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Modelling Interactions of a Microbial Community through an Optimal
Tracking Control Approach.

Pablo Ugalde-Salas1∗, Jérôme Harmand1, and Elie Desmond-Le Quéméner1

Abstract— Genetic sequencing measurements of the existing
species in a reactor are incorporated into a classic chemostat
model through a non linear optimal tracking approach. The
framework is applied to data coming from a nitrification pro-
cess, resulting in a dynamical system with a high dimensional
state. The observed ecological dynamics from the bacterial
species are able to explain the substrates dynamics.

I. INTRODUCTION

In the last decades genetic sequencing techniques have
become an affordable measurement in bioprocesses. How-
ever using this measurements for the prediction and control
of the bioreactors performance (in terms of proportions
of chemicals consumed and produced) lacks a modelling
framework [1].

It has been theorised that interactions between microorgan-
isms could help explain the difference in performance of re-
actors operating under very similar environmental conditions
[2]. Some types of interactions have already been accounted
in chemostat theory, such as inhibition in the presence of
other species, or density dependence. Nevertheless this rep-
resent just a fraction of the possible ecological interactions[3]
that could take place in a microbial community.

The central idea behind the method presented in this work
is that if one can accurately follow the dynamic of the species
present in an ecosystem for a certain time horizon then one
can recover the underlying interactions that might be driving
the system.

II. MODEL DEFINITION AND PROBLEM STATEMENT

The following conventions are used: (1) Let m be an
integer then [m] := {1, . . . ,n}, (2) For integers m1 and m2
and a ∈ R, am1×m2 represents a matrix of m1 rows and
m2 columns with a in every entry, (3) let m be an integer
then Im is the identity matrix of size m, (4) given a vector
v = (v1, . . . ,vn) ∈ Rn the function diag(v) returns a square
matrix M with entries Mii = vi, ∀i ∈ [n], and Mi j = 0, ∀i, j ∈
[n], i 6= j, and (5) Let a1,a2 ∈R then a1∨a2 := max{a1,a2}
and a1∧a2 := min{a1,a2}.

A. Stoichiometric Equations

Consider the situation where n different Operative Tax-
onomic Units (OTU) are present in a system. A group of
OTU (G1 ⊂ [n]) consumes a substrate s1 for growth and as a
result s2 is produced, while another group of OTU (G2 ⊂ [n])
consumes s2 for growth and produces s3. G1 and G2 are
called functional groups. This situation is often referred to
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as a cascade bioreaction. The number of organisms in G1 and
G2 will be denoted n1 and n2, respectively. It will be assumed
that sets G1 and G2 satisfy: G1∩G2 = /0 and G1∪G2 = [n].

The situation is schematically described in bioreactions
(R G1) and (R G2). The terms yi are known as yields,
they represent the number of moles of biomass produced
per mole of substrate consumed. The term Mx represents a
molecule of biomass and several expressions can be found
in the literature (e.g. CH1.613O0.557N0.158 [4]). s = (s1,s2,s3)
and x = (x1, . . . ,xn) denote the vectors of concentrations of
substrates and of OTU present in the system, respectively.
Each reaction has its own process rate (also known as growth
function or kinetics) µi(s,x). Note that it depends on x to
show the influence of other OTU on the growth function.
A classic treatment of general reactions and kinetics in
biotechnology can be found in [5].

s1
µi(s,x)−→ s2 + yiMx ∀i ∈ G1 (R G1)

s2
µi(s,x)−→ s3 + yiMx ∀i ∈ G2 (R G2)

B. Mass Balance Equations

The system where reactions (R G1) and (R G2) take place
is a container of fixed volume V containing a liquid medium
with the same input and output flow Q = Q(t), which can
vary in time. The dilution rate is then defined as D = D(t) =
Q
V . The input flow contains a time dependent concentration
sin = sin(t) of the same chemical composition than s1,
for readability the time dependence notation is dropped.
For chemostat theory detailed modelling and mathematical
analysis one can refer to [6]. The dynamics of the described
situation are seen in (1).

ẋi = (µi(s,x)−D)xi ∀i ∈ G1
ẋi = (µi(s,x)−D)xi ∀i ∈ G2

ṡ1 = (sin− s1)D− ∑
i∈G1

1
yi

µi(s1,x)xi

ṡ2 = −s2D+ ∑
i∈G1

1
yi

µi(s,x)xi− ∑
i∈G2

1
yi

µi(s,x)xi

ṡ3 = −s3D+ ∑
i∈G2

1
yi

µi(s,x)xi

(1)



C. Kinetics and Interactions

Given a vector (v1, . . . ,vn)
> the interaction function I is

noted as:

I : Rn→ [0,1]n

v→


I1(v)
I2(v)

...
In(v)


(2)

The growth function of each OTU will be assumed to be a
product of substrate dependent function and the interaction
function. Let fi(s) be a bounded, positive, and continuous
function of s (e.g. Monod, Haldane). The growth equation
of OTU i becomes:

µi(s,x) = fi(s)Ii(x) (3)

The notation f (s) := ( f1(s), . . . , fn(s))> will be used.
Since the growth of a single strain in chemostat experi-

ments is limited by the substrate concentration , when no
interactions are present one should recover expression fi(s).
Therefore if there are no interactions then Ii(x) = 1. From
this reasoning, note that lim

x→0
Ii(x)= 1 since if there is minimal

presence of OTU, interactions can not exist. Furthermore it
is assumed that Ii(·) is a continuously differentiable function
on x. For making explicit all of the former:

The interaction function I previously defined satisfies:

1) I
(
(0, . . . ,0)>

)
= (1, . . . ,1)>

2) Let Ω be an open subset of Rn then I ∈C1(Ω).

By forcing the positivity of the interaction function then
the growth functions are still positive and the system remains
well posed [6], meaning that if system (1) is provided with
non-negative initial conditions, the trajectories remain non-
negative.

The problem is then to reconstruct the interaction function
from the observations of the microbial community composi-
tion in time.

D. Optimal Control Setting for Unravelling the Interaction
Function

Suppose that the functions fi(s), and the yields yi are
well-known. By using experimental measurements of x,
represented by z(t), the objective is to reconstruct function
I(x). For doing so, the terms Ii(x) are replaced by a control
ui(t) (ui(t) = Ii(x(t))) and a state feedback control law is
obtained by solving a nonlinear optimal tracking problem.

Consider the observable system (4).

ẋi = ( fi(s)ui(t)−D)xi ∀i ∈ G1
ẋi = ( fi(s)ui(t)−D)xi ∀i ∈ G2

ṡ1 = (sin− s1)D− ∑
i∈G1

1
yi

fi(s)ui(t)xi

ṡ2 =−s2D+ ∑
i∈G1

1
yi

fi(s)ui(t)− ∑
i∈G2

1
yi

fi(s)ui(t)xi

ṡ3 =−s3D+ ∑
i∈G2

1
yi

fi(s)ui(t)xi

y(t) = x(t)

(4)

Let Q, and R be positive definite matrices, and let ‖·‖Q and
‖ ·‖R be the weighted norms by the corresponding matrices.
The optimal tracking problem is defined as:

min
T∫

0

‖y− z‖Qdt +
T∫

0

‖(u−1n×1)‖Rdt

s.t. (x,s1,s2,s3) solution of (4)
ui(t) ∈ [0,1]

(5)

The control u(t) is intended to drive the system to be
near a desired output z(t), which in this context are the
measurements of the concentrations of OTU. The term ‖(u−
1n×1)‖R, was added for two reasons:

First because the interest is testing the idea that inter-
actions could be driving the system. Therefore adding a
penalization in the objective function for each control to
remain near 1 can be seen as an attempt to explain data
without any interaction.

Second, to force a regularized control. Otherwise note that
u is linear in the state equations (4), therefore if the integral
cost does not have a non-linear expression of u the optimal
control will be of a bang-bang type with possibly singular
arcs. Since the objective is to find a differentiable expression
of I(x) the addition of the regularization term is deemed
necessary.

The problem of approximating the solution of the system
to a desired reference (z in this case) is called the optimal
tracking problem. For solving such a problem the approach
developed by Cimen et al. [7] was adapted to our problem,
using [8]. The method proposed involves the resolution of
Approximating Sequences of Ricatti Equations.

The method consists on iteratively calculating trajectories
of system (4) with a certain control and feeding a non-
autonomous Ricatti differential equation with the resulting
trajectory. Then a control law that uses the Ricatti equation
is proposed and a new trajectory is calculated. The iteration
is stopped when a convergence in the output or in the control
is observed.

First the tracking problem does not consider a constrained
control, so one should consider a reformulation as proposed
by the same author in other works [8]. Nevertheless, the
methods in [7] were directly used, and an explicit constraint
in the synthesis of the control was added for the control
to remain within the desired bounds (see equation (21)).



Even though this is probably suboptimal it worked for our
purposes.

Second in their problem they used an approximation of
their original dynamics for calculating the trajectories and
subsequently proved that such linearisation converged to the
original dynamics. In the case here presented the linearisation
of the dynamics was not necessary.

E. Tracking Problem Reformulation

For applying the methods developed in [7]. Define the
system state X =(x,s), and the change of variables vi = ui−1
with v = (v1, . . . ,vn). System (4) may be rewritten then as:

ẋi = ( fi(s)(1+ vi(t))−D)xi ∀i ∈ G1
ẋi = ( fi(s)(1+ vi(t))−D)xi ∀i ∈ G2

ṡ1 = s1

(
sin

s1
−1
)

D− ∑
i∈G1

1
yi

fi(s)(1+ vi(t))xi

ṡ2 = −s2D+ ∑
i∈G1

1
yi

fi(s)(1+ vi(t))

− ∑
i∈G2

1
yi

fi(s)(1+ vi(t))xi

ṡ3 = −s3D+ ∑
i∈G2

1
yi

fi(s)(1+ vi(t))xi

y(t) = x(t)

(6)

Define

kG1 =

(
1
y1
, . . . ,

1
ynA

)>
∈ Rn1 (7)

kG2 =

(
1

yn1+1
, . . . ,

1
yn

)>
∈ Rn2 (8)

A(X) =

[
A11(X) A12(X)
A21(X) A22(X)

]
(9)

B(X) =

[
B1(X)
B2(X)

]
(10)

A11(X) = diag( f (s)−Dn×1) (11)

A21(X) =

 f (s)>
[
−diag(kG1) 0n1×n2

]>
f (s)>

[
diag(kG1) −diag(kG2)

]>
f (s)>

[
0n2×n1 diag(kG2)

]>
 (12)

A12(X) = 0n×3 (13)

A22(X) =


(

sin
s1
−1
)

D 0 0
0 −D 0
0 0 −D

 (14)

B1(X) = diag( f (s))diag(x) (15)

B2(X) =

 f (s)>diag(x)
[
−diag(kG1) 0n1×n2

]>
f (s)>diag(x)

[
diag(kG1) −diag(kG2)

]>
f (s)>diag(x)

[
0n2×n1 diag(kG2)

]>
 (16)

C(X) =
[
In 0n×3

]
(17)

Then system (4) becomes:

Ẋ = A(X)X +B(X)v (18)
y =C(X)X

Let z(t) ∈ Rn be the vector containing the experimental
measurements of the OTU concentrations in time. The cost
functional is now rewritten as (19).

J(v) =

t f∫
t0

(z(t)−X(t))>Q(z(t)−X(t))dt

+

t f∫
t0

v(t)>Rv(t)dt

(19)

Define the dynamic sequences for i ∈ N, X [i] as :

Ẋ [i] = A(X [i])X [i]+B(X [i])v[i] (20)

y[i] = X [i]

X [i](t0) = X0

And for i = 0 let X [0](t) = X0. The control law is given by

v[i](t) j =

0∧
(
−1∨

(
−R−1B>

(
X [i−1](t)

)(
P[i](t)X [i](t)− s[i]f (t)

))
j

)
∀ j ∈ [n]

(21)

Where P[i](t) ∈Mn+3×n+3(R) and s[i]f (t) ∈ Rn+3 are the
solution to the systems of differential equations (22) and
(23), respectively.

Ṗ[i] =−CT
(

X [i−1](t)
)

QC
(

X [i−1](t)
)

(22)

−P[i]A
(

X [i−1](t)
)
−A>

(
X [i−1](t)

)
P[i]

+P[i]B
(

X [i−1](t)
)

R−1B>
(

X [i−1](t)
)

P[i]

P[i](t f ) = 0

˙
s[i]f =−C>

(
X [i−1](t)

)
Qz(t)−

[
A
(

X [i−1](t)
)

(23)

−B
(

X [i−1](t)
)

R−1B>
(

X [i−1](t)
)

P[i](t)
]>

s[i]f

s[i]f (t f ) = 0

Note that system (22) and (23) consists of (n+3)2 +(n+
3) differential equations. In the following the inspection of
system (22) and (23) allows us to reduce the number of
differential equations to 2n. Replacing matrices (9), (10), and
(17) in (22) and (23) one obtains:



Ṗ[i](t) =−
[

Q 0n×3
03×n 03×3

]
−P[i]A

(
X [i−1](t)

)
(24)

−A>
(

X [i−1](t)
)

P[i]

+P[i]B
(

X [i−1](t)
)

R−1B>
(

X [i−1](t)
)

P[i]

P[i](t f ) = 0

ṡ f
[i](t) =−

[
Qz(t)
03×1

]
−
[
A
(

X [i−1](t)
)

(25)

−B
(

X [i−1](t)
)

R−1B>
(

X [i−1](t)
)

P[i](t)
]>

s[i]f

s[i]f (t f ) = 0

The fact that certain entries are autonomous in the dynamic
and that the constantly zero function is a solution for them,
implies by existence and uniqueness that they should be
constantly zero. Then P[i] has n× n non zero entries and
s[i] has n non zero entries, explicitly:

P[i](t) =
[

P̃[i](t) 0n×3
03×n 03×3

]
(26)

s[i]f (t) =

[
s̃[i]f (t)
01×3

]
(27)

Where P̃[i](t) and s̃ f
[i](t) satisfy differential equations

(28) and (29), respectively. Note that matrices depend on
the previous state iteration i.e. A11 = A11

(
X [i−1](t)

)
and

B1 = B1

(
X [i−1](t)

)
.

˙̃P[i](t) =−Q− P̃[i]A11−A>11P̃[i]+ P̃[i]B1R−1B>1 P̃[i] (28)

P̃[i](t f ) = 0

˙̃s[i]f (t) =−Qz(t)−
[
A11−B1R−1B>1 P̃[i](t)

]>
s̃[i]f (29)

s̃[i]f (t f ) = 0

Assume now that matrices Q and R are diagonal matrices.
Inspecting the equation (28) one notices that if i 6= j, Pi j(t) =
0 is a solution of all non diagonal entries. And therefore,
once again, by existence and uniqueness they are constantly
zero. Hence in system (28) only the diagonal entries should
be calculated as seen in equation (30) .

˙̃P[i]
j j (t) =−Q j j−2

(
f j

(
s[i−1]

)
−D

)
P̃[i]

j j (30)

+R−1
(

P̃[i]
j j

)2
f j

(
s[i−1]

)2(
x[i−1]

j

)2

P̃[i]
j j (t f ) = 0

And the control law is given by

v[i](t) j = (31)

0∧
(
−1∨

(
−R−1B>1

(
X [i−1](t)

)(
P̃[i](t)x[i](t)− s̃[i]f (t)

))
j

)
∀ j ∈ [n]

Differential equations (30) and (29) were solved using
standard backward numerical integration for each iteration.
Note that from the former computations the method relies in
calculating 2n differential equations instead of (n+3)2+(n+
3) as the straightforward application of the method would
have meant.

III. APPLICATION AND DISCUSSION

The choice of matrices Q and R are always of discussion
in a quadratic regulator. Q represents the covariance matrix
of measurements, while the interpretation of R is not clear.
In the simulations here presented Q = In and R = 0.0001In,
found by trial and error in order for the control to fit
accurately the species abundance. The method stopped after
110 iterations where each iteration took approximately 600
seconds of computing time in a computer equipped with 8gb
of RAM memory and Intel core i3-7100U CPU 2,40 GHz.

The tracking problem was applied to data coming from
a nitrification process; the experimental conditions are de-
scribed in [9]. For exploring the hypothesis of interactions as
drivers of bioreactors performance environmental conditions
should be kept as constant as possible. Therefore only data
from day 183 onwards was used because a change in the
operating temperature happened at that point, which is known
to have an effect on the kinetics. For choosing which species
belong in which functional group, the procedure described
in [10] was used: from day 183 to day 230: 17 OTU were
identified in the G1 group (known as Ammonium oxidizing
bacteria AOB) and 8 in the G2 functional group (known as
Nitrite oxidizing bacteria NOB). The system state dimension
becomes 28.

The knowledge of functions fi(s) was based on a study
of nitrification’s kinetic parameters[11]. Particularly given
the system’s ammonium and nitrate concentration a Monod
function (eq (32)) was used for G1 and G2.

fi(s) = µ̄2
s1

K1 + s1
∀i ∈ G1 (32)

fi(s) = µ̄2
s2

K2 + s2
∀i ∈ G2

For the reader to gain understanding of the situation, a
simulation of the system using the experiments operating
parameters (D and sin) is presented without control (i.e.
v(t) = 0) in Figure 1. s3 accumulates all along the trajec-
tory, but when compared to data it is clear that s3 stops
accumulating after a while.

When applying the presented method one obtains the
simulation that can be seen in figure 2. The method captures
the tendencies in the measured substrates, but not their
absolute values. The simulation of each functional G1 (AOB),
and G2 (NOB) can be seen in figures 3 and 4, respectively.
Note that the fit of G1 seems better than the fit of G2, which
can be explained by the 1 order of magnitude difference of
abundance between the members of the group.



Fig. 1: Simulation when u = 1.

Fig. 2: Simulation applying the control strategy.

One can observe that in figure 2 the predicted s3 around
day 240 is much higher than the measurement. If one looks
at figure 4 it suggests attributing this extra production of
s3 around day 240 to the growth of OTU 24. What would
have happened if OTU 24 had been classified in the other
functional group? One would have seen a decrease in s1, an
increase in s2, and a decrease in s3 which could have better
fitted the measurements. Thus suggesting that OTU 24 was
misclassified from the method presented in [10].

In figures 5 and 6 it can be seen the obtained controls
for each functional group. Both controls saturate at certain
points, but in general terms they vary throughout the dy-
namic.

Recalling that u(t) is supposed to represent I(x(t)) (the
interactions terms), one could try to fit different forms of
I(·) for example I(x) = 1 + Ax, where A is a real valued
square matrix. In figure 7 the simulation of the system after
the identification of matrix A is presented, suggesting that an
affine interaction function is not able to capture the behaviour
of the system.

Fig. 3: Abundance of G1 (AOB) simulation applying the
control strategy.

Fig. 4: Abundance of G2 (NOB) simulation applying the
control strategy.

IV. CONCLUSION AND PERSPECTIVES

Considering the dimension of the system analysed, the
approach here presented seems satisfactory for the integra-
tion of genetic sequencing in the context of bioreactors,
particularly the Ricatti equations grow linearly in the number
of species, rendering the method scalable for a bigger number
of species. However some issues should be taken care of: 1)
test the method on synthetic data for a class of interaction
functions 2) the optimality of the control should be improved,
considering is just a truncated control from a state feedback
3) A clear rational on the choice of matrices Q and R. Finally
the hypothesis of misclassification presented for OTU 24
proposes as well a retroactive way to reclassify an OTU if
the substrates predictions go astray.



Fig. 5: Control obtained for OTU in G1 (AOB).

Fig. 6: Control obtained for OTU in G2 (NOB).
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