of the major glacial episodes of the last 
Quaternary cycle, since these periods are characterized by a more continuous range 
of the desert locust (see paleo-vegetation maps in Figures 1e-f). In particular, during 
the last glacial maximum (LGM, -14.8 Ky to -26 Ky), the Sahara desert extended 
hundreds of km further South than at present and annual precipitation were lower 
(i.e. ~200–1,000 mm/year). Several hypotheses explain why our evolutionary 
scenario choice procedure provided low support to the possibility of a birth of the 
locust subspecies S. g. flaviventris at older periods. First, we cannot exclude that our 
microsatellite genetic data allow making inferences about the last colonization event 
only. Error rates at both local and global scales for the choice of scenario groups 
including or not a genetic admixture event after the split indicated that our 
discrimination power to infer this specific evolutionary event was poor (i.e., local and 
global error rates of 32.1% and 30.0%, respectively). The recent north-to-south 
colonization event selected by our ABC-RF treatment may hence have blurred traces 
of older colonization events.  

 
Second, while there is large evidence that much of Africa was drier during the last 

glacial phase, this remains debated for south-western Africa (see the gray coloration 
in Figure 3b). Some climate models show that at least some parts of this region, such 
as the Kalahari Desert, may have experienced higher rainfall than at present 
(Cockcroft et al. 1987; Ganopolski et al. 1998; Chase and Meadows 2007). Such 
regional responses to glacial cycles may have prolonged until the middle Holocene. In 
particular, the northern Younger Dryas (i.e., -12.9 to -11.7 Ky) can be correlated only 
partly with an arid period in the southern hemisphere (i.e., -14.4 to -12.5 Ky). Such 
older climate episodes in antiphase between hemispheres (see the sandy brown 
coloration in Figure 3b) may have prevented from either a successful north-to-south 
migration event or a successful establishment and spread in the new southern range.  
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Third, although semi-desert and desert biomes were more expanded than at 
present during the LGM, extreme aridity and lowered temperatures may have 
actually been unfavorable to the species. For instance, mean temperatures lowered 
by 5 to 6°C in both southern-western Africa (Stute and Talma 1997) and Central 
Sahara (Edmunds et al. 1999).The maintenance of desert locust populations depends 
on the proximity of areas with rainfalls at different seasons or with the capacity to 
capture and release water. For instance, in the African northern range, breeding 
success of locust populations relies on seasonal movements between the Sahel-
Saharan zones of inter-tropical convergence, where the incidence of rain is high in 
summer, and the Mediterranean-Saharan transition zone, with a winter rainfall 
regime (Rainey and Waloff 1951). In addition, adult migration and nymphal growth of 
the desert locust are dependent upon high temperature (Roffey and Magor 2003). It 
is hence possible then that the conjunction of hyper-aridity with intense cold could 
not easily support populations of the desert locust, despite the high extent of their 
migrations. Interestingly, climatic reconstructions during the Last Glacial Maximum 
(LGM) showed dramatic decreases of mean temperature throughout all of Africa and 
of precipitation in the Sahelian region (see Figs. S2.3 and S2.4, Supplementary 
Material S2). Accordingly, species distribution modelling showed a LGM distribution 
for the desert locust very similar to its current distribution (Figs. S2.5, S2.6 and S2.7, 
Supplementary Material S2), excluding the hypothesis of a more continuous range of 
the species at this time. 

 
While ABC-RF analyses did not support that the Quaternary climatic history 

explained the subspecific divergence in the desert locust, they provided evidence for 
the occurrence of a large contraction of the size of the ancestral population 
preceding the divergence. Using the median as a point estimate, we estimated that 
the population size contraction in the ancestor could have occurred at a time about 
three fold older than the divergence time between the subspecies. This corresponds 
to the African humid period in the early and middle stages of the Holocene, though 
the large credibility interval also included the last interglacial period of the 
Pleistocene (Figure 3b). Such population size contraction was likely induced by the 
severe(s) contraction(s) of deserts that prevailed prior the estimated divergence 
between the two subspecies. Interestingly, these humid periods were more intense 
and prolonged in northern Africa, which corresponded to the presumed center of 
origin of the most recent common desert locust ancestor (Scott 1993; Partridge 
1997; Shi et al. 1998).  
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Statistical advances by means of ABC Random Forest 
 
To our knowledge, the present study is the first one using recently developed 

ABC-RF algorithms (Raynal et al. 2019) to carry out inferences about parameter 
estimation on a real multi-locus microsatellite dataset (for scenario choice see for 
example Rougemont et al. 2016 and Fraimout et al. 2017). When compared with 
various ABC solutions, this new RF method offers several advantages: a significant 
gain in terms of robustness to the choice of the summary statistics, independence 
from any type of tolerance level, and a good trade-off in terms of quality of point 
estimator precision of parameters and credible interval estimations for a given 
computing time (Raynal et al. 2019).  

 
The RF approach that we used here includes three novelties in statistical analyses 

that were particularly useful for reconstructing the evolutionary history of the 
divergence between S. g. gregaria and S. g. flaviventris subspecies. First, our ABC-RF 
statistical treatments benefited from the incorporation of previous estimations of 
mutation rates and allele size constraints for the microsatellite loci used in this study 
(for details see the Materials and methods section Microsatellite dataset, mutation 
rate and mutational model). Microsatellite mutation rate and pattern of most 
eukaryotes remains to a large extent unknown, and, to our knowledge, the present 
study is a rare one where independent information on mutational features was 
incorporated into the microsatellite prior distributions. Second, given the low RF 
computing time, we could simulate large pseudo-observed datasets to compute error 
measures conditionally to a subset of fixed divergence time values chosen to cover 
the entire prior interval. In this way, we showed that posterior distributions for 
estimation of divergence time between the two subspecies accurately reflected true 
divergence time values. Third, because error levels may differ depending on the 
location of an observed dataset in the prior data space (e.g., Pudlo et al. 2016), prior-
based indicators are poorly relevant, aside from their use to select the best 
classification method and set of predictors, here our summary statistics. Therefore, in 
addition to global prior errors, we computed local posterior errors, conditionally to 
the observed dataset. The latter errors measure prediction quality exactly at the 
position of the observed dataset. For parameter estimation accuracy, we propose an 
innovative way to approximate local posterior errors, relying partly on out-of-bag 
predictions and implemented in a new version of the R library abcrf (version 1.8) 
available on R CRAN (see the Supplementary Material S3 for a detailed description). 
Such statistical advances are of general interest and will be useful for any statistical 
treatments of massive simulation data, including for inferences using single 
nucleotide polymorphisms (i.e., SNPs) obtained from new generation sequencing 
technologies. 
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Materials & Methods 
 

Formalization of evolutionary scenarios 
 
 To help formalize the evolutionary scenarios to be compared, we relied on maps 

of vegetation cover in Africa from the Quaternary Environment Network Atlas 
(Adams and Faure 1997). We considered the periods representative of arid 
maximums (YD and LGM; Figs. 1e-f), humid maximums (HCO; Fig. 1d), and present-
day arid conditions (Fig. 1c), for which reliable vegetation reconstructions have been 
published. Desert and xeric shrubland cover fits well with the present-day species 
range during remission periods. Tropical and Mediterranean grasslands were added 
separately since the species inhabits such environments during outbreak periods 
only. The congruence between present maps of species distribution (Fig. 1a) and of 
open vegetation habitats (Fig. 1c) suggests that vegetation maps for more ancient 
periods could be considered as good approximations of the potential range of the 
desert locust in the past (but see section On the influence of climatic cycles in 
Discussion). Maps of vegetation cover during ice ages (Figs. 1e-f) show an expansion 
of open vegetation habitats (i.e., grasslands in the tropics and deserts in both the 
North and South of Africa) sufficient to make the potential range of the species 
continuous from the Horn of Africa in North-West to the Cape of Good Hope in the 
South. It is worth stressing that we also explored species distribution modelling for 
the HCO and LGM periods as an alternative to using vegetation as a surrogate for the 
locust range (detailed in Supplementary Material S2). However, distribution 
modelling provided a narrower set of alternative hypotheses than the vegetation-
based scenarios mentioned above and are therefore not discussed any further.  

 
Based on the above paleo-vegetation map reconstructions, we considered a set of 

alternative biogeographic hypotheses formulated into different types of evolutionary 
scenarios. First, we considered scenarios involving a more or less continuous 
colonization of southern Africa by the ancestral population from a northern origin. In 
this type of scenario, effective population sizes were allowed to change after the 
divergence event, without requiring any bottleneck event (i.e., without any abrupt 
and strong reduction of population size) right after divergence. Second, we 
considered the situation where the colonization of Southern Africa occurred through 
a single (or a few) long-distance migration event(s) of a small fraction of the ancestral 
population. This situation was formalized through scenarios that differed from a 
continuous colonization scenario by the occurrence right after divergence of a 
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bottleneck event in the newly founded population (i.e., S. g. flaviventris), which was 
modelled through a limited number of founders during a short period.  

 
Because the last Quaternary cycle includes several arid climatic periods, including 

the intense punctuation of the Younger Dryas (YD) and the last glacial maximum 
(LGM), we also considered scenarios that incorporated the possibility of a discrete 
genetic admixture event, either bidirectional or unidirectional from S. g. gregaria into 
S. g. flaviventris. Since previous tests based on simulated data showed a poor power 
to discriminate between a single versus several admixture events (results not shown), 
we considered only scenarios including a single admixture event. 

 
Finally, at interglacial humid maximums, the map of vegetation cover showed a 

severe contraction of deserts, which were nearly completely vegetated with annual 
grasses and shrubs and supported numerous perennial lakes (Fig. 1d; deMenocal et 
al. 2000). We thus considered the possibility that vegetation-induced contractions of 
population sizes have pre-dated the separation of the two subspecies. Hence, 
whereas so far scenarios involved a constant effective population size in the 
ancestral population, we formalized alternative scenarios in which we assumed that a 
long population size contraction event occurred into the ancestral population.  

 
Combining the presence or absence of the three above-mentioned key 

evolutionary events (a bottleneck in S. g. flaviventris, a bidirectional or unidirectional 
genetic admixture from S. g. gregaria into S. g. flaviventris, and a population size 
contraction in the ancestral population) allowed defining a total of twelve scenarios, 
that we compared using ABC-RF. The twelve scenarios with their historical and 
demographic parameters are graphically depicted in Figure 2. All scenarios assumed 
a northern origin for the common ancestor of the two subspecies and a subsequent 
southern colonization of Africa. This assumption is supported by recent 
mitochondrial DNA data showing that S. g. gregaria have higher levels of genetic 
diversity and diagnostic bases shared with outgroup and congeneric species, whereas 
S. g. flaviventris clade was placed at the apical tip within the species tree (Chapuis et 
al. 2016). In agreement with this assumption, preliminary analyses based on 
observed data showed a low support for a southern origin for the common ancestor 
of the two subspecies and a subsequent northern colonization of Africa (results not 
shown). 

 
All scenarios considered three populations of stable effective population sizes Nf 

for S. g. flaviventris, Ng for S. g. gregaria, and Na for the ancestral population, with S. 
g. flaviventris and S. g. gregaria diverging tS generations ago from the ancestral 
population. The bottleneck event which potentially occurred into S. g. flaviventris 
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was modelled through a limited number of founders NB during a short period dB. The 
potential unidirectional genetic admixture into S. g. flaviventris occurred at a time tA, 
with a proportion rAU of genes of S. g. gregaria origin. In the case of a bidirectional 
genetic admixture, still occurring at a time tA, the proportion of S. g. gregaria genes 
entering into the S. g. flaviventris population was rAB and the proportion of S. g. 
flaviventris genes entering into the S. g. gregaria population was 1- rAB. The potential 
population size contraction event occurred into the ancestral population at a time tC, 
with an effective population size NC during a duration dC.  

 
Prior setting for historical and demographical parameters 
 
Prior values for time periods between sampling and admixture, divergence and/or 

ancestral population size contraction events (tC, tS and tA, respectively) were drawn 
from log-uniform distributions bounded between 100 and 500,000 generations, with 
tC > tS > tA. Assuming an average of three generations per year (Roffey and Magor 
2003), this prior setting corresponds to a time period that goes back to the second-
to-latest glacial maximum (150 Ky ago) (de Vivo and Carmignotto 2004, deMenocal et 
al. 2000). Preliminary analyses showed that assuming a uniform prior shape for all 
time periods (instead of log-uniform distributions) do not change scenario choice 
results, with posterior probabilities only moderately affected, and this despite a 
substantial increase of out-of-bag prior error rates (e.g., + 50% when considering the 
twelve scenarios separately; Table S4.1, Supplementary Material S4). Analyses of 
simulated pseudo-observed datasets (pods) showed that assuming a uniform prior 
rather than a log-uniform prior for time period parameters would have also biased 
positively the median estimate of the divergence time and substantially increased its 
90% credibility interval (Figure S4.1 and Table S4.2, Supplementary Material S4). 
Using a log-uniform distribution remains a sensible choice for parameters with 
ranges of values covering several if not many log-intervals, as doing so allows 
assigning equal probabilities to each of the log-intervals. 

 
We used uniform prior distributions bounded between 1x104 and 1x106 diploid 

individuals for the different stable effective population sizes Nf, Ng and Na (Chapuis et 
al. 2014). The admixture rate (i.e., the proportion of S. g. gregaria genes entering 
into the S. g. flaviventris population), was drawn from a uniform prior distribution 
bounded between 0.05 and 0.50 for a unidirectional event (rAU) and between 0.05 
and 0.95 for a bidirectional event (rAB). We used uniform prior distributions bounded 
between 2 and 100 for both the numbers of founders (in diploid individuals) and 
durations of bottleneck events (in number of generations). For the contraction event, 
we used uniform prior distributions bounded between 100 and 10,000 for both the 
population size NC (in diploid individuals) and duration dC (in number of generations). 
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Assuming an average of three generations per year (Roffey and Magor 2003), such 
prior choice allowed a reduction in population size for a short to a relatively long 
period, similar for instance to the whole duration of the HCO (from 9 to 5.5 Ky ago) 
which was characterized by a severe contraction of deserts. 

 
Microsatellite dataset, mutation rate and mutational model 
 
We carried out our statistical inference on the microsatellite dataset previously 

published in Chapuis et al. (2016). The 23 microsatellite loci genotyped in that 
dataset were derived from either genomic DNA (14 loci) or messenger RNA (9 loci) 
resources, and were hereafter referred to as untranscribed and transcribed 
microsatellite markers (following Blondin et al. 2013). These microsatellites were 
shown to be genetically independent, free of null alleles and at selective neutrality 
(Chapuis et al. 2016). Previous levels of FST (Weir 1996) and Bayesian clustering 
analyses (Pritchard et al. 2000) among populations showed a weak genetic 
structuring within each subspecies (Chapuis et al. 2014, 2017). For each subspecies, 
we selected and pooled three population samples in order to ensure both a large 
sample size (i.e., 80 and 90 individuals for S. g. gregaria and S. g. flaviventris, 
respectively), while ensuring a non-significant genetic structure within each 
subspecies pooled sample, as indicated by non-significant Fisher’s exact tests of 
genotypic differentiation among the three initial population samples within 
subspecies and exact tests of Hardy-Weinberg equilibrium for each subspecies 
pooled sample (i.e., P-value > 0.05 when using Genepop 4.0; Rousset 2008). More 
precisely, the S. g. gregaria sample consisted in pooling the population samples 8, 15 
and 22 of Chapuis et al. (2014) and the S. g. flaviventris sample included the 
population samples 1, 2 and 6 of Chapuis et al. (2017). 

 
Mutations occurring in the repeat region of each microsatellite locus were 

assumed to follow a symmetric generalized stepwise mutation model (GSM; 
Zhivotovsky et al. 1997; Estoup et al. 2002). Prior values for any mutation model 
settings were drawn independently for untranscribed and transcribed microsatellites 
in specific distributions. Because allele size constraints exist at microsatellite markers, 
we informed for each microsatellite locus their lower and upper allele size bounds 
using values estimated in Chapuis et al. (2015), following the approach of Pollock et 
al. (1998) and microsatellite data from several species closely related to S. gregaria 
(Blondin et al. (2013). Prior values for the mean mutation rates (𝜇𝑅���) were set to the 
empirical estimates inferred from observation of germline mutations in Chapuis et al. 
(2015), i.e., 2.8x10-4 and 9.1x10-5 for untranscribed and transcribed microsatellites, 
respectively. The mutation rates for individual microsatellites were then drawn from 
a Gamma distribution with mean = 𝜇𝑅��� and shape = 0.7 (Estoup et al. 2001) for both 
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types of microsatellites. We ensured that the chosen value of shape parameter 
generated the same inter-loci variance as estimated in Sun et al. (2012) from direct 
observations of thousands of human microsatellites. Prior values for the mean 
parameters of the geometric distributions of the length in number of repeats of 
mutation events (𝑃�) were set to the proportions of multistep germline mutations 
observed in Chapuis et al. (2015), i.e., 0.14 and 0.67 for untranscribed and 
transcribed microsatellites, respectively. The P parameters for individual loci were 
then standardly drawn from a Gamma distribution (mean = 𝑃� and shape = 2). We 
also considered mutations that insert or delete a single nucleotide to the 
microsatellite sequence. To model this mutational feature, we used the DIYABC 
default setting values (i.e., a uniform distribution bounded between [10-8, 10-5] for 
the mean parameter 𝜇𝑆𝑁𝐼������ and a Gamma distribution (mean = 𝜇𝑆𝑁𝐼������ and shape = 2) for 
individual loci parameters; Cornuet et al. 2010; see also DIYABC user manual p. 13, 
http://www1.montpellier.inra.fr/CBGP/diyabc/). 

 
Analyses using ABC Random Forest 
 
We used the software DIYABC v.2.1.0 (Cornuet et al. 2014) to simulate datasets 

constituting the so-called reference tables (i.e., records of a given number of datasets 
simulated using the scenario ID and the evolutionary parameter values sampled from 
prior distributions and summarized with a pool of statistics). Random-forest 
computations were then performed using a new version of the R library abcrf 
(version 1.8) available on the CRAN. This version includes all ABC-RF algorithms 
detailed in Pudlo et al. (2016), Raynal et al. (2019) and Estoup et al. (2018a) for 
scenario choice and parameter estimation, as well as several statistical novelties 
allowing to compute error rates in scenario choice and accuracy measures for 
parameter estimation (see details below). An overview of the ABC-RF methods used 
in the present paper is provided in Supplementary Material S3. Readers can also 
consult Pudlo et al. (2016), Rougemont et al. (2016), Fraimout et al. (2017), Estoup et 
al. (2018a,b) and Marin et al. (2018) for scenario choice, and Raynal et al. (2019) for 
parameter estimation to access to further detailed statistical descriptions, testing 
and applications of ABC-RF algorithms.  

 
For scenario choice, the outcome of the first step of the ABC-RF statistical 

treatment applied to a given target dataset is a classification vote for each scenario 
which represents the number of times a scenario is selected in a forest of n trees. 
The scenario with the highest classification vote corresponds to the scenario best 
suited to the target dataset among the set of compared scenarios. This step also 
provides an error rate relevant to the entire prior sampling space, the global prior 
error. See the section Global prior errors in Supplementary Material S3 for details. 
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The second RF analytical step provides a reliable estimation of the posterior 
probability of the best supported scenario. One minus such posterior probability 
yields the local posterior error associated to the observed dataset (see the section 
Local posterior errors in Supplementary Material S3). In practice, ABC-RF analyses 
were processed by drawing parameter values into the prior distributions described in 
the two previous sections and by summarizing microsatellite data using a set of 32 
statistics (see Table 1 for details about such summary statistics) and the one LDA axis 
or eleven LDA axes (i.e. number of scenarios minus 1; Pudlo et al. 2016) computed 
when considering pairwise groups of scenarios or individual scenarios, respectively. 
We processed ABC-RF treatments on reference tables including 150,000 simulated 
datasets (i.e., 12,500 per scenario). Following Pudlo et al. (2016), we checked that 
150,000 datasets was sufficient by evaluating the stability of prior error rates and 
posterior probabilities estimations of the best scenario on 50,000, 80,000 and 
100,000 and 130,000 simulated datasets (Table S1.3, Supplementary Material S1). 
The number of trees in the constructed random forests was fixed to n = 3,000, as this 
number turned out to be large enough to ensure a stable estimation of the prior 
error rate (Figure S1.5, Supplementary Material S1). We predicted the best scenario 
and estimated its posterior probability and prior error rate over ten replicate 
analyses based on ten different reference tables. 

 
In order to assess the power of our approach to infer each specific evolutionary 

event of interest, we first processed ABC-RF analyses by grouping scenarios based on 
the presence or absence of each type of evolutionary event that we identified as 
having potentially played a role in setting up the disjoint distribution of the two 
locust subspecies (e.g., Roux et al. 2016, Leroy et al. 2017 and Estoup et al. 2018a). 
We conducted ABC-RF treatments on three pairwise groups of scenario: groups of 
scenarios with vs. without a bottleneck in S. g. flaviventris, groups with vs. without a 
population size contraction in the ancestral population, and groups with vs. without 
an asymmetrical genetic admixture event from S. g. gregaria into S. g. flaviventris. 
We then conducted ABC-RF treatments on the twelve scenarios considered 
separately.  

 
For parameter estimation, we conducted ten independent replicate RF treatments 

based on ten different reference tables for each parameter of interest (Raynal et al. 
2019): the time since divergence, the ratio of the time of the contraction event into 
the ancestral population on the time since divergence, the intensity of the bottleneck 
event in the sampled S. g. flaviventris population (defined as the ratio of the 
bottleneck event of duration dB on the effective population size NB ) and the ratio of 
the stable effective population size of the two sampled populations. For each RF 
treatment, we simulated a total of 100,000 datasets for the selected scenario 
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(drawing parameter values into the prior distributions described in the two previous 
sections and using the same 32 summary statistics). Following Raynal et al. (2019), 
we checked that 100,000 datasets was sufficient by evaluating the stability of the 
measure of accuracy on divergence time estimation using 50,000, 80,000 and 90,000 
simulated datasets (Table S1.4, Supplementary Material S1). The number of trees in 
the constructed random forests was fixed to n = 2,000, as such number turned out to 
be large enough to ensure a stable estimation of the measure of divergence time 
estimation accuracy (Figure S1.6, Supplementary Material S1). For each RF 
treatment, we estimated the median value and the 5% and 95% quantiles of the 
posterior distributions. It is worth noting that we considered median values as the 
later provided more accurate estimations (according to out-of-bag predictions) than 
when considering mean values (results not shown). Accuracy of parameter 
estimation was measured using out-of-bag predictions and the normalized mean 
absolute error (NMAE). NMAE corresponds to the mean of the absolute difference 
between the point estimate (here the median) and the (true) simulated value divided 
by the simulated value (formula detailed in Supplementary Material S3).  

 
Finally, because microsatellite markers tend to underestimate divergence time for 

large time scales due to allele size constraints, we evaluated how the accuracy of 
ABC-RF estimation of the time of divergence between the two subspecies was 
sensitive to the time scale. To this aim, we used DIYABC to produce simulated 
pseudo-observed datasets assuming fixed divergence time values chosen to cover 
the prior interval (100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 
100,000; 250,000 generations) and using the best scenario. We simulated 5,000 of 
such test datasets for each of the eleven divergence time values. Each of these test 
dataset was treated using ABC-RF in the same way as the above target observed 
dataset. 

Data accessibility 

Microsatellite genotypic data and R scripts for ABC-RF analyses are publicly available 
on the CIRAD Dataverse repository (https://dataverse.cirad.fr/) at 
https://doi.org/10.18167/DVN1/ZNSKGK. 

Supplementary material 

Additional supporting information may be found in the online version of this article. 
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Figure legends 

Figure 1. Present time distribution range of Schistocerca gregaria in Africa under 
remission periods with winds in August a) and January b), and vegetation habitats 
suitable for the species during the present period c), the Holocene Climatic 
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Optimum (HCO, 9 to 6 Ky ago) d), the Younger Dryas (YD, 12.9 to 11.7 Ky ago) e) 
and the Last Glacial Maximum (LGM, 26 to 14.8 Ky ago) f).  
 
(a-b) Distribution range and winds are adapted from Sword et al. (2010) and 
Nicholson (1996), respectively. (c-f) Vegetation habitats are adapted from Adams and 
Faure (1997). Open vegetation habitats suitable for the desert locust correspond to 
deserts (dark orange), xeric shrublands (light orange) and tropical - Mediterranean 
grasslands (pink). Other unsuitable habitat classes (white) are forests, woodlands and 
temperate shrublands and savannas. 
 
Figure 2. Evolutionary scenarios compared using ABC-RF.  

The subscripts g, f and a refer to the subspecies S. g. gregaria, S. g. flaviventris and 
their unsampled common ancestor, respectively. Twelve scenarios are considered 
and identified by an acronym. Such scenarios differ by the presence or absence of 
three evolutionary events: a bottleneck in S. g. flaviventris (B) right after divergence 
between the two subspecies, a population size contraction in the ancestral 
population (C) and a discrete genetic admixture event either unidirectional from S. g. 
gregaria into S. g. flaviventris (AU) or bidirectional (AB) . For convenience, parameters 
associated with an evolutionary event are represented graphically only in the first 
shown scenario that include this event. Looking forward in time, time periods are tC, 
the time of ancestral population size contraction, tS, the time of split between the 
two subspecies, and tA, the time of the genetic admixture between subspecies (with 
tC > tS > tA). rAU is the unidirectional admixture rate, i.e. the proportion of genes 
from the S. g. gregaria lineage entering the S. g. flaviventris population at time tA. 
rAB is the bidirectional admixture rate, i.e. the proportion of genes exchanged 
between the S. g. gregaria lineage and the S. g. flaviventris lineage at time tA. Ng, Nf 
and Na are the stable effective population sizes of S. g. gregaria, S. g. flaviventris and 
the ancestor, respectively. NC is the effective population size during the contraction 
event of duration dC in the ancestor. NB is the effective population size during the 
bottleneck event of duration dB.  
 
Figure 3. Divergence time between S. g. gregaria and S. g. flaviventris inferred 
under the best supported scenario (scenario SCB) a) in relation to bioclimatic 
changes in Northern b) and Southern Africa c).  
 
a) Dashed and solid lines represent the formal subdivision of the Holocene and 
Pleistocene epochs (Walker et al. 2012). Dotted lines with labels on the right side are 
the median value and 90% credibility interval of the posterior density distributions of 
the divergence time (assuming an average of three generations per year; Roffey and 
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Magor 2003). Asterisks refer to earliest archeological records of the desert locust. In 
the Algerian Sahara, remains of locusts were found in a special oven dating back to 
about 6Ky ago, in the rock shelter of Tin Hanakaten (Aumassip 2002). In Egypt, 
locusts were depicted on daggers of the pharaoh Ahmose, founder of the Eighteenth 
Dynasty (about 3.5 Ky ago) (Malek 1997) and, at Saqqara, on tombs of the Sixth 
Dynasty (about 4.2 to 4.4 Ky ago) that is thought to have felt with the impact of 
severe droughts (Meinzingen 1993). b-c) Climatic episodes include major cycles and 
additional transitions of aridity (sandy brown) and humidity (steel blue). The grey 
coloration means that there is debate on the climatic status of the period (arid versus 
humid). HCO: Holocene Climatic Optimum; YD: Younger Dryas; LGM: Last Glacial 
Maximum; LIG: Last Inter Glacial. Delimitations of climatic periods were based on 
published paleoclimatic inferences from geological sediment sequences (e.g., eolian 
deposition, oxygen isotope data) and biological records (e.g., pollen or insect fossils 
assemblages) from marine cores or terrestrial lakes. References are Bond et al. 
(1997), Guo et al.(2000), Kröpelin et al. (2008), Roberts et al. (1993) and van Andel 
and Tzedakis (1996) for northern Africa, and Talma and Vogel (1992), Stokes et al. 
(1997), and Shi et al. (1998) for southern Africa. See also Gasse (2000) for a review.  
 
Figure 4. Median and 90% credibility interval a) and local accuracy b) of ABC-RF 
posterior distributions of the divergence time under the best supported scenario 
(scenario SCB) as a function of the time scale.  
 
Simulated pseudo-observed datasets (5,000 per divergence time) were generated for 
fixed divergence time values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 
; 50,000; 100,000; and 250,000 generations (cf. x-axis with a log-scale). a) The 
estimated median (plain lines) and 90% credibility interval (90% CI; dashed lines), 
averaged over the 5,000 datasets, are represented (y-axis). b) The local accuracy is 
measured using out-of-bag predictions and the normalized mean absolute error 
(NMAE). See Supplementary Material S3 for details. 
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Tables 

Table 1. Summary statistics provided by DIYABC with corresponding values 
computed from the observed microsatellite dataset.  
 

 Summary 
statistics 

Observed values at 
14 untranscribed 

markers 

Observed values at 9 
transcribed markers 

S. g. gregaria  
one-sample 

statistics 
 

NAL 28.8 15.8 
HET 0.92 0.79 
VAR 36.1 13.3 

MGW 0.92 0.86 

S. g. flaviventris  
one-sample 

statistics 
 

NAL 23.4 14.4 
HET 0.86 0.69 
VAR 33.4 16.7 

MGW 0.96 0.95 

Two-samples 
statistics 

FST 0.04 0.12 
DAS 0.07 0.16 

LIKSgg Sgf 3.61 2.82 
 LIKSgf  Sgg 3.20 2.55 
 DM2 22.7 12.4 
 N2P 35.0 21.1 
 H2P 0.91 0.79 
 
 

V2P 40.2 18.2 
The names of summary statistics are those given in the program DIYABC (Cornuet et al. 2014). NAL: 
mean number of alleles; HET: mean expected heterozygosity; VAR: variance of allele sizes in base pairs; 
MGW: M index of Garza and Williamson (2001); FST: pairwise differentiation estimator of Weir (1996); 
DAS: shared allele distance (Chakraborty and Jin 1993); LIK: the mean index of classification (Rannala 
and Moutain, 1997; Pascual et al. 2007); DM2: distance of Golstein et al. (1995). N2P, H2P and V2P: NAL, 
HET and VAR statistics computed after pooling the two population samples. Note that five “noise 
variables”, randomly drawn into uniform distributions bounded between 0 and 1, and denoted NOISE1 
to NOISE5 in the concerned illustrations, were added to the set of summary statistics processed by RF, in 
order to evaluate which summary statistics of our genetic datasets were informative in our different 
inferential ABC-RF settings, when conducting scenario choice or parameter estimation. Such noise 
variables do not alter ABC-RF inferences (see Marin et al. 2018; Raynal et al. 2019). 
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Table 2. Scenario choice when analyzing groups of scenarios or scenarios 
separately. 

Scenarios were grouped based on the absence or presence of a bottleneck in S. g. flaviventris (group 1 = 
no B or group 2 = B), of a population size contraction in the ancestor (group 1 = no C or group 2 = C), and 
of an asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris or a symmetrical (i.e., 
bidirectional) admixture (group 1 = no A or group 2 = AU or group 3 = AB). We reported values for prior 
error rates and posterior probabilities of the selected group of scenarios or individual scenario, averaged 
over ten replicate analyses. The local posterior error rate (corresponding to a confidence measure of the 
selected scenario given the observation) can be computed as 1 minus the posterior probability (see 
Supplementary material S3 for details). The number of records for each reference datasets simulated 
from DIYABC was set to 150,000 and the number of RF- trees was 3,000. 

  

 

Analyses of groups of scenarios Analysis of 
scenarios 

separately Group 1= no B  
vs.  

group 2= B 

Group 1= no C 
 vs. 

group 2= C 

Group 1=no A 
vs.  

group 2 = AU  
vs.  

group 3 = AB 

Prior error 
rate 19.0% 26.1% 32.1% 58.4% 

Posterior 
probability 
(selected 
group or 
scenario) 

 
 

0.926 
(group 2) 

0.682 
(group 2) 

0.700 
(group 1) 

0.564 
(scenario SCB) 
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Table 3. Parameter estimation under the best supported scenario (scenario SCB).  
 

         Posterior values        Prior values 

  Median 90% CI NMAE Median 90% CI NMAE 

tS 7,723 
2,785 

 –  
19,708 

0.369 1,212 
124 
 – 

73,795 
0.359 

tC / tS 2.75 
1.11 

 –  
35.47 

0.596 12.17 
1.24 

 –  
762.26 

1.077 

Nf  / Ng 5.43 
0.52  

–  
25.56 

1.332 1.00 
0.12  

–  
8.11 

1.726 

dB / NB 1.06 
0.49 

 –  
2.41 

0.323 1.00 
0.13 

–  
7.57 

0.299 

tS: time of divergence between the two desert locust subspecies (in number of generations); tC: time of 
ancestral population size contraction; Nf : stable effective population size of S. g. flaviventris; Ng: stable 
effective population size of S. g. gregaria; d B : duration of the bottleneck event; NB: effective 
population size during the bottleneck event. For each evolutionary parameter, we reported posterior 
point estimates averaged over ten replicate analyses. CI: credibility interval. The number of records for 
each reference datasets simulated from DIYABC was set to 100,000 and the number of RF-trees was 
2,000. Accuracy has been measured with the normalized mean absolute error (NMAE) which 
corresponds to the mean of the absolute difference between the point estimate of the parameter (here 
the median) and the (true) simulated value divided by the (true) simulated value. NMAE measures were 
computed using out-of-bag predictions either on the whole data space defined by the prior distributions 
(prior NMAE) or conditionally to the observed dataset (posterior NMAE); see Supplementary material S3 
for details.  
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Fig. 1 
a) Present distribution 
(winds in Aug) 

b) Present distribution 
(winds in Jan) 

d) HCO habitats e) YD habitats 

c) Present habitats 

f) LGM habitats 

Legend: Desert Xeric shrubland Tropical and Mediterranean grassland 
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Fig. 2 
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Fig. 3

a)

Median and 90%CI
of ABC−RF posterior distribution

C
al

en
da

r 
ag

e 
B

P
 (

K
y)

125.0

11.7

8.2

4.2

6.6

2.6

0.9

Pleistocene

Holocene 

Middle stage

Late stage

Early stage

Middle stage

Late stage

Present

Past

*
*

*
b)

Northern Africa
climate

125.0

75.0

58.0

21.1

17.2
14.8
12.9

8.2

4.2

HCO

YD

LGM

LIG

2nd−to−LGM

c)

Southern Africa
climate

125.0
110.0

90.0

43.0

21.1

17.2

14.4
12.5
10.9
9.3

4.8

HCO

LGM

LIG

2nd−to−LGM

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 

http://dx.doi.org/10.1101/671867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4

a) Posterior estimation
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Supplementary Material S1. Details on results from ABC-RF treatments.  

Table S1.1. Scenario choice for each of the ten replicate analyses. 

Reference 
table 

Best 
scenario 

Votes 
S 

Votes 
SC 

Votes 
SB 

Votes 
SCB 

Votes 
SAU 

Votes 
SCAU 

Votes 
SBAU 

Votes 
SCBAU 

Votes 
SAB 

Votes 
SCAB 

Votes 
SBAB 

Votes 
SCBAB 

Prior error 
rate 

Posterior 
probability 

(best 
scenario) 

1 scenario 
SCB 

0.004 0.033 0.171 0.513 0.011 0.022 0.040 0.094 0.017 0.041 0.024 0.031 0.583 0.572 

2 scenario 
SCB 

0.003 0.026 0.178 0.515 0.006 0.018 0.023 0.093 0.023 0.022 0.051 0.042 0.583 0.549 

3 scenario 
SCB 

0.003 0.024 0.196 0.497 0.010 0.019 0.030 0.101 0.025 0.033 0.036 0.024 0.583 0.545 

4 scenario 
SCB 

0.004 0.026 0.144 0.483 0.006 0.018 0.043 0.126 0.041 0.032 0.050 0.026 0.586 0.570 

5 scenario 
SCB 

0.004 0.025 0.126 0.537 0.007 0.017 0.030 0.117 0.017 0.021 0.063 0.036 0.582 0.607 

6 scenario 
SCB 

0.004 0.039 0.161 0.501 0.004 0.023 0.036 0.128 0.020 0.026 0.037 0.021 0.585 0.568 

7 scenario 
SCB 

0.014 0.021 0.136 0.536 0.005 0.022 0.029 0.099 0.022 0.044 0.037 0.035 0.585 0.588 

8 scenario 
SCB 

0.005 0.016 0.149 0.491 0.005 0.019 0.026 0.124 0.042 0.030 0.034 0.058 0.586 0.565 

9 scenario 
SCB 

0.003 0.036 0.151 0.506 0.009 0.019 0.017 0.113 0.049 0.024 0.034 0.040 0.584 0.551 

10 scenario 
SCB 

0.006 0.031 0.178 0.491 0.002 0.029 0.028 0.082 0.041 0.032 0.033 0.047 0.585 0.528 

Mean scenario 
SCB 

0.005 0.028 0.159 0.507 0.007 0.021 0.030 0.108 0.030 0.030 0.040 0.036 0.584 0.564 

We report values for the proportion of votes, prior error rates and posterior probabilities of the best scenario on ten replicate analyses based on ten different reference tables. 
Scenarios are depicted in Figure 2. For each reference table, the number of datasets simulated using DIYABC was set to 150,000 and the number of RF-trees was 3,000. The 
scenario SCB was the best supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the 
ancestral population and not any genetic admixture event.  
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Table S1.2. Estimation of the divergence time between S. g. gregaria and S. g. flaviventris for the ten replicate analyses processed under 
the best supported scenario (scenario SCB).  
  

tdiv (G) Median q5% q95% 
reference table 1 7440.0 2485.0 19380.0 
reference table 2 8257.1 2668.0 21086.0 
reference table 3 7930.3 2771.0 20310.9 
reference table 4 7301.0 2888.0 19639.5 
reference table 5 7598.6 2376.0 18260.6 
reference table 6 7426.0 2975.7 19704.7 
reference table 7 7776.0 3190.0 19290.2 
reference table 8 7960.0 2812.0 19664.2 
reference table 9 7552.3 2717.0 20685.0 
reference table 10 7991.0 2966.9 19060.7 

Mean 7723.2 2785.0 19708.2 
SD 307.3 240.5 817.8 

Replicate analyses have been processed on different reference tables. For each reference table, the number of datasets simulated using DIYABC was set to 100,000 and the 
number of RF-trees was 2,000. Divergence times are given in number of generations (G). SD stands for standard deviations computed from the ten values of median, 5% 
quantile and 95% quantile estimated from the ten replicate analyses.  
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Table S1.3 Effect of the number of simulated datasets in the reference table on scenario choice. 

nref 50,000  80,000  100,000  130,000  150,000  

 Mean SD Mean SD Mean SD Mean SD Mean SD 
Votes S 0.006 0.002 0.005 0.002 0.006 0.003 0.006 0.004 0.005 0.003 
Votes SC 0.030 0.015 0.031 0.009 0.029 0.006 0.028 0.006 0.028 0.007 
Votes SB 0.155 0.025 0.155 0.028 0.165 0.033 0.164 0.036 0.159 0.022 
Votes SCB 0.496 0.035 0.506 0.036 0.500 0.034 0.502 0.025 0.507 0.019 
Votes SAU 0.006 0.003 0.007 0.004 0.006 0.004 0.006 0.004 0.007 0.003 
Votes SCAU 0.025 0.005 0.023 0.004 0.020 0.005 0.022 0.006 0.021 0.008 
Votes SBAU 0.033 0.009 0.031 0.007 0.033 0.008 0.030 0.009 0.030 0.016 
Votes SCBAU 0.117 0.027 0.113 0.019 0.108 0.017 0.109 0.017 0.108 0.012 
Votes SAB 0.031 0.009 0.030 0.011 0.027 0.010 0.029 0.010 0.030 0.008 
Votes SCAB 0.032 0.012 0.029 0.007 0.029 0.009 0.031 0.012 0.030 0.011 
Votes SBAB 0.039 0.014 0.039 0.013 0.043 0.014 0.042 0.013 0.040 0.011 
Votes SCBAB 0.030 0.013 0.031 0.009 0.032 0.009 0.032 0.009 0.036 0.011 
Prior error rate 0.594 0.002 0.589 0.002 0.587 0.001 0.585 0.001 0.584 0.001 
Posterior probability 
(best model) 0.567 0.037 0.562 0.034 0.555 0.034 0.563 0.028 0.564 0.023 
Scenarios are depicted in Figure 2. The number of records in the reference datasets (n ref) simulated from DIYABC varied from 50,000 to 150,000. We report mean and 
standard deviation values for the proportion of votes for each scenario, and for prior error rates and posterior probabilities of the best scenario for ten replicate analyses. 
Replicate analyses have been processed on different reference tables. The number of RF-trees was 3,000. The scenario SCB was the best supported for all replicate analyses: it 
involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not any genetic admixture event. 

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 

http://dx.doi.org/10.1101/671867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1.4. Effect of the number of simulated datasets in the reference table on posterior point estimation values a) and estimation 
accuracy b) of the divergence time between S. g. gregaria and S. g. f laviventris under the best supported scenario (scenario SCB).  

 a) 

 nref  50,000 80,000 90,000 100,000 

 
  Mean SD Mean SD Mean SD Mean SD 

Posterior 
estimations 

         
Median 7731.8 448.9 7691.8 357.5 7724.8 318.0 7723.2 307.3 

q5% 2697.0 129.7 2706.8 235.2 2764.4 172.9 2785.0 240.5 
q95% 20295.5 1763.6 19711.6 1451.3 19508.7 1264.1 19708.2 817.8 

 

b) 

nref 50,000 80,000 90,000 100,000 
      

Accuracy 
measures 

 

Prior NMAE  0.378 0.365 0.362 0.359 

Posterior NMAE  0.375 0.370 0.365 0.369 
The number of records in the reference datasets (n ref) simulated from DIYABC varied from 50,000 to 100,000. The number of RF-trees was set to 2,000. (a) Replicate 
analyses have been processed on ten reference tables. (b). The normalized mean absolute error (NMAE) is the absolute difference between the point estimate (here the 
median) and the (true) simulated value divided by the (true) simulated value. 
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Figure S1.1. Projection on a single (when analyzing pairwise groups of scenarios) or on the first two LDA axes (when analyzing the 
twelve scenarios separately) of the observed dataset and the simulated datasets recorded in the reference table.  Colors correspond to 
group of scenarios or individual scenarios. The location of the desert locust observed dataset is indicated by a vertical black line or a star. 
Scenarios were grouped based on the presence or not of a bottleneck in S. g. flaviventris (B or no B), a population size contraction in ancestor (C 
or no C) and a genetic admixture either unidirectional from S. g. gregaria into S. g. flaviventris or bidirectional (AU or AB or no A). When 
considering the whole set of twelve scenarios separately d), the projected points substantially overlapped for at least some of the scenarios. This 
suggests an overall low power to discriminate among scenarios considered. Conversely, considering pairwise groups of scenarios, one can 
observe a weaker overlap of projected points (at least for a) and b)) suggesting a stronger power to discriminate among groups of scenarios of 
interest than when considering all scenarios separately. One can note that the location of the observed dataset (indicated by a vertical line) 
suggests an association with the scenario group with a bottleneck event in S. g. flaviventris and with the scenario group with a population size 
contraction in the ancestral population.  
 
 a) Group g1= no B vs. group g2 = B                      b) Group g1 = no C  vs. group g2 =C 
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   c) Scenario group 1 = no A vs. group 2 = AU vs. group 3 = AB     d) All twelve scenarios considered separately 
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Figure S1.2. Contributions of ABC-RF summary statistics when choosing between groups of scenarios. The contribution of each 32 summary statistics 
and one LDA axis (or two LDA axes) is evaluated as the total amount of decrease in the Gini criterion (variable importance on the x-axis). The higher the 
contribution of the statistics, the more informative it is in the inferential process. The microsatellite set and subspecies sample are indicated at the end of each 
statistics by indices k_i for single population statistics and k_i.j for two population statistics, with k=1 for the set of untranscribed microsatellites or k=2 for the 
set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S1 for details on the 
summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions bounded between 0 and 1, and denoted NOISE1 to NOISE5 
were added to the set of summary statistics processed by RF, in order to evaluate from which amount of decrease in the Gini criterion the summary statistics 
computed from our genetic datasets were not informative anymore (indicated by a red star). a) B = demographic bottleneck event, b) C = demographic 
contraction event and c) AU or AB or no A = unidirectional from S. g. gregaria into S. g. flaviventris or bidirectional genetic admixture event. 

 

a) Group 1= no B vs. group 2 = B                             b) Group 1 = no C  vs. group 2 =C                             c) Group 1 = no A vs. group 2 = AU vs. group 3 = AB
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Figure S1.3. Contributions of ABC-RF summary statistics when choosing among the twelve 
individual scenarios. The contribution of each 32 summary statistics and eleven LDA axes is 
evaluated as the total amount of decrease in the Gini criterion (variable importance on the x-axis). 
The higher the contribution of the statistics, the more informative it is in the inferential process. The 
microsatellite set and subspecies sample are indicated at the end of each statistics by indices k_i for 
single population statistics and k_i.j for two population statistics, with k=1 for the set of 
untranscribed microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. 
flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table 1 for details on the 
summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions 
bounded between 0 and 1, and denoted NOISE1 to NOISE5 were added to the set of summary 
statistics processed by RF, in order to evaluate from which amount of decrease in the Gini criterion 
the summary statistics computed from our genetic datasets were not informative anymore (indicated 
by a red star). 
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Figure S1.4. Contributions of ABC-RF summary statistics when estimating the divergence time 
between the two desert locust subspecies under the best supported scenario (scenario SCB). The 
contribution of each 32 summary statistics is evaluated as the total amount of decrease of the residual 
sum of squares, divided by the number of trees, (variable importance on the x-axis). The higher the 
contribution of the statistics, the more informative it is in the inferential process. The microsatellite 
set and subspecies sample are indicated at the end of each statistics by indices k_i for single 
population statistics and k_i.j for two population statistics, with k=1 for the set of untranscribed 
microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris 
subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S6.1 for details on the summary 
statistics abbreviations. Five noise variables, randomly drawn into uniform distributions bounded 
between 0 and 1, and denoted NOISE1 to NOISE5 were added to the set of summary statistics 
processed by RF, in order to evaluate from which amount of decrease in the variable importance 
criterion the summary statistics computed from our genetic datasets were not informative anymore 
(indicated by a red star). 
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Figure S1.5. Effect of the number of RF-trees for scenario choice. We here illustrate the effect 
of the number of trees in the forest on the prior error rate when comparing the twelve scenarios 
separately. The number of datasets in the reference table simulated using DIYABC was 150,000. 
The shape of the curve shows that the prior error rate stabilizes for a number of RF-trees > 2,000. 
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Figure S1.6. Effect of the number of RF-trees for parameter estimation. We here illustrate the 
effect of the number of trees in the forest on the out-of-bag mean square error of the divergence time 
between S. g. gregaria and S. g. flaviventris under the selected scenario SCB. The number of datasets 
in the reference table simulated using DIYABC was 100,000. The shape of the curve shows that the 
prior error rate stabilizes for a number of RF-trees > 1,500. 
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Supplementary Material S2. Hindcasting the desert locust 

potential distribution into the mid-Holocene (HCO) and the last 

glacial maximum (LGM) using distribution modelling.  
 

Motivation 

To complement distribution projections based on vegetation during the mid-Holocene (HCO; 
~6,000 years ago) and Last Glacial Maximum (LGM; ~120,000 years ago) periods, we used 
species distribution modelling along with climatic reconstructions of the past. However, 
results from this modelling effort do not fully match vegetation reconstructions presented in 
the main text. Given that most Global Climate Models (GCMs) have been calibrated and 
tested largely with northern hemisphere data, uncertainties related to current and past 
extrapolations of climate over large areas of Africa are often unknown (e.g., Rowell et al. 
2016). In this appendix, we present the results of the distribution modelling effort, while in 
the main text we base our formalization of evolutionary scenarios on paleo-vegetation 
reconstructions. Notice that the difference between the two approaches does not affect our 
major conclusions. Indeed, since paleo-vegetation maps show more severe changes of open 
vegetation distributions during glacial and interglacial periods, their use make us consider a 
wider spectrum of key biogeographic events than we would have identified based on climatic 
modelling (e.g. continuous colonization of southern Africa, population size contraction), and 
thus a larger set of possible scenarios. In addition, our inference of a most likely scenario 
including a long-distance migration event, and our estimation of a short time scale of 
divergence between the two clades, do not conflict with the results of any of these approaches 
(see also the section On the influence of climatic cycles in the Discussion of the main text). 

Methods 

In a previous study (Meynard et al. 2017), we used Climond data (Kriticos et al. 2012) to 
characterize the current distribution of the two desert locust subspecies, and project their 
potential fate under different climate change scenarios into 2070. Here, we could not use the 
same models because the climatic variables used to calibrate those models, in particular 
radiation and wetness indices, are not available into the mid-Holocene (HCO) and Last 
Glacial Maximum (LGM) periods. However, we apply here a similar modelling procedure 
with a different subset of environmental predictors. Instead of Climond, here we downloaded 
Worldclim v1.4 data (Hijmans et al. 2005) at a 5 min resolution (approximately 9 km at the 
equator).  

For hindcasting, we first need to calibrate a model under current conditions, which can 
then be used to draw maps of potential ranges under HCO and LGM conditions. To do so, we 
used the occurrence data published in Meynard et al. (2017), which included decades of 
monitoring of S. g. gregaria in northern Africa, the middle east and southern Asia during 
remission periods, as well as field records and literature records of S. g. flaviventris in 
southern Africa. However, rather than modelling each clade independently as we did before, 
here we decided to group presence records for the two clades as a single unit for the following 
reasons: (1) here the emphasis is in paleo-climates, at a time scale where the two clades were 
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not yet supposed to be differentiated; (2) a niche analysis in Meynard et al. (2017) did not 
show evidence of niche differentiation between S. g. gregaria and S. g. flaviventris, 
suggesting that the environment occupied by the southern clade is a subset of that occupied by 
the northern one; and (3) the biogeographic hypothesis supported by the molecular analysis 
presented here involves the colonization of the southern tip of south Africa by an isolated 
population of the northern sub-species, which is more generalist in terms of its environmental 
niche. We therefore considered that grouping occurrence records regardless of the subspecies 
would provide for a more accurate hindcasting scenario. However, preliminary analysis using 
separate modelling for each subspecies showed qualitatively similar projections when using S. 
g. gregaria alone (results not shown). 

Finally, since here the emphasis is on Africa, we included only occurrence records in 
this continent, and used 10,000 pseudo-absences drawn at random from outside the combined 
current ranges of the two clades by using the distribution maps proposed in Meynard et al. 
(2017) to mask out areas available for pseudo-absence selection. We also assumed here that 
most of the African continent was accessible to the species during this geological time-scale, 
given the long known dispersal distances during outbreak periods, the wide distribution of the 
northern clade, and the fact that the species is present in both extremes of the continent. 
Consequently, here we do not delimit an accessible area, but we limit our modelling to 
continental Africa. 

To model the species distribution, we used four climatic variables to represent mean 
and variability in temperature and precipitation, while minimizing correlation between them. 
The four variables selected using these criteria were annual mean temperature (BIO1), annual 
precipitation (BIO12), annual temperature range (BIO7) and precipitation seasonality 
(BIO15). We also tested the same forward variable selection procedure presented in Meynard 
et al. (2017), which provided very similar predictions but, for simplicity, we will not present 
those results here. Using these four climatic predictors, we applied three statistical models in 
Rv3.6.1 to draw a consensus map for all predictions: Generalized Additive Model (GAM) 
using library mgcv, and limiting the maximum model complexity to k=4 (Wood 2006); 
boosted regression trees (BRT) using the library gbm, with 2000 trees and no interactions 
(Elith et al. 2008); and MAXENT, using the library dismo and all default parameters (Elith et 
al. 2011). As mentioned above, background data was sampled at random in Africa from 
outside the species current distribution. Pseudo-absences received a combined weight of 50% 
when using GAM or BRT, in order to balance the large number of pseudo-absences with 
respect to presence records in the modelling process while representing the range of values of 
the environmental predictors in the study area (Barbet-Massin et al. 2012). The consensus was 
drawn as the median predicted probability between the three models, and four different 
threshold values were calculated from this consensus: the MST threshold (the threshold that 
maximizes the sum of sensitivity + specificity), often recommended as a good strategy to 
optimize presence and absence classification rates (Liu et al. 2005), was calculated to delimit 
the predicted range of the species and calculate classification rate statistics; and 3 different 
thresholds that represent the highest predicted values that include a fixed percentage of 
presences (50%, 75% and 90%). These thresholds were used to visualize on the maps the core 
(50% threshold) versus the more marginal (between 75% and 90% thresholds) habitats within 
the range. In this context, the 50% threshold represents the core distribution, i.e. the highest 
predicted values that contain more than half of the occurrences, the 90% threshold represents 
the area that includes most of the occurrences, and the area outside the 90% threshold 
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represents marginal or no habitat, where the species is unlikely to occur. The area between the 
75% and 90% threshold can be considered as habitat that is rather marginal but that is still 
part of the predicted range. 

Classification success rates (AUC, TSS, sensitivity and specificity) were calculated for 
the consensus on all the dataset, using an MST threshold when needed. The thresholds 
calculated using current climate and occurrence data were then projected into past scenarios 
(HCO and LGM) using 3 different global circulation models at the same resolution: CCSM4, 
MIROC-ESM and MPI-ESM-P. We chose these three GCMs because their projections were 
available for both time steps of interest. Although the three GCMs are based on climatological 
principles, each one works in slightly different ways, and therefore produces different results. 
Consensus between GCMs presented below represents median values of predictions between 
the three GCMs.  

Results 

The current distribution of S. gregaria, as modelled using both subclades as a single unit and 
limited to continental Africa, is quite similar to the one already published in Meynard et al. 
(2017) (see Figure S2.1). There are, however, differences in the outline of the distributions, 
but the overall predicted area is largely overlapping and classification rates were excellent for 
this model under current conditions (% correctly classified = 87%; AUC = 0.960 ± 0.003; 
sensitivity = 0.911 ± 0.014; specificity = 0.870 ± 0.002; TSS = 0.788 ± 0.016). As expected, 
the species is more likely to occur in regions with mid to high temperatures, wide annual 
temperature range, low precipitation and high precipitation seasonality (Figure S2.2).  

 

Figure S2.1: Current range as predicted by a model combining both subspecies’ occurrences and using four climatic 
predictors. The range predicted by this model (black contour) is compared to the one published in Meynard et al. (2017) 
using a different set of predictors and separating occurrences by subspecies (blue contour).  
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Figure S2.2: Response curves of S. gregaria against the four environmental predictors used in the modelling process, as 
derived from the GAM model. Notice that temperature is expressed as the real temperature x 10.  

To better understand the results in terms of distributional changes, Figure S2.3 shows 
a comparison of the climatic variables used in the modelling process in the study region 
during the present, the HCO and the LGM periods across Africa. Although only one GCM 
scenario is shown (CCSM4), climatic conditions for the other two GCMs present similar 
trends. Notice that, although temperatures are thought to have been warmer than present 
during the HCO globally, those changes are not uniform across regions and are not reflected 
in these HCO scenarios for Africa. In all the scenarios in Figure S2.3, mean temperature 
showed a slight decrease across Africa, while precipitation increased slightly.  
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Figure S2.3: Comparison of climates across times (current climate, mid-Holocene, Last Glacial Maximum=LGM). Variables 
shown are those used in the modelling process. BIO1 = Mean Annual Temperature; BIO7 = Annual Temperature Range; 
BIO12 = Annual Precipitation; BIO15 = Precipitation Seasonality (Coefficient of Variation). Vertical color lines indicate mean 
values for each period: blue = current mean; red = HCO mean; green = LGM mean. 

However, when looking at the distribution of those changes (Figure S2.4) some 
regions showed a decrease and others an increase in temperatures during the same period. 
Most of Africa shows changes that represent less than 10% of their current mean temperature 
values (Figure S2.4, upper left). Overall, conditions under HCO in Africa were therefore 
similar to current climatic conditions in terms of temperature but were moister in many 
regions that are relevant to the potential distribution of the desert locust (Figure S2.4, upper 
row).  
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Figure S2.4: Relative changes in annual mean temperature (BIO1) and annual precipitation (BIO12) during the HCO and 
LGM, expressed as a percent of current values per grid cell. Positive values therefore indicate an increase whereas negative 
values represent a decrease with respect to current climatic conditions. 

During the LGM (Figure S2.3, right column), mean temperature decreased more 
dramatically throughout all of Africa, while precipitation increased in some regions but 
decreased in others (Figure S2.4, lower row). While the entire continent experienced a 
decrease in temperature, changes in precipitation were more heterogeneous (Figure S2.4, 
lower right). Given that these changes are heterogeneous across regions, changes in the 
potential distribution of S. gregaria are less dramatic than one would expect given global 
simplifications of these changes.  

Indeed, the predicted distribution during the HCO and the LGM are very similar to the 
current distribution (Figure S2.5). There is an overall shrinkage of the core habitat (in red in 
all maps), but the contour of the distribution (black contour) remains large and mostly 
overlapping with the current distribution.   
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Figure S2.5: Comparison of current versus past potential distribution of S. gregaria during the HCO and LGM periods. 

Although each GCM resulted in differences in terms of the projected distribution maps 
of S. gregaria, in the consensus distribution is projected to be very similar to the current 
distribution during the HCO, and slightly reduced during the LGM, with a shift of the core 
favorable climatic conditions towards a much reduced area, especially during the LGM 
(Figure S2.5). 

Although climatic projections for each GCM result in different projected distributions 
during the HCO (Figure S2.6) and the LGM (Figure S2.7), overall the tendencies are the 
same: a similar distribution when comparing present and HCO conditions, and a more 
restricted potential distribution when considering LGM conditions.   

 

Figure S2.6: Projected potential distribution of S. gregaria during the mid-Holocene (~6000 years BP) using three different 
Global Circulation Models (GCMs): CCRM4, MIROC-ESM and MPI-ESM-P. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 

http://dx.doi.org/10.1101/671867
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

 

Figure S2.7: Projected potential distribution of S. gregaria during the LGM (~20,000 years BP) using three different Global 
Circulation Models (GCMs): CCRM4, MIROC-ESM and MPI-ESM-P. 
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Supplementary Material S3: Overview of the used ABC Ran-
dom Forest (ABC-RF) methods

In this supplementary material, we provide readers with an overview of the Approximate Bayesian
Computation Random Forest (hereafter ABC-RF) methods used in the present paper. We invite
the reader to consult Pudlo et al. (2016), Estoup et al. (2018), and Raynal et al. (2019) for more
in-depth explanations.

ABC framework

Let y denote the observed data and θ a vector of parameters associated to a statistical model whose
likelihood is f(. | θ). Under the Bayesian parametric paradigm the posterior distribution

π(θ | y) ∝ f(y | θ)π(θ)

is of prime interest. It characterizes the distribution of θ given the observation y and can be
interpreted as an update of the prior distribution π(θ) by the likelihood of y. The likelihood is
hence pivotal, but unfortunately intractable in the evolutionary scenarios (models) we consider in
the present study, as well as in many other evolutionary studies. As a matter of fact, the underlying
Kingman’s coalescent process (Kingman, 1982) does not allow a close expression for the likelihood
because all the possible genealogies and mutational process yielding y should be considered. To
solve this issue, some likelihood-free methods have been developed using the fact that, even though
the likelihood is not available, generating artificial (i.e. simulated) data for a given value of θ is
much easier if not feasible (e.g. Beaumont (2010). Approximate Bayesian computation (ABC) is
one of them (Beaumont et al., 2002).

In a nutshell, ABC consists in generating parameters θ′ and associated pseudo-data z from
the scenario, and accepting θ′ as a realization from an approximated posterior if z is similar to y.
In standard ABC treatments, the notion of similarity is defined through the use of a distance ρ
to compare η(z) and η(y), where η(.) is a projection of the data in a lower dimensional space of
summary statistics. Only pseudo-data providing distance lower than a threshold ε are retained.
The choice of ρ, η(.) and ε is a major issue in ABC (Beaumont, 2010).

ABC-RF is a recently derived ABC approach based on the supervised machine learning tool
named Random Forest (Breiman, 2001), which has as major advantage to avoid the three above-
mentioned difficulties. Initially introduced in Pudlo et al. (2016) for model choice and then extended
to parameter inference in Raynal et al. (2019), ABC-RF relies on the use of random forests on a
set of simulated pseudo-data according to the generative Bayesian models under consideration.
Let consider M Bayesian parametric models. For a given model index m ∈ {1, . . . ,M}, a prior
probability P(M = m) is defined, with θm its associated parameters and fm(y | θm) its likelihood.
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The generation process of a reference table made of H elements is described in Algorithm 1.

Algorithm 1: Generation of a reference table with H elements

1 for h← 1 to H do
2 Generate m(h) from the prior P(M = m)

3 Generate θ
(h)

m(h) from the prior πm(h)(.)

4 Generate z(h) from the model fm(h)

(
. | θ(h)

m(h)

)
5 Compute η(z(h)) =

(
η1(z(h)), . . . , ηd(z

(h))
)

6 end

The output takes the form of a matrix containing simulated model indexes, parameters and
summary statistics, as described below

m(1) θ
(1)

m(1) η1(z(1)) η2(z(1)) . . . ηd(z
(1))

...
...

...
...

...
...

m(H) θ
(H)

m(H) η1(z(H)) η2(z(H)) . . . ηd(z
(H))

 .
ABC-RF for model choice

The ABC-RF strategy for model choice is described in Algorithm 2. The output is the affectation
of y to a model (scenario), this decision being made based on the majority class of the RF tree
votes.

Algorithm 2: ABC-RF for model choice

Input a reference table used as learning set, made of H elements, each one composed of a model
index m(h) and d summary statistics. A possibly large collection of summary statistics can
be used, including some obtained by machine-learning techniques, but also by scientific
theory and knowledge

Learning construct a classification random forest m̂(·) to infer model indexes

Output apply the random forest classifier to the observed data η(y) to obtain m̂(η(y))

The selected scenario is the one with the highest number of votes in his favor. In addition to
this majority vote, the posterior probability of the selected scenario can be computed as described
in Algorithm 3.

Such posterior probability provides a confidence measure of the previous prediction at the point
of interest η(y). It relies on the building of a regression random forest designed to explain the
model prediction error. More specifically, and as a first step, posterior probability computation
makes use of out-of-bag predictions of the training dataset. Because each tree of the random forest
is built on a bootstrap sampling of the H elements of the reference table (i.e. the training dataset),
there is about one third of the reference table that remains unused per tree, and this ensemble
of left aside datasets corresponds to the out-of-bag. Thus, for each pseudo-data of the reference
table, one can obtain an out-of-bag prediction by aggregating all the classification trees in which
the pseudo-data was out-of-bag. In a second step, the out-of-bag predictions m̂OOB(η(z(h))) are
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Algorithm 3: ABC-RF computation of the posterior probability of the selected scenario

Input the values of I
{
m(h) 6= m̂(η(z(h)))

}
for the trained random forest and corresponding

summary statistics of the reference table, using the out-of-bag classifiers

Learning construct a regression random forest Ê(.) to infer E (I {m 6= m̂(η(y))} | η(y))

Output an estimate of the posterior probability of the selected model m̂(η(y))

P̂ (m = m̂(η(y)) | η(y)) = 1− Ê (I {m 6= m̂(η(y))} | η(y))

used to compute the indicators I
{
m(h) 6= m̂OOB(η(z(h)))

}
. These 0 - 1 values are used as response

variables for the regression random forest training, for which the explanatory variables are the
summary statistics of the reference table. Predicting the observed data thanks to this forest allows
the derivation of the posterior probability of the selected model (Algorithm 3). Note that using the
out-of-bag procedure prevents over-fitting issues and is computationally parsimonious as it avoids
the generation of a second reference table for the regression random forest training.

Model grouping A recent useful add-on to ABC-RF has been the model-grouping approach de-
veloped in Estoup et al. (2018), where pre-defined groups of scenarios are analysed using Algorithm
2 and 3. The model indexes used in the training reference table are modified in a preliminary step
to match the corresponding groups, which are then used during learning phase. When appropriate,
unused scenarios are discarded from the reference table. This improvement is particularly useful
when a high number of individual scenarios are considered and have been formalized through the
absence or presence of some key evolutionary events (e.g. admixture, bottleneck, ...). Such key
evolutionary events allow defining and further considering groups of scenarios including or not such
events. This grouping approach allows to evaluate the power of ABC-RF to make inferences about
evolutionary event(s) of interest over the entire prior space and assess (and quantify) whether or
not a particular evolutionary event is of prime importance to explain the observed dataset (see
Estoup et al. (2018) for details and illustrations).

ABC-RF for parameter estimation

Once the selected (i.e. best) scenario has been identified, the next step is the estimation of its
parameters of interest under this scenario. The ABC-RF parameter estimation strategy is described
in Algorithm 4 and takes a similar structure to Algorithm 2. The idea is to use a regression random
forest for each dimension of the parameter space (i.e. for each parameter). For a given parameter of
interest, the output of the algorithm is a vector of weights wy that can be used to compute posterior
quantities of interest such as expectation, variance and quantiles. wy provides an empirical posterior
distribution for θm,k; see Raynal et al. (2019) for more details.

Global prior errors

In both contexts, model choice or parameter estimation, a global quality of the predictor can be
computed, which does not take the observed dataset (about which one wants to make inferences)
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Algorithm 4: ABC-RF for parameter estimation

Input a reference table used as learning set, made of H elements, each one composed of the

parameter value θ
(h)

m(h),k
(the k-th component of θ

(h)

m(h)) and d summary statistics

Learning construct a regression random forest to infer parameter values

Output apply the random forest to the observed data η(y), to deduce a vector of weights

wy = {w(1)
y , . . . , w

(H)
y }, which provides an empirical posterior distribution for θj,k

wy is used to compute the estimators of the mean, the variance and the quantiles of the
parameter of interest

Ê(θm,k | η(y)), V̂(θm,k | η(y)), Q̂α(θm,k | η(y))

into account. Random forests make it possible the computation of errors on the training reference
table, using the out-of-bag predictions.

For model choice, this type of error is called the prior error rate, which is the mis-classification
error rate computed over the entire multidimensional prior space. It can be computed as

1

H

H∑
h=1

I
{
m(h) 6= m̂OOB(η(z(h)))

}
.

For parameter estimation, the equivalent is the prior mean squared error (MSE) or the nor-
malised mean absolute error (NMAE), the latter being less sensitive to extreme values. These
errors are computed as

MSE =
1

H

H∑
h=1

(
θ
(h)

m(h),k
− θ̂(h)

m(h),k

)2
,

NMAE =
1

H

H∑
h=1

∣∣∣∣∣∣
θ
(h)

m(h),k
− θ̂(h)

m(h),k

θ
(h)

m(h),k

∣∣∣∣∣∣ .
θ̂
(h)

m(h),k
is the out-of-bag estimate of θ

(h)

m(h),k
. They can be perceived as Monte Carlo approximation

of expectations with respect to the prior distribution.

Local posterior errors

In the present paper, we propose some posterior versions of errors, which target the quality of
prediction with respect to the posterior distribution. As such errors take the observed dataset η(y)
into account, we mention them as local posterior errors.

For model choice, the posterior probability provided by Algorithm 3 is a confidence measure of
the selected scenario given the observation. Therefore

1− P̂ (m = m̂(η(y)) | η(y))

directly yields the posterior error associated to η(y): P̂ (m 6= m̂(η(y)) | η(y)).
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For parameter estimation, when trying to infer on θm,k, a point-wise analogous measure of a
local error can be computed as the posterior expectations

E
((

θm,k − θ̂m,k
)2
| η(y)

)
and E

(∣∣∣∣∣θm,k − θ̂m,kθm,k

∣∣∣∣∣ | η(y)

)
. (1)

We approximate these expectations by

H∑
h=1

w(h)
y

(
θ
(h)

m(h),k
− θ̂(h)

m(h),k

)2
and

H∑
h=1

w(h)
y

∣∣∣∣∣∣
θ
(h)

m(h),k
− θ̂(h)

m(h),k

θ
(h)

m(h),k

∣∣∣∣∣∣ .
We again uses the out-of-bag information to compute θ̂

(h)

m(h),k
, hence avoiding the (time consuming)

production of a second reference table, and assume that the weights wy from the regression random
forest are good enough to approximate any posterior expectations of functions of θm,k:
E(g(θm,k) | η(y)).

Another more expensive strategy to evaluate the posterior expectations (1) is to construct new
regression random forests using the out-of-bag vector of values

(
θ
(h)

m(h),k
− θ̂(h)

m(h),k

)2
or

∣∣∣∣∣∣
θ
(h)

m(h),k
− θ̂(h)

m(h),k

θ
(h)

m(h),k

∣∣∣∣∣∣ ,
depending on the targeted error. The observation η(y) is then given to the forests, targeting the
expectations (1).

Note that the values θ̂m(h),k in the previous formulas can be replaced by either the approximated
posterior expectations E(θm(h),k | η(y)) or the posterior medians Q50%(θm(h),k | η(y)), again using
the out-of-bag information, to provide the local posterior errors. We found that both in the present
paper (see main text, Materials and Methods section) and for various tests that we carried out on
different inferential setups and datasets (results not shown), the posterior median provides a better
accuracy of parameter estimation than the posterior expectation (aka posterior mean). This trends
also holds for global prior errors that can be computed using either the mean or the median as
point estimates.

As final comment, it is worth noting that so far a common practice consisted in evaluating
the quality of prediction (for model choice or parameter estimation) in the neighborhood of the
observed dataset, that is around η(y) and not exactly for η(y). For model choice, Estoup et al.
(2018) use the so called posterior predictive error rate which is an error of this type. In this case,
some simulated datasets of the reference table close to the observation are selected thanks to an
Euclidean distance, then new pseudo-observed datasets are simulated using similar parameters, on
which is computed the error (see also Lippens et al., 2017, for a similar approach in a standard
ABC framework). However, the main problem of processing this way is the difficulty to specify the
size of the area around the observation, especially when the number of summary statistics is large.
We therefore do not recommend the use of such a ”neighborhood” error anymore, but rather to
compute the local posterior errors detailed above as the latter measured prediction quality exactly
at the position of interest η(y).
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Diallo, M., Sow, A., Niang, Y., Piry, S., Berthier, K., Leblois, R., Duplantier, J. M., and Brouat,
C. (2017). Genetic structure and invasion history of the house mouse (Mus musculus domesticus)
in Senegal, West Africa: a legacy of colonial and contemporary times. Heredity, 119(2):64–75.

Pudlo, P., Marin, J.-M., Estoup, A., Cornuet, J.-M., Gautier, M., and Robert, C. P. (2016). Reliable
ABC model choice via random forests. Bioinformatics, 32(6):859–866.

Raynal, L., Marin, J.-M., Pudlo, P., Ribatet, M., Robert, C. P., and Estoup, A. (2019). ABC
random forests for Bayesian parameter inference. Bioinformatics, 35(10):1625–1633.

6

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 

http://dx.doi.org/10.1101/671867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Material S4. Details on results from ABC-RF treatments when using uniform priors 
for the three time period parameters of the studied scenarios. 
 
Table S4.1. Scenario choice for each of the ten replicate analyses using uniform priors for the three time period parameters of the 
studied scenarios. 
 

Reference 
table 

Best 
scenario 

Votes 
S 

Votes 
SC 

Votes 
SB 

Votes 
SCB 

Votes 
SAU 

Votes 
SCAU 

Votes 
SBAU 

Votes 
SCBA

U 

Votes 
SAB 

Votes 
SCAB 

Votes 
SBAB 

Votes 
SCBA

B 

Prior 
error rate 

Posterior 
probability 

(best scenario) 

1 scenario 
SCB 0.013 0.045 0.147 0.462 0.007 0.022 0.020 0.040 0.041 0.099 0.034 0.069 0.778 0.596 

2 scenario 
SCB 0.018 0.027 0.140 0.365 0.012 0.026 0.033 0.096 0.044 0.075 0.072 0.092 0.776 0.398 

3 scenario 
SCB 0.012 0.077 0.182 0.326 0.006 0.030 0.019 0.069 0.038 0.102 0.064 0.074 0.775 0.426 

4 scenario 
SCB 0.014 0.035 0.175 0.405 0.007 0.022 0.022 0.061 0.023 0.091 0.040 0.104 0.777 0.563 

5 scenario 
SCB 0.019 0.048 0.101 0.416 0.010 0.024 0.026 0.063 0.039 0.092 0.055 0.106 0.778 0.547 

6 scenario 
SCB 0.018 0.030 0.130 0.295 0.011 0.030 0.013 0.124 0.075 0.093 0.098 0.082 0.778 0.398 

7 scenario 
SCB 0.016 0.057 0.094 0.308 0.011 0.018 0.015 0.050 0.028 0.113 0.058 0.231 0.775 0.511 

8 scenario 
SCB 0.019 0.037 0.109 0.359 0.007 0.018 0.015 0.049 0.057 0.080 0.105 0.145 0.777 0.474 

9 scenario 
SCB 0.010 0.052 0.114 0.286 0.017 0.023 0.014 0.070 0.069 0.136 0.098 0.113 0.777 0.460 

10 scenario 
SCB 0.013 0.057 0.124 0.249 0.009 0.016 0.012 0.067 0.061 0.133 0.091 0.168 0.778 0.442 

Mean scenario 
SCB 0.015 0.047 0.132 0.347 0.010 0.023 0.019 0.069 0.048 0.101 0.072 0.118 0.777 0.481 
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We empirically evaluated the influence of shape of prior distributions for the time periods on our inferences by re-conducting all ABC-RF analyses assuming a set of uniform 
priors bounded between 100 and 500,000 generations for those time periods. As a reminder, prior values for time periods were initially drawn from log-uniform distributions 
bounded between 100 and 500,000 generations in the main document. We here report values for the proportion of votes, prior error rates and posterior probabilities of the 
best scenario on ten replicate analyses based on ten different reference tables (assuming a set of uniform priors bounded for time periods). Scenarios are depicted in Figure 2. 
For each reference table, the number of datasets simulated using DIYABC was set to 150,000 and the number of RF-trees was 3,000. The scenario SCB was the best 
supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not 
any secondary contact with asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris.  
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Table S4.2. Estimation of the divergence time between S. g. gregaria and S. g. 
flaviventris for ten replicate analyses using uniform prior distributions for the three 
time period parameters under the best supported scenario (scenario SCB).  
 

tdiv (G) Median q5% q95% 
reference table 1 10236.6 3678.5 25457.0 
reference table 2 7603.0 2311.2 23020.3 
reference table 3 8500.0 2788.8 19401.0 
reference table 4 10598.5 3564.4 24444.5 
reference table 5 9226.0 3147.9 21286.6 
reference table 6 9665.0 3381.5 24445.2 
reference table 7 8675.5 2572.3 26375.8 
reference table 8 10281.6 2919.8 27349.0 
reference table 9 8845.0 3271.9 24094.7 
reference table 10 7909.7 2040.1 21333.4 

Mean 9154.1 2967.6 23720.8 
SD 1027.5 541.6 2476.4 

We empirically evaluated the influence of shape of prior distributions for the time periods on our inferences by 
re-conducting all ABC-RF analyses assuming a set of uniform priors bounded between 100 and 500,000 
generations. Median value and 90% CI for priors are 146,936 and 13,195 – 498,867, respectively. Replicate 
analyses have been processed on different reference tables. For each reference table, the number of datasets 
simulated using DIYABC was set to 100,000 and the number of RF- trees was 2,000. Divergence times are 
given in number of generations. SD stands for standard deviations computed from the ten values of median, 5% 
quantile and 95% quantile estimated from the ten replicate analyses.  
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Figure S4.1. Estimation of the time since divergence between the two desert locust 
subspecies as a function of time scales using uniform prior distributions for the three 
time period parameters under the best supported scenario (scenario SCB).  
Simulated datasets (5,000 par divergence time) were generated for fixed divergence time 
values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; and 
250,000 generations. The median (plain lines) and 90% credibility interval (90% CI; dashed 
lines), averaged over the 5,000 datasets, are represented. Divergence time values are in 
number of generations. 
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