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Introduction

The annual yield of palm oil is around four tons per hectare and world production is currently above 75 million tons of crude palm oil [1]. Most cultivated oil palms (Elaeis guineensis Jacq.) are hybrid cultivars, mainly due to their high yield per hectare. Two parental and heterotic groups are involved in the production of hybrid cultivars, namely group A, consisting essentially of the Deli population (Asia) and, to a lesser extent, the Angola population, and group B, involving the other African breeding populations. Group A produces a small number of large bunches and group B produces a lot of small bunches. This complementarity and the resulting heterosis expressed on hybrids through sexual crosses explains why they were widely adopted in the 1960s, leading to a 30% yield increase [2]. In addition, commercial oil palm material is of tenera (T) (thin-shelled) fruit type, resulting from the cross between the thick-shelled dura (D) of group A and the shell-less and usually female sterile pisifera (P) of group B. Selection of hybrids is carried out through progeny tests in a modified reciprocal recurrent selection (MRRS) breeding scheme [START_REF] Gascon | Caractéristique de la production d'Elaeis guineensis (Jacq.) de diverses origines et de leurs croisements -Application à la sélection du palmier à huile[END_REF][START_REF] Meunier | Le schéma général d'amélioration du palmier à huile à l'IRHO[END_REF]. The best hybrids are primarily selected based on the parental general combining abilities (GCA). Although the annual increase of the oil palm hybrids' yield obtained through genetic improvement reached 1-1.5% over the past decades [START_REF] Rival | Palms of controversies: oil palm and development challenges[END_REF], this remains insufficient to face the expected increase in the demand.

An additional yield increase of 20-30% compared to sexual crosses can be obtained by using clones (ramets) obtained from the micropropagation of top-ranking commercial hybrid T individuals (ortets) [START_REF] Corley | The future for oil palm clones[END_REF]. This allows taking advantage of the within hybrid crosses variability that results from parental heterozygosity. However, this approach has been hampered for a long time by a floral epigenetic abnormality producing mantled fruits, which could result in severe production loss. This abnormality is a somaclonal variation arising during tissue culture due to hypomethylation of the retrotransposon Karma in mantled variants, leading to homeotic transformations and parthenocarpy [START_REF] Jaligot | Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis[END_REF][START_REF] Ong-Abdullah | Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm[END_REF][START_REF] Soh | Oil Palm Breeding: Genetics and Genomics[END_REF]. The recent understanding of the molecular mechanism involved in the mantled disorder has led to the possibility of early detection of mantled ramets during the first stages of seedling growth [START_REF] Ong-Abdullah | Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm[END_REF], thus arousing a new impetus for oil palm clonal selection. The evaluation of ortets on their phenotypic value is possible, but some of the oil palm yield components have a low heritability (e.g. [START_REF] Nouy | The expected and observed characteristics of several oil palm (# Elaeis guineensis# Jacq.) clones[END_REF] found a broad-sense heritability (H²) of 0 and 0.1 for bunch number and total bunch production, respectively), the estimation of their genetic values is thus of low reliability. As a consequence, breeders set clonal trials where they evaluate samples of ramets of candidate ortets that are preselected on the few yield traits with high heritability, i.e. usually the percentage of pulp per fruit (PF) and of oil per pulp (OP), for which, e.g., Nouy et al. [START_REF] Nouy | The expected and observed characteristics of several oil palm (# Elaeis guineensis# Jacq.) clones[END_REF] found H² values of 0.84 and 0.63, respectively. These trials give accurate estimations of the genetic value of the ortets but also extend, by around 10 years, the time required for the selection process for clone production, setting of trials and collection of phenotypic data. This considerably reduces the interest of clonal selection as, during this time, conventional hybrids were also improved. Another drawback of the clonal trials is that their cost means that only a small number of ortet candidates can be evaluated, thus limiting the selection intensity. There is, therefore, a need to optimize clonal selection in the oil palm.

Genomic selection (GS) [START_REF] Meuwissen | Prediction of total genetic value using genomewide dense marker maps[END_REF] is a marker-assisted selection (MAS) method with a high density of markers on the entire genome, so that at least one marker can be in linkage disequilibrium with each quantitative trait locus (QTL) [START_REF] Goddard | Genomic selection[END_REF]. Compared to the previous MAS approach based on QTL detection, GS takes into account all the markers jointly and without any test of significance. In this way, even markers capturing small QTL effects are used in the model predicting the genetic values, thus improving the efficiency of selection. GS is, therefore, the most appropriate MAS method for yield traits which are usually quantitative, i.e. controlled by many loci with small effect. The GS model is calibrated (or trained) on individuals genotyped and phenotyped (training set), and predicts the genetic value of a set of related individuals that are genotyped with the same markers. Before its practical application, the GS method must be evaluated and the prediction model that gives the highest accuracy (i.e. the correlation between the predicted and the true genetic values) is retained [START_REF] Grattapaglia | Quantitative genetics and genomics converge to accelerate forest tree breeding[END_REF]. The GS accuracy is estimated in a validation set, made of individuals genotyped and phenotyped and representative of the population that will be used for application. Oil palm is one of the pioneer perennial crops on which GS studies have been carried out. The oil palm GS studies provided prominent results, such as the superiority of GS over both QTL-based MAS and phenotypic selection [START_REF] Wong | Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations[END_REF], and the possibility of increasing the performance of sexual hybrid crosses by genomic preselection before progeny-tests [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF]. The main advantages of GS for the oil palm are its ability to enhance selection intensity and/or to shorten the generation interval, thus increasing the annual genetic gain [START_REF] Nyouma | From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.)[END_REF]. A recent study using a large training set estimated the GS accuracy when predicting the phenotypes of hybrid individuals [START_REF] Kwong | Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis Guineensis Jacq[END_REF]. Phenotypes are estimates of the total genetic values but they often have low reliability, and therefore, when evaluating GS for clonal selection, it would be better to use clonal values as the target values predicted by the GS models. This has not yet been done in the oil palm, although the potential benefits of genomic clonal selection have already been shown in other perennial crops such as the eucalyptus [START_REF] Durán | Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile[END_REF] and the rubber tree [START_REF] Cros | Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production[END_REF].

Given that ortets come from a cross between two oil palm origins, the genomic prediction of their genetic values can be done by two modeling approaches [START_REF] Ibánez-Escriche | Genomic selection of purebreds for crossbred performance[END_REF], which are the genomic extensions of the modeling approach developed by Stuber and Cockerham [START_REF] Stuber | Gene effects and variances in hybrid populations[END_REF] for interpopulation hybrids. The first one, the population-specific effects of single nucleotide polymorphism (SNP) alleles model (PSAM, or BSAM in the animal breeding literature, for breed instead of population), considers that alleles of the same marker have different effects in the hybrids depending on their population of origin, whereas the second approach, the across-population SNP genotype model (ASGM), considers that alleles of a marker have the same effect regardless of their population of origin. Studies in livestock showed that BSAM can outperform ASGM in terms of accuracy with a low number of SNPs, a large training set and slightly related or unrelated individuals [START_REF] Ibánez-Escriche | Genomic selection of purebreds for crossbred performance[END_REF]. However, to our knowledge, in the context of plant hybrids, these types of models were only compared in simulated maize populations [START_REF] Technow | Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects[END_REF].

The goals of this empirical study were: (1) to evaluate the efficiency of GS for clonal selection, using ortets of known clonal value to validate genomic predictions, (2) to compare ASGM and PSAM approaches, and (3) to evaluate the possibility of using GS instead of the current phenotypic selection to select the hybrid individuals to test in the clonal trials. The training set was composed of almost 300 Deli × La Mé crosses and the validation set of 42 Deli × La Mé ortets. The parents of the training crosses and the validation ortets were genotyped using genotyping-bysequencing (GBS). Predictions were made for eight yield components, with three bunch production traits, i.e. bunch number (BN), average bunch weight (ABW) and total bunch production (FFB, for fresh fruit bunch), and five bunch quality traits, i.e. average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF) and oil to pulp (OP) ratios and number of fruits per bunch (NF). The effect of the SNP dataset (SNP density and percentage of missing data) was studied by filtering SNPs with different maximum percentages of missing data.

Materials and methods

Plant materials and experimental designs

The plant material used to train the GS model comes from controlled crosses between Deli and La Mé (LM) individuals. Deli material comes from four ancestors of an unknown area of Africa planted in Indonesia in 1848. The La Mé material used here comes from three founders collected in Ivory Coast between 1924 and 1930 [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF]23]. For bunch production predictions, the training set was composed of 295 progeny-test crosses planted from 1995 to 2000 at Aek Loba Timur (ALT) and involving 108 Deli and 102 La Mé. For bunch quality predictions, a sample of 279 crosses involving 103 Deli and 100 La Mé parents were used (Table 1). The pedigrees of these populations are known over several generations (see Cros et al. [START_REF] Goddard | Genomic selection[END_REF]). ALT is located at 2° 39′ N -99° 42′ E in North Sumatra, on the SOCFINDO estate (Indonesia) and is constituted of 28 trials planted on deep loamy sand soils, with low water deficit and high insolation, and benefiting from standard cultural practices [START_REF] Potier | Elaeis guineensis Jacq) clones: preliminary results observed in the Aek Loba genetic block in Indonesia[END_REF]. The experimental design used in these trials was either a balanced lattice of four to five ranks or randomized complete block designs (RCBD), described in detail by Cros et al. [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF].

The validation set was composed of 42 Deli × La Mé tenera ortets, evaluated in clonal trials involving on average 69 ramets per clone for production traits and a subset of 34 ramets per clone for quality traits. The ramets were established in three out of the 28 trials of ALT and were planted in 1995 and 1998 (Table 1). The 42 ortets were chosen among individuals from various hybrid crosses planted on seven trials of an earlier set of progeny tests, located at Aek Kwasan 1 (AK1), which was also located on the SOCFINDO estate and benefited from the same agricultural practices. The plantation of the seven trials of AK1 took place between 1975 and 1979. The 42 ortets come from 17 families of full sibs with 16 La Mé parents and 12 Deli parents. These families were composed of one to five ortets each, with four families having five ortets each.

Phenotyping

All the individuals, i.e. the training hybrid crosses, the 42 hybrid ortets and their ramets, were phenotyped for eight traits. Five traits were assessed for bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to pulp (OP) ratios, and number of fruits per bunch (NF); and three traits for bunch production: bunch number (BN), average bunch weight (ABW), and total bunch production (FFB). For quality traits, data were collected when plants were from five to nine years old at ALT and from six to nine years old at AK1. For production traits, data were collected when the plants were from three to seven years old in both sites.

The coefficients of variation ( ) of the 42 clonal values (i.e. estimated from the ramet phenotypes) and of the 42 ortet phenotypic values adjusted for effects related to the experimental design (see below) were computed for each trait as: 100, with the standard deviation and μ the mean value.

Genotyping

Molecular data were obtained by GBS [START_REF] He | Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding[END_REF][START_REF] Elshire | A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[END_REF] for the 42 ortets, 93 Deli and 91 La Mé parents of the training hybrid crosses (Table 1). Ortets genotypes were obtained from two or three samples collected on different ramets (thus allowing controlling the legitimacy of the ramets). DNA extraction and GBS were performed as described in Cros et al. [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF], using the PstI and HhaI restriction enzymes.

The raw fastq sequence data were processed with Tassel GBS v. 5.2.44 [START_REF] Glaubitz | TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline[END_REF], using the Bowtie2 software for alignment [START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF], and VCFtools 0.1.14 [START_REF] Danecek | The variant call format and VCFtools[END_REF]. The indels were discarded, the datapoints with depth below five were set to missing, the SNPs that were not biallelic, with more than 75% of missing data or on the unassembled part of the genome were discarded (see Cros et al. [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF] for more details about SNP calling and filtering). This resulted in a dense genome covering with 15,054 SNPs. The average percentage of missing data was 23.08% (3.64% -43.42% per individual). To explain the differences in accuracy between ASGM and PSAM, the distribution of the minor allele frequency (MAF) and of the frequency of the alternate allele (i.e. that was not present on the reference genome)

were computed in Deli and La Mé, as well as the correlation among populations for each of these two parameters.

Imputation of missing SNP data and phasing

Imputation of missing SNP data and phasing were carried out with Beagle 4.0 [START_REF] Browning | Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[END_REF]. This software can consider the family relationships (i.e. parent-offspring) and infers missing genotypes using genotype likelihood computed from the pedigree. The process followed to impute and phase the SNP data is given in Fig. 1. The pedigree of the population involved in this study is available over several generations. For imputation, the initial SNP dataset containing all the genotyped individuals was divided into three distinct SNP datasets containing the Deli parents, the La Mé parents and the ortets, respectively. The Deli and La Mé SNP datasets were imputed separately giving to the software their respective pedigrees, and were then merged with the unimputed SNP dataset of ortets. The resulting global dataset was imputed and phased, providing the software with the pedigree file indicating the Deli and La Mé parent of each ortet. Nine ortets had one parent for which the DNA was unavailable but, as the missing parents were obtained through selfing, the selfed grandparent was used in the pedigree instead of the actual parent. For the other steps of the analysis that required a pedigree, the real pedigree was used.

Definition of SNP datasets

To quantify how the characteristics of the SNP dataset (i.e. maximum percentage of missing data allowed per SNP, pmax, and resulting number of SNPs, nsnp) affected the GS accuracy, we made genomic predictions using different SNP datasets with varying maximum percentage of missing data per SNP, as shown in table 2. Thereby, for the rest of the study, the SNP dataset will refer to an SNP matrix with a given number of SNPs resulting from the filtering made on the maximum percentage of missing data allowed per SNP. were implemented separately on each trait (univariate models). For GS, the GBLUP statistical approach was used [START_REF] Clark | Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values[END_REF][START_REF] Habier | The impact of genetic relationship information on genomeassisted breeding values[END_REF], and the corresponding models were termed G_ASGM_A, G_ASGM_AD, G_PSAM_A, and G_PSAM_AD. In addition, to evaluate the usefulness of the SNP data, these four models were implemented with pedigree data instead of SNPs (control PBLUP models, termed P_ASGM_A, P_ASGM_AD, P_PSAM_A, and P_PSAM_AD).

Prediction models and computation of genetic values of unobserved clones

In all cases, the models were trained with the phenotypic data of ALT hybrids and the genomic data of their parents, and the genetic values of the 42 validation clones were predicted. For all the models mentioned above, no phenotypic data of the validation clones were provided to the prediction models. This corresponds to a breeding situation where predictions are made for immature individuals (e.g. nursery plantlets belonging to crosses that were not evaluated in progeny-tests but were produced by mating the best parents selected at the end of the progeny-tests). However, ortet selection can also be made within the crosses evaluated in progeny tests. In this case, the ortet candidates have phenotypic data records, which should be taken into consideration along with their SNP data when predicting their clonal value. This was evaluated with the G_ASGM_A model, simply including the adjusted phenotypic value of the validation ortets (see below) to the phenotypic dataset used to train the model, and is referred to as the G_ASGM_A+pheno approach.

All GS analyses were run on a server of the CIRAD-UMR AGAP HPC data center of the South Green bioinformatics platform (http://www.southgreen.fr/), using a homemade R script.

Across-population SNP genotype models (ASGM)

The model used for the G_ASGM_AD approach was as follows:

+ + + + +
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are the additive and dominance variances, respectively. ~ N(0, * . # ) is the vector of residual effects and * the identity matrix. To implement this model in practice, two specificities of our dataset had to be taken into account. First, a few parents of the training crosses were not genotyped (Table 1), and the . matrices had therefore to be made with the genealogical data of hybrid crosses with ungenotyped parents and with the SNP data of hybrid crosses with genotyped parents (computed with the SNP data of their parents, see below)

and of the ortets. All . matrices subsequently in this paper will refer to matrices combining genealogical and genomic information. 0 is the inverse of , computed according to Misztal et al.

[33] as: 0 1 0 + 2 0 0 0 3 0 -1 0 5, where 3 0 and 1 0 are the inverse of the realized and the genealogical additive relationship matrices, respectively, of the 42 ortets and the hybrid crosses with genotyped parents, and 1 0 is the inverse of the genealogical relationship matrix of all hybrid crosses (i.e. the few with ungenotyped parents and the ones with genotyped parents) and the 42 ortets. Second, the phenotyped individuals constituting the hybrid crosses were not genotyped while they had to be connected to the validation ortets through their genomic relationships (only the parents of the hybrids were genotyped, except a few parents that were not genotyped and for which the genealogical relationships were used, as explained above). To get genotypes for the hybrid crosses with genotyped parents, we computed for each cross the mean genotypes expected from the parental genotypes (i.e. for SNP j in cross i, the mean number of copies of the minor allele of SNP j expected to be found in the hybrid individuals of i), assuming this was relevant considering the relatively large number of individuals per cross (Table 1). The genomic additive relationship matrix G was obtained as:

3 ′ 2 ∑ 8 (1-8 ) n SNP 8 1
, with -?, ' the transpose of matrix X, Z the SNP matrix containing the number of copies of the minor allele at an SNP (ranging from 0 to 2), P a matrix given by ? 2( -0.5), and the frequency of the minor allele at SNP 8 [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF]. is the dominance relationship matrix combining genomic dominance relationships between crosses with parents and clones, and genealogical dominance relationships between the few crosses with ungenotyped parents.

ABC DE 0

was computed following the same method as 0 except that the additive relationship matrices were replaced by the dominance relationship matrices. The realized dominance relationship matrix 3 A was computed according to Su et al. [START_REF] Su | Estimating additive and nonadditive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers[END_REF] as:
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, with F the n × m matrix (n: number of hybrid crosses and clones and m: number of SNPs) of heterozygosity coefficients with element F J 0 -K if clone or ortet L is homozygous and F J 1 -K if it is heterozygous at locus l, and and K the frequencies of the first and the second allele at locus 8. The purely additive approach ASGM_A used the same model without the dominance effect.

For the P_ASGM_A and P_ASGM_AD, was replaced by the additive genealogical relationship matrix 1 and, for P_ASGM_AD, ABC DE was replaced by the genealogical dominance relationship matrix.

The estimated genetic value for the validation clones was M and, for G_ASGM_AD and P_ASGM_AD, M + M .

Population-specific effects of SNP alleles models (PSAM)

The model used for G_PSAM_AD was as follows:
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) and ~ N(0, DE O () # ) the additive effects inherited by the parents of the hybrid crosses and the ortets from the Deli and La Mé populations, respectively, and ~ N(0,

$ %&'" () #
) the dominance effects of the crosses and clones. , , , , ABC and DE were created following the same procedure as . For each parental population, the required realized relationship was computed according to VanRaden [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF] (see above) except that in the SNP matrices ( ABC and DE ) containing the number of copies of minor allele inherited from the considered parental population, the genotypes of clones were coded into 0 and 1, as indicated by the phase information provided by Beagle 4.0, while the genotypes of the hybrid's parents were coded into 0, 1, and 2, as in . ABC DE is the dominance relationship matrix containing both realized dominance relationships between clones and crosses implying genotyped parents, and genealogical dominance relationships between the crosses implying ungenotyped parents, computed as: 

,

Prediction accuracies

The ability of each model to predict the reference clonal value of the 42 validation clones (see below) was evaluated through their prediction accuracy, computed as the correlation between the reference value and the predicted clonal values.

Pairwise comparisons of prediction accuracies among models were made for each trait using the Hotelling-Williams t-test [START_REF] Steiger | Tests for comparing elements of a correlation matrix[END_REF]. This test compares two non-independent correlations, i.e. having one variable in common, which in our case is the reference value of the 42 clones. This test was applied using the R package psych [START_REF] Revelle | psych: Procedures for Psychological[END_REF].

Determination of the reference clonal values predicted by the models

In order to validate the different prediction models, clonal genetic values were obtained for each clone from the phenotypic data collected on their ramets. Subsequently in this paper, they will be referred to as reference genetic values. They were computed using a simple linear mixed model to adjust the phenotypic values of the ramets for the effects of experimental design, i.e. clonal trials, blocks, incomplete blocks, elementary plots and, for bunch production traits, age. In this model, clones were included as a fixed effect.

Accuracy of phenotypic selection before clonal trials

To evaluate the possibility of using GS instead of the current phenotypic selection (PS) to select the hybrid individuals to test in the clonal trials, the PS accuracy was computed for each trait. It was defined as the correlation between the ortet adjusted phenotypes and the reference clonal genetic values. The adjusted phenotype was obtained for each ortet from its phenotypic data collected in AK1, using a simple linear mixed model with individuals as random effect and hybrid crosses and all the effects related to the experimental design, i.e. trials, blocks, incomplete blocks, elementary plots and, for bunch production traits, age, as fixed effects. Finally, each ortet had for each trait an adjusted phenotype that was equal to the sum of the individual effect of the ortet, the effect of its cross and the mean residual effect over its phenotypic data records.

Results

Distribution of frequencies of minor and alternate alleles across population

The distribution of MAF in both Deli and La Mé populations showed a reduction in the number of SNPs with the increase of MAF (Fig. 2). The MAF ranged from 0 to 0.5 for both La Mé and Deli populations and the average was 0.1 for La Mé (Fig. 2a) and 0.07 for Deli (Fig. 2b). Most 

Effect of GS prediction model and SNP dataset on prediction accuracy

Prediction accuracies of GS methods ranged from -0.03 to 0.70 depending on prediction model, trait and SNP dataset (Fig. 3) for additive models (G_ASGM_A and G_PSAM_A). Indeed, in a preliminary analysis, inconsistent differences or similar accuracies were observed between additive models and additive + dominance models, depending on marker dataset and trait (see Supplementary

Fig. S. 1)

. Henceforward, we will only refer to additive models.

On average over traits and SNP datasets, G_ASGM_A was more accurate (0.45) than G_PSAM_A (0.37), with the mean prediction accuracy per trait over SNP datasets ranging from 0.14 (PF) to 0.65 (FB) for G_ASGM_A and from 0.09 (PF) to 0.58 (FB) for G_PSAM_A. G_ASGM_A obtained a mean prediction accuracy greater than G_PSAM_A for six traits out of eight, with G_PSAM_A being on average slightly more accurate than G_ASGM_A for ABW and equal for BN (Table 3). Considering the maximum accuracy over all SNP datasets, the prediction accuracy ranged from 0.18 (PF) to 0.70 (FB) for G_ASGM_A and from 0.16 (PF) to 0.65 (FB) for G_PSAM_A (Table 3), and, here, G_PSAM_A was more accurate for both BN and ABW, although slightly. Considering the different SNP datasets and traits, large differences in prediction accuracy between G_ASGM_A and G_PSAM_A were observed, up to +0.36 in favour of G_ASGM_A with OP at pmax = 45%-nSNP = 11,707 (Fig. 3 and Table 4). The differences in prediction accuracies between G_ASGM_A and G_PSAM_A were significant for three traits in four cases (Table 4). Prediction accuracies of G_ASGM_A were significantly greater than G_PSAM_A for OP with two SNP datasets (pmax=45%-nSNP=11,707 and pmax=75%-nSNP=15,054), FB and FFB in one dataset each, pmax=10%-nSNP=6,898 and pmax=5%-nSNP=5,620 respectively. In rare cases, low and non-significant differences (up to +0.16) were observed in favor of G_PSAM_A. G_ASGM_A, therefore, appeared to be a better approach (i.e. more accurate and easier to implement) for predicting clonal values for oil palm yield components.

Prediction accuracies were broadly improved for three traits (FB, BN and ABW) when relationship matrices were computed using SNPs (G_ASGM_A and G_PSAM_A) instead of genealogical data (control pedigree-based models P_ASGM_A and P_PSAM_A). The maximum prediction accuracies of GS over all SNP datasets outperformed pedigree-based models for seven traits out of eight (except for AFW) (Table 5). The largest difference was observed in BN for pmax=75%-nsnp=15,054, with G_ASGM_A accuracy being 0.67 higher than P_ASGM_A. Accuracies of pedigreebased models exceeded GS in almost every SNP dataset for AFW (Fig. 3 and Table 5). The differences between GS models and their pedigree-based control models were significant for five traits, with four traits (FB, OP, BN and ABW) where GS was the best and one trait (AFW) where pedigree-based models were more accurate (Table 5).

The SNP dataset affected the prediction accuracy differently according to the trait and the model. However, the use of a different SNP dataset for each combination of trait and model seems unrealistic for the practical application of GS. Therefore, in order to identify the optimal SNP dataset(s) that would maximize GS accuracy, we computed for each SNP dataset the mean G_ASGM_A prediction accuracy over the traits. This value increased with the SNP density (0.41 with SNP dataset pmax=0%-nsnp=2,447 and 0.43 with pmax=5%-nsnp=5,620), before plateauing at 0.46 with the subsequent SNP datasets. Mean prediction accuracy over the SNP datasets forming the plateau ranged from 0.17 (PF) to 0.66 (FB), and were close to the highest accuracies achieved over all the SNP datasets (Table 3). There was therefore a minimum of 6,898 SNPs required to reach maximum prediction accuracy on average over all traits.

Accuracies were more variable among SNP datasets and traits with G_PSAM_A than with G_ASGM_A. With G_ASGM_A, prediction accuracies tended to increase with SNP density before plateauing (except for AFW) and slightly decreasing in some cases. This suggested that more useful information was captured for prediction purposes when using more SNPs (to a certain limit) and, again, that the percentage of missing data was of lesser importance. On the other hand, a reduction of accuracies was observed with SNP density for AFW. For G_PSAM_A, prediction accuracies increased, and usually plateaued, for only four traits (FB, PF, NF and ABW). For the other traits, prediction accuracies remained stable or tended to decrease with increasing marker density and maximum percentage of missing SNP data. Thus, the accuracy of OP, for instance, decreased around 59.6% from pmax=0%-nsnp=1,497 to pmax=45%-nsnp=11,425 (Fig. 3).

Comparison of prediction accuracies of PS and GS

Figure 4 presents the prediction accuracies of PS and the mean prediction accuracy of G_ASGM_A over the best datasets (i.e. with pmax from 10% to 75% and nsnp from 6,898 to 15,054), with (G_ASGM_A+pheno) and without phenotypic data of the ortets. Variation of PS accuracy was large between traits, going from -0.03 for ABW to 0.63 for OP. Very low PS accuracies (<0.1) were obtained for ABW and FFB, meaning that PS would have been inefficient for these two traits. The highest PS accuracies were achieved in OP (0.63) and PF (0.59) (Table 6 and Fig. 4). These two traits are known to have moderate to high heritability in the oil palm [2] and are consequently routinely used for preselection before clonal trials. This was the case here, as indicated by the intensity of PS for these two traits, which was the highest among the eight traits studied (Table 6).

The GS prediction accuracy obtained with the best SNP datasets was generally higher with G_ASGM_A+pheno than with G_ASGM_A (except for AFW, where a slight decrease was found) (Fig. 4). On average over all the traits, G_ASGM_A+pheno thus reached 0.53, against 0.46 for G_ASGM_A (i.e. +15.2%). The prediction accuracy of G_ASGM_A and G_ASGM_A+pheno obtained with the best SNP datasets was above PS prediction accuracies for six and seven traits, respectively, out of eight. On average over all traits, the prediction accuracies of G_ASGM_A and G_ASGM_A+pheno were, respectively, 64.3% and 89.3% greater than PS (0.28). The case where GS outperformed PS the most was ABW with the G_ASGM_A+pheno model, with an accuracy of 0.62 against -0.03. PS only surpassed G_ASGM_A for two traits (PF and OP) and G_ASM_A+pheno for one trait (PF).

Discussion

In this paper, we evaluated the possibility of predicting the genetic value of oil palm ortet selection candidates, using GS models and high throughput SNP genotyping (GBS). We considered two breeding situations consisting of candidate ortets with or without phenotypic values. We assessed the effect on prediction accuracy of marker datasets and of two approaches for modeling the parental origin of marker alleles (across-population SNP genotype models, ASGM, and population-specific effects of SNP alleles models, PSAM).

Improving the genetic progress of clonal breeding with GS

In the current clonal breeding methodology, ortets that will be evaluated in clonal trials are selected on the few traits with high H² value among a limited number of phenotyped candidates at the mature stage and belonging to the best crosses evaluated in progeny tests. Based on the results presented here, annual genetic progress can be improved by selecting ortets (1) among a large population of the best possible crosses (produced based on the results of the progeny tests) at the juvenile (e.g. nursery) stage with GS models on most of the yield components or, (2) at the mature stage on all the yield components, using jointly the genomic and phenotypic data of the ortet selection candidates.

In detail, in the first GS approach that is now possible, the best crosses identified based on the results of the progeny test (i.e. with the best performance expected from the parental GCAs and the crosses' specific combining abilities [SCAs]) would be produced to generate a large number of seedlings, that would be submitted to GS on the traits with satisfactory GS accuracy. This would improve the genetic progress at three levels. First, most of the breeding programs consider that there are six traits of interest for palm oil yield breeding (FB, PF, OP, ABW, BN and FFB), and PS before clonal trials is usually applied to PF and OP, as they have the highest H² [START_REF] Corley | Vegetative Propagation and Biotechnology[END_REF]. In our dataset, these traits indeed had high H², with PS prediction accuracy >0.5 (Fig. 4) (although it was not clear why FB had a similar H², while it is usually among the traits with low H²). Therefore, considering that breeders use 0.5 as the minimum prediction accuracy for applying PS before clonal trials, they would now apply GS to four traits (FB, OP, FFB and ABW) (Fig. 4), with a similar mean prediction accuracy over these traits with GS (0.56) compared to PS (0.60 over FB, PF and OP). Interestingly, the two traits that had a prediction accuracy lower with G_ASGM_A than with PS, i.e. PF and OP, were the ones for which the 42 ortets were submitted to the strongest phenotypic selection before clonal trials. In particular, PF had the highest intensity of phenotypic selection (0.68) and also had much lower prediction accuracy with G_ASGM_A than with PS. We hypothesized this occurred as the phenotypic preselection led to the fixation of many genes controlling these traits, and in particular PF, in the 42 ortets, thus making that the relationships computed over the genome-wide SNPs no longer matched with the relationships at the genes. This hypothesis could be investigated using a validation set that was not submitted to phenotypic preselection. Such a study would be of great interest as, in case our hypothesis could be confirmed, the breeders would likely get in practice a higher GS accuracy for PF and OP, as the seedlings comprising the population of application would not be preselected. In this case, GS before the clonal trials would be even more useful. Second, a GS-based approach would also increase the genetic progress by higher selection intensity compared to PS: GS would be applied to nursery individuals, i.e. possibly in the thousands, while PS is currently applied to the small number of individuals planted in the progeny tests trials (i.e. normally 10 to 50 per cross) [START_REF] Soh | Oil Palm Breeding: Genetics and Genomics[END_REF]. Third, making the selection in the best possible crosses instead of the best crosses evaluated would be an improvement in terms of genetic progress, as the best possible crosses were likely not present in the progeny tests, due to the high degree of incompleteness of the mating designs. It is also possible to make these crosses in the context of phenotypic clonal selection, but in this case, the selection process would require around 10 more years of phenotypic evaluations in these elite crosses to identify the candidate ortets for the clonal trials [START_REF] Nyouma | From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.)[END_REF].

In the second GS approach, i.e. the selection of ortets among mature hybrid individuals, it is now possible to apply this selection to all the yield components. Indeed, for individuals at the mature stage, which thus may have phenotypic records, for each of the six commonly selected oil yield components it is possible to reach a prediction accuracy of 0.5 (or almost, in the case of BN), using conventional PS for PF and G_ASGM_A+pheno for the other traits. In practice, increasing the number of traits on which ortets are selected before clonal trials will increase selection intensity and thus the genetic progress.

Another possible approach to improve the genetic progress would be to use genomic predictions to identify, before the progeny tests, the best possible crosses, and to use them to implement the first approach of clonal GS suggested here. For that purpose, progeny tests from the previous cycle could be used as a training population, and genomic ortet selection would be applied at the nursery stage in the best possible crosses. This approach would, therefore, have the additional advantage of shortening the breeding cycle (as it makes it possible to run the clonal trials simultaneously with the progeny tests), but it should be investigated in greater details as its efficiency also depends on the accuracy of the genomic estimated breeding values of the parents.

Effects of prediction model and SNP dataset on prediction accuracies

G_PSAM_A can model genetic differences between Deli and La Mé populations, as it considers population-specific SNP variances and SNP effects. For that reason, we expected G_PSAM_A to perform better than G_ASGM_A for many traits, considering the marked genetic difference between Deli and La Mé, with Fst around 0.55 [START_REF] Cros | Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study[END_REF]. However, G_PSAM_A only performed better than G_ASGM_A for BN and, to a lesser extent, ABW. We hypothesized that this was the consequence of stronger differences among Deli and La Mé populations in terms of QTLs for BN and ABW than of QTLs controlling the other traits. This makes sense when considering that Deli and La Mé belong to different heterotic groups defined based on their phenotypic values for BN and ABW, in which they have opposite and complementary characteristics. This is in agreement with the results of Tisné et al. [START_REF] Tisné | Mixed model approach for IBD-based QTL mapping in a complex oil palm pedigree[END_REF], who found a large majority of distinct significant QTLs among groups A and B on bunch production traits, i.e. six in group A and ten in group B, against only one common QTL. This is also in agreement with the fact that a large part of the SNPs in the two populations have opposite minor alleles, with differences as extreme as having one allele fixed in one population and the other allele fixed in the other population (Fig. 2b,c). However, not all SNPs showed these types of differences and similar segregation patterns among populations were also observed, which is likely related to the similar performance of G_ASGM_A and G_PSAM_A for the other traits. In order to help to understand the results obtained here, it would be useful to investigate whether the QTLs identified in other studies for the different traits are located in regions of the genome where SNPs have similar or contrasted segregation. Also, it would be interesting to compare, across the Deli and La Mé populations, the linkage phases between SNP markers and the SNP effects, as it was previously done in cattle and maize [START_REF] Technow | Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize[END_REF] Although G_PSAM_A has the potential to model genetic differences between parental populations, it also has a drawback, which is that it has to estimate more parameters than G_ASGM_A (i.e. more genetic variances and, because additive effects are split into two parts inherited from the two parental populations, more genetic effects) [START_REF] Zeng | Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action[END_REF]. For example, while for a given clone a single genetic effect is estimated with G_ASGM_A, two genetic effects, i.e. one for each of the hybrid parents, are estimated with P_ASGM_A. Our results corroborate those of Zeng et al. [START_REF] Zeng | Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action[END_REF] who attributed low accuracies in many scenarios of PSAM in animal studies to the complexity of the model caused by the segregation of SNP in the two parental breeds, and the resulting need to estimate two substitution effects per SNP instead of one.

Ibánez-Escriche et al. [START_REF] Ibánez-Escriche | Genomic selection of purebreds for crossbred performance[END_REF] obtained a significant advantage of G_PSAM_A over G_ASGM_A on accuracy for a low marker density (400 markers), a large number of records in the training population (4,000) and a relationship between breeds that was weak (i.e. common origin 550 generations ago) or absent. Similarly, Esfandyari et al. [START_REF] Esfandyari | A crossbred reference population can improve the response to genomic selection for crossbred performance[END_REF] found that G_PSAM_A outperformed G_ASGM_A for genetically distant hybrid parents, i.e. having diverged 300 to 400 generations ago, and a large training population with 2,000 to 8,000 individuals. The small advantage of G_PSAM_A over G_ASGM_A obtained in our study might, therefore, result from the fact that the genetic difference between the Deli and La Mé populations was actually not large enough (the Deli also having African ancestors, planted in Indonesia in 1848) and/or because of our training population was too small. Technow et al. [START_REF] Technow | Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects[END_REF] found higher accuracy while using G_PSAM_A+D than when using G_ASGM_A+D, with the gain in accuracy being larger with low SNP density (from 0.3 to 1 SNP per megabase pair, Mbp) than with high marker density (10 SNP per Mbp). Here, considering the length of the oil palm genome is 1.8 Gb [START_REF] Singh | Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds[END_REF], the investigated range of SNP density was similar, going from 0.8 to 8.4 SNP per Mbp. Moreover, Lopes et al. [START_REF] Lopes | Genomic selection for crossbred performance accounting for breed-specific effects[END_REF] obtained similar prediction accuracies between G_ASGM_A and G_PSAM_A with high SNP density (31,930 SNPs). We did not find SNP density to have such an effect on the prediction accuracy of G_PSAM_A or on the relative performance of G_PSAM_A and G_ASGM_A. This likely results from the fact that, in our study, SNP density varied with SNP quality, with higher SNP numbers meaning a higher percentage of missing data. These two parameters, therefore, seem to interact on the prediction accuracy of the two models investigated.

However, the fact that the mean GS accuracy over the traits increased with the number of SNPs and plateaued from 6,898 SNPs indicated that SNP density was of greater importance for the prediction accuracy than the percentage of missing data per SNP.

We found that, in order to maximize the efficiency of GS, the prediction of the genetic values must be done using G_ASGM_A with an SNP density ranging from around 7,000 to 15,000 for all traits. Another possibility would be to use a different SNP dataset for each trait, maximizing the accuracy for the considered trait. However, as previously mentioned, this does not seem convenient for the practical application of GS. The variation in prediction accuracy among SNP datasets might also have been exacerbated by the small size of our validation population (due to the difficulty of obtaining a large number of clones in trials, mainly because of the mantled anomaly [START_REF] Ong-Abdullah | Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm[END_REF]), and therefore so far it seems wiser to identify the best SNP datasets on average over several traits.

GS prediction models (G_ASGM_A and G_PSAM_A) were usually more accurate than their respective control pedigree-based models (P_ASGM_A and P_PSAM_A). The superiority of GS models shows that, even for unobserved individuals, GS models can account for both Mendelian sampling terms of siblings in a family and for family effects, while pedigree-based models can only account, at best, for family effects, as already found in previous oil palm GS studies [START_REF] Nyouma | From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.)[END_REF].

However, G_ASGM_A outperformed its control pedigree-based model more often than G_PSAM_A. Thus, G_PSAM_A remained less accurate than P_PSAM_A for all the SNP datasets in three traits, while that never happened with G_ASGM_A. Also, the overall inferiority of G_PSAM_A to G_ASGM_A occurred while P_PSAM_A was actually better than P_ASGM_A for five traits out of eight. This looks contradictory and suggests that the performance of G_PSAM_A could have been reduced by phasing errors. Also, many studies comparing G_ASGM_A and G_PSAM_A were carried out by simulation with known phases [START_REF] Technow | Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects[END_REF][START_REF] Zeng | Genomic selection of purebred animals for crossbred performance in the presence of dominant gene action[END_REF][START_REF] Esfandyari | A crossbred reference population can improve the response to genomic selection for crossbred performance[END_REF], and therefore possible phasing errors in our study could also be the cause of the discrepancies observed between our results and the results obtained in simulation studies. Investigating other phasing approaches seems therefore of interest in the oil palm context.

Genotyped individuals for training

In this study, to make GS predictions more cost-effective, the genotypes of the phenotyped hybrid individuals constituting the training set were reconstructed using the molecular data of their parents, with G_ASGM, or not used in the model, with G_PSAM. Both modeling approaches therefore assume that the mean genotype in a hybrid family (i.e. the mean number of copies of the minor allele over the individuals making the family) expected from the parental genotypes is the same as the actual mean genotype. Nevertheless, in the case of allele segregation distortion at a locus, the mean genotype in a hybrid family would significantly deviate from the mean genotype expected from the parental genotypes, and this could reduce the GS accuracy. Indeed, high numbers of distorted markers can be found in plants: Zuo et al. [START_REF] Zuo | Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.)[END_REF] and Li et al. [START_REF] Li | A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat[END_REF] found more than 10% of markers (SNP and SSR) significantly distorted. For future studies, it would be of great interest to compare the approach used here with predictions made using real hybrid genotypes, and to measure the differences in terms of GS accuracy and cost.

Prediction of dominance effects

GS prediction accuracies were not significantly enhanced by adding dominance effects.

Including dominance effects in the statistical model sometimes slightly increased or reduced accuracies, depending on the traits and the SNP datasets, revealing a negligible genetic dominance variance captured by the model compared to the total genetic variance, as already observed with genomic predictions for performances of oil palm hybrid crosses [START_REF] Cros | Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses[END_REF] We assume this was a consequence of reciprocal recurrent selection, which generated the contrasted allele frequencies we observed across Deli and La Mé populations (Fig. 2), thus decreasing the ratio of SCA variance to GCA variance [START_REF] Reif | Impact of interpopulation divergence on additive and dominance variance in hybrid populations[END_REF] and making dominance effects absorbed by the GCAs or the population mean [START_REF] Technow | Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize[END_REF] 

Conclusion

This work showed that GS can largely improve clonal selection in oil palm (Elaeis guineensis). GS prediction accuracies for ortets without phenotypic data records extended from -0.03 to 0.7 according to the trait, GS model and SNP dataset. The G_ASGM_A approach was better for predicting clonal values than G_PSAM_A (more robust over traits and SNP datasets, easier to implement), although G_PSAM_A could, in some cases, slightly improve prediction accuracies for the two traits defining the heterotic groups. G_ASGM_A gave higher prediction accuracies than current phenotypic selection for six traits out of eight. GS models required at least 7,000 SNPs to perform best, with the percentage of missing data per SNP being of secondary importance.

The annual genetic progress of clonal oil palm breeding for yield can be increased by replacing the current phenotypic ortet preselection before clonal trials by (1) genomic ortet preselection on most of the yield components among a large population of the best possible crosses (produced based on the results of the progeny tests) at the juvenile stage or, (2) ortet preselection at the mature stage on all the yield components using jointly the genomic and phenotypic data of the ortet selection candidates. GS can, therefore, enhance oil palm production. Further studies should be conducted, for example considering other traits (vegetative growth, resistance to diseases) and using a different phasing approach.

Tables Table 1

Characteristics of the datasets used for training and validation. 

  Two approaches were implemented to predict the genetic value of the validation clones: the across-population SNP genotype model (ASGM) and the population-specific effects of SNP alleles model (PSAM). In addition, for both approaches, two models were tested: a purely additive model (ASGM_A and PSAM_A) and a model combining additive and dominance effects (ASGM_AD and PSAM_AD). The ASGM_A approach used a model with a single random genetic effect, corresponding to the additive genetic value of the parents of the training hybrid crosses and of the validation clones. The ASGM_AD and PSAM_AD model also included a random dominance effect of crosses and ortets. The PSAM_A approach used two random effects partitioning the additive genetic values of each individual into two parts originating from Deli and La Mé alleles. All these four models

  N are the incidence matrices associated to , , , , b and p, respectively. ABC O %&'" # , DE O () # and ABC DE $ %&'" () # are the variance-covariance matrices associated to , and , respectively. O %&'" # and O () # are the additive genetic variances of the Deli and La Mé populations, respectively, and $ %&'" () # is the genetic dominance variance of crosses and clones. ABC is the matrix combining the additive realized relationships of the clones and the genotyped Deli parents of the crosses and the additive genealogical relationships of the few ungenotyped Deli parents of the hybrid crosses. DE is defined similarly for the La Mé population.

  , with ⊗ the Kronecker product. For P_PSAM_A and P_PSAM_AD, ABC and DE were replaced by the additive genealogical relationship matrices 1 ABC and 1 DE and, for P_PSAM_AD, ABC DE was replaced by the genealogical dominance relationship matrix. The estimated genetic value for the validation clones was calculated as the sum of the additive genetic values inherited from the two parents, i.e. M + M and, for G_PSAM_AD and P_PSAM_AD, of its dominance value, i.e. M + M + M .

  SNPs had low MAF values (<0.05) in both populations. La Mé populations had 65.6% SNPs with MAF<0.05, against 73.3% SNPs in Deli (i.e. 11.7% more SNPs with low MAF in Deli). In contrast, fewer SNPs had high MAF (>0.40) in both populations, and they were higher in proportion in La Mé (8.2% SNPs) than in Deli (4.8%). This showed the lower genetic diversity of Deli parents compared to La Mé, which resulted from their contrasted history with more generations of selection, drift and inbreeding in Deli than in La Mé.Correlation between La Mé and Deli MAF (Fig.2c) shows SNPs largely concentrated alongside x and y axes, demonstrating that most SNPs have distinct segregation patterns among Deli and La Mé, i.e. being fixed or almost fixed in one population while segregating, and in many cases with a high MAF, in the other population. Thus, 31.5% of the SNPs were fixed or almost fixed in one population (MAF<0.05) while segregating with MAF≥0.05 in the other population. This is the result of the high genetic difference between Deli and La Mé populations, for which the Fst fixation index reaches 0.55[START_REF] Cros | Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study[END_REF]. In detail, for these SNPs, MAF<0.05 was more often observed in Deli (19.6% of all SNPs had MAF<0.05 in Deli and MAF>=0.05 in La Mé) than in La Mé (11.9% of all SNPs had MAF<0.05 in La Mé and MAF>=0.05 in Deli), again as a result of the lower genetic diversity of the Deli population. Also, the number of SNPs segregating with MAF>0.05 in both populations was low (14.8% of all SNPs). Despite these differences, a large number of SNPs (53.7% of all SNPs) had MAF<0.05 in both populations, showing segregation with rare alleles in both Deli and La Mé.However, correlation of the frequency of the alternate allele between La Mé and Deli (Fig.2d) over all SNPs showed that 62.8% of SNPs have a frequency of alternate allele smaller than 0.05 in one population and greater than 0.95 in the other population, i.e. fixed or almost fixed in the two populations but for different alleles. Hence, given that most of the SNPs (85.2%) have either MAF<0.05 in one population and MAF>=0.05 in the other population (31.5%), or MAF<0.05 in both populations but for different alleles (53.7%), the use of PSAM is justified.
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 3 Fig. 3. Prediction accuracies according to traits, SNP datasets and prediction models.
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 4 Fig. 4. Prediction accuracies of phenotypic selection (PS) and of the G_ASGM_A model without phenotypic data (G_ASGM_A) and with phenotypic data (G_ASGM_A+pheno) of ortets, on average over the best SNP datasets, and according to trait.

  

Table 2

 2 Characteristics of the SNP datasets defined based on a threshold in terms of maximum percentage of missing data per individual.

		Maximum percentage of missing data allowed per SNP pmax (resulting
				average)		
		0 (0)	5 (1.03)	10 (2.19)	25 (5.92)	45 (12.10) 75 (23.08)
	Average percentage of missing	0	1.49	3.20	8.81	15.31	23.95
	data per individual in La Mé						
	Average percentage of missing	0	0.87	1.83	4.76	10.62	22.56
	data per individual in Deli						
	Number of SNPs nsnp	2,447	5,620	6,898	9,205	11,707	15,054

Table 3

 3 Mean prediction accuracies according to trait and prediction model.

	Bunch production: bunch number (BN), average bunch weight (ABW) and total bunch production
	(FFB); bunch quality: average fruit weight (AFW), fruit to bunch (FB), pulp to fruit (PF), and oil to
	pulp (OP) ratios, and number of fruits per bunch (NF); genomic prediction models: across-population
	SNP genotype models (ASGM_A), population-specific effects of SNP alleles models (PSAM_A).
	Values in brackets indicate the corresponding SNP dataset, defined on its maximum percentage of
	missing data			
					795
		Mean accuracies over all	796 Maximum accuracies over all
	Traits	SNP datasets		SNP datasets	
		G_ASGM_A G_PSAM_A G_ASGM_A G_PSAM_A
	AFW	0.48	0.41	0.57 (0%)	0.49 (10%)
	FB	0.65	0.58	0.70 (25%)	0.65 (75%)
	PF	0.14	0.09	0.18 (45%)	0.16 (10%/75%)
	OP	0.52	0.35	0.55 (45%)	0.47 (0%)
	NF	0.47	0.43	0.54 (75%)	0.49 (75%)
	FFB	0.47	0.30	0.55 (10%)	0.31 (10%)
	BN	0.31	0.31	0.37 (75%)	0.40 (0%)
	ABW	0.53	0.54	0.58 (75%)	0.60 (25%)
	Mean	0.45	0.37	0.51	0.45

Table 4

 4 Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, according to SNP dataset and trait. For any pair of models, the values indicate the difference in prediction accuracy between the two models (model1 -model2). SNP datasets are defined based on the maximum percentage of missing data allowed per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling-Williams t-test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001.

	SNP dataset Compared	AFW FB	PF	OP	NF	FFB BN	ABW
		models							
		P_ASGM_A -	-0.06	0.15* 0.06 -0.03	-0.04	0.03	-0.25**	-0.04
		P_PSAM_A							
	0%-2,447	G_ASGM_A -	0.15	0.08	0.12 0.07	0.16	0.01	-0.16	0.06
		G_PSAM_A							
	5%-5,620	G_ASGM_A -	0.06	0.06	0.06 0.04	-0.02	0.24* 0.01	-0.02
		G_PSAM_A							
	10%-6,898	G_ASGM_A -G	0.02	0.12* 0.00 0.06	0.02	0.23	-0.02	-0.02
		PSAM_A							
	25%-9,205	G_ASGM_A -G	0.11	0.09	0.10 0.14	0.02	0.22	0.08	-0.05
		PSAM_A							
	45%-11,707 G_ASGM_A -	0.01	0.12 0.05 0.36** 0.01	0.19	0.08	-0.02
		G_PSAM_A							
	75%-15,054 G_ASGM_A -G	0.10	-0.05 0.01 0.33*	0.04	0.16	-0.02	0.00
		PSAM_A							

Table 5

 5 Pairwise comparison of prediction accuracies among genomic selection and pedigree-based models, according to SNP dataset and trait. For any pair of models, the values indicate the difference in prediction accuracy between the two models (model1 -model2). SNP datasets are defined based on the maximum percentage of missing data allowed per SNP pmax and the resulting number of SNPs nSNP and are labeled pmax%-nSNP. Significance of pairwise comparisons by Hotelling-Williams t-test: *0.05 > P ≥ 0.01; **0.01 > P ≥ 0.001; ***P < 0.001.

	SNP dataset Compared	AFW FB	PF	OP	NF	FFB	BN	ABW
		models							
	0%-2,447	P_ASGM_A -	-0.04 -0.12	0.00	-0.17	-0.01 0.07	-0.53**	-0.19
		G_ASGM_A							
		P_PSAM_A -	0.16	-0.18	0.06	-0.07	0.19	0.05	-0.45*	-0.08
		G_PSAM_A							
	5%-5,620	P_ASGM_A -	0.03	-0.14	-0.01 -0.09	-0.01 -0.18 -0.56**	-0.28*
		G_ASGM_A							
		P_PSAM_A -	0.14	-0.22*	-0.01 -0.02	0.03	0.04	-0.30	-0.25
		G_PSAM_A							
	10%-6,898	P_ASGM_A -	0.02	-0.20*	-0.07 -0.13	-0.01 -0.18 -0.59**	-0.30*
		G_ASGM_A							
		P_PSAM_A -	0.09	-0.23*	-0.13 -0.04	0.05	0.02	-0.36*	-0.28*
		G_PSAM_A							
	25%-9,059	P_ASGM_A -	0.08	-0.20*	-0.08 -0.15	-0.02 -0.16 -0.64*** -0.30**
		G_ASGM_A							
		P_PSAM_A -	0.24	-0.26*	-0.04 0.03	0.04	0.04	-0.30*	-0.31*
		G_PSAM_A							
	45%-11,425 P_ASGM_A -	0.11	-0.15	-0.09 -0.18*	0.03	-0.13 -0.62*** -0.30**
		G_ASGM_A							
		P_PSAM_A -	0.17	-0.19	-0.10 0.22	0.08	0.04	-0.29	-0.28*

Table 6

 6 Intensity and accuracy of phenotypic selection before clonal trials according to trait.

	Traits	Intensity of selection	Phenotypic prediction accuracies
	AFW	0.11	0.18
	FB	0.32	0.59
	PF	0.68	0.59
	OP	0.58	0.63
	NF	-0.27	0.46
	FFB	0.19	0.09
	BN	0.23	0.25
	ABW	-0.01	-0.03
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