

Budding yeast as a factory to engineer partial and complete microbial genomes

Sanjay Vashee, Yonathan Arfi, Carole Lartigue

▶ To cite this version:

Sanjay Vashee, Yonathan Arfi, Carole Lartigue. Budding yeast as a factory to engineer partial and complete microbial genomes. Current Opinion in Systems Biology, $2020,\ 10.1016/j.coisb.2020.09.003$. hal-02955330

HAL Id: hal-02955330

https://hal.inrae.fr/hal-02955330

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Budding yeast as a factory to engineer partial and complete microbial genomes

Authors and affiliation:

Sanjay Vashee^{1*}, Yonathan Arfi^{2*}, Carole Lartigue^{2*§}

\S Corresponding author:

INRAE, Equipe Mollicutes, UMR 1332 BFP, Bâtiment IBVM - A4, 71 Avenue Edouard Bourlaux, CS 20032, F-33882 VILLENAVE D'ORNON CEDEX, France

Tel: +33 5 57 12 23 59

Fax: +33 5 57 12 23 69

carole.lartigue-prat@inrae.fr

^{*} These authors contributed equally to this work

¹ J. Craig Venter Institute, Rockville, MD, USA

² Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France

HIGHLIGHTS

- Saccharomyces cerevisiae is a robust and efficient host for cloning microbial genomes.
- Recent developments allow the efficient engineering of microbial genomes in yeast that can then be rescued using transplantation/transfection to yield modified bacteria/viruses.
- Overcoming bottlenecks is key to expand use of yeast as a factory and to offer new possibilities in the synthetic biology field.
- Rapid synthesis, assembly or modification of viral and bacterial genomes may be a critical factor to respond to emerging pathogens.

ABSTRACT

Yeast cells have long been used as hosts to propagate exogenous DNA. Recent progress in genome editing opens new avenues in synthetic biology. These developments allow the efficient engineering of microbial genomes in *Saccharomyces cerevisiae* that can then be rescued to yield modified bacteria/viruses. Recent examples show that the ability to quickly synthesize, assemble and/or modify viral and bacterial genomes may be a critical factor to respond to emerging pathogens. However, this process has some limitations. DNA molecules much larger than two megabase pairs are complex to clone, bacterial genomes have proven difficult to rescue, and the dual-use potential of these technologies must be carefully considered. Regardless, the use of yeast as a factory has enormous appeal for biological applications.

INTRODUCTION

Laboratory workhorses such as *Escherichia coli*, *Bacillus subtilis*, and *Saccharomyces cerevisiae* have proved invaluable since they have been used as hosts to propagate and edit genetic material of other organisms. Initially, relatively small DNA fragments were cloned but, over time, this size has gradually increased and now reach the megabase range, including complete microbial genomes of native or synthetic origin[1–4].

In this review, we will discuss the ever-expanding use of yeast as an efficient propagating and editing factory for the genomes of various microbial species. This process involves the cloning or assembly of a full or partial genome into yeast, its engineering and rescue into a suitable recipient cell to rescue the designed function or live cells (**Figure 1**). This approach can be a novel method to study intractable organisms, genetically edit intractable organisms or build new living systems for basic and applied biology. Each component of the yeast factory cycle is detailed below. Potential barriers are discussed as well as the risks/benefits of such an approach.

IN-YEAST CLONING OF WHOLE, NATIVE, AND SYNTHETIC MICROBIAL GENOMES

Yeast has long been used as a host to clone DNA molecules, either as Yeast Artificial Chromosomes (YACs) or Yeast Centromeric plasmids (YCps), from a wide range of donor organisms. Many of the early examples involved cloning genomic DNA fragments from a range of eukaryotic[5,6] and prokaryotic species[7] as well as viruses[8,9] for genome analysis, including physical maps of complex genomes and gene function studies. However, several issues of chimeras and instability of some cloned heterogeneous DNA in yeast reduced its use, while vectors in bacterial systems such as cosmids and bacterial artificial chromosomes (BACs) gained favor for genome analysis and development of reverse genetics tools.

Over the past decade, yeast has re-emerged as an attractive genome engineering host, bolstered by a groundbreaking experiment to assemble and boot-up the first "synthetic cell"[1], and subsequently, by the cloning of several partial and full bacterial or eukaryotic genomes as well as assembly of viral genomes (**Table 1**).

Multiple approaches can now be used to clone large DNA fragments in yeast, including complete megabase-sized genomes. Depending on the characteristics of the donor organism or downstream applications, some approaches enable the cloning of native genomes whereas others permit the simultaneous cloning, editing or assembly of entire genomes from PCR-amplified, fully synthetic or TAR-cloned fragments. All of these methods require the presence of certain

yeast genetic elements, including an autonomously replicating sequence (ARS) a centromere and a selection marker in order to replicate and maintain the cloned DNA. An ARS is not necessarily required for genomes with low G+C% (<40%) as the AT-rich consensus motif may naturally occur in their sequence (Figure 1A). These elements can be added before cloning, as a plasmid integrated in a bacterial genome. Then, the newly marked genome is isolated and transferred intact into yeast spheroplasts using the conventional yeast transformation procedure[10,11] or by fusing the bacterial cell to yeast[12] (Figure 1B). The advantage of this approach is the selection of vector insertion sites that do not interfere with bacterial viability, which is convenient for genomes that are meant to be transplanted into a recipient cell to produce live cells. Another approach, TAR-cloning, exploits yeast's ability to efficiently recombine DNA fragments if they contain ends (~60 bp) that are homologous to a target sequence. In this case, the genome is isolated, linearized in vitro by a restriction enzyme or using the CRISPR-Cas9 system and cotransformed into yeast together with a linear yeast vector containing homology sequences[13-16] (Figure 1B). A variation of this approach is CReasPy-Cloning which enables the simultaneous cloning and engineering of megabase-sized genomes in yeast[17] (Figure 1B). The TAR-cloning approach can be extended so that the yeast transformation is carried out with multiple overlapping fragments, either PCR-amplified, synthetic or previously TAR-cloned (Figure 1C), allowing for genome-wide engineering of microbial genomes.

Using these methods, many bacterial and viral genomes, both native and synthetic, have been cloned or assembled in yeast. Key examples are shown in **Table 1**. For future target genomes, certain considerations can be factored into the choice of the cloning method. These include whether the organism is cultivable, transformable and/or has genetic tools. If the organism has all of these characteristics, then any of the outlined approaches can be used. For other organisms lacking one or more characteristics or for large scale editing, the *in vitro* or assembly methods are more appropriate.

IN-YEAST GENOME ENGINEERING

Over the last decade, the cost of DNA synthesis has drastically reduced, almost reaching the 0.01\$/base bar. Such low costs have enabled the engineering of organisms with fully synthetic DNA, with recent examples of re-coded or re-organized genomes[3,4]. As a result, genome editing can now be performed by assembly of synthetic fragments in yeast. This approach remains nonetheless costly at the megabase scale and may be excessive for small, localized editing tasks. Therefore, depending on the need, it may be more appropriate to use one of the

many genome engineering tools already available in yeast to modify the native cloned genome. Particular examples are TREC[18], CRISPR-Cas9[19–22] and Cre-Lox[23] (**Figure 1D**). The first system was developed for the scar-less edition of mycoplasma genomes cloned in yeast[24,25], and was later improved in TREC-IN[26,27]. Cas9, the well-known and broadly used RNA-guided endonuclease, has been adapted to a wide array of organisms, including yeast[28]. Due to the very high efficiency of this system, it opened the door for marker-less genome edition, with the ability to delete, add or replace genomic loci in the kbp range. Given its efficiency, it has become the engineering method of choice for precisely altering genomes cloned in yeast[29,30]. Finally, Cre-Lox has also been extensively used for targeted editing, but interestingly, it is the basis of SCRaMbLE, a system enabling massive chromosome rearrangements to produce strains with large genotypic diversity[31,32]. Regarding microbial genomes cloned in yeast, the Cre-Lox system was notably used during the construction of the "minimal cell"[2,33].

RESCUE OF GENOMES CLONED IN YEAST: TRANSPLANTATION, TRANSFECTION OR IN VITRO APPROACHES

Once a microbial genome has been modified in yeast, it can be "rescued" using various approaches. For this review, "rescue" is defined as the process by which the cloned genome isolated from yeast is converted into the biological entity it encodes.

Since viruses are generally simpler systems, they are relatively easy to rescue (**Figure 1E, right panel**). In many cases, viruses can be reconstituted by transfecting their modified genomes or fusion into host cells[34–38]. For RNA viruses, the modified genomes can be transcribed *in vitro* using purified RNA Polymerase and the resulting RNAs transfected into host cells[39]. Significantly, the Noireaux laboratory has shown the capacity to package bacterial viruses *in vitro* using the TXTL system[40]. In other cases, it is necessary to use helper genes or viruses to boot-up the recombinant genomes[41–43].

For modified bacterial genomes, the rescue is more difficult, due in part to larger genome size, more complicated pathways, and cellular structure. One possibility to rescue a whole genome is to isolate intact edited microbial chromosomes from yeast and transfer them into recipient cells (**Figure 1E, left panel**)[10,44–46]. This process is known as Genome Transplantation (GT) and yields live cells driven by the donor recombinant genomes. It is for now limited to a small set of mycoplasma species.

For non-mycoplasma bacterial species, it is convenient to use yeast to clone and/or engineer large sub-genomic fragments and then integrate them into native target bacterial genomes for desired applications. For example, Fredens *et al.* have used assembly of synthetic *E. coli* 100kb fragments in yeast as an intermediate to generate an *E., coli* strain that uses only 61 codons for protein synthesis[3], instead of the native 64 codons. A similar approach was used by Lau et al. to recode large segments of *Salmonella typhimurium* genome's, using iterative genomic integration of 10-25 kb chunks assembled in yeast [47].

BOTTLENECK AND FUTURE DEVELOPMENTS

Although potentially extremely powerful, the in-yeast cloning and editing of microbial genomes comes with a few drawbacks and bottlenecks.

Based on previous experience, we expect that the cloning of genomes in yeast to be more readily achievable compared to the subsequent rescue of the genomes. In addition, viral genomes have also proven much easier to clone and rescue than their bacterial counterpart.

In-yeast cloning. For bacterial genomes, the nature of the cloned DNA, as well as its genetic content should be taken into consideration. First, size might matter. To date, the Haemophilus influenza and the Spiroplasma citri chromosomes are the largest DNA molecules cloned in yeast (1.8Mb)[12,45]. However, it is still not yet clear whether much larger genomes such as *Bacillus* subtilis (4.2 Mb) can be transformed intact in yeast. Approaches that allow the construction of a genome inside the yeast cell[48] or based on bacterial/yeast fusion could alleviate this problem[12]. Moreover, results from the SC2.0 consortium and others suggest that replicating up to a 12Mbp chromosome may not be an issue other than, potentially, the cumulative size of the yeast and the cloned genome[49,50]. With this in mind, using a yeast cell with a minimized genome could be key for increasing the amount of "cargo" DNA that it could carry. The G+C% of the cloned genome also appears to be a relevant problem. While the cloning of the A+T rich mycoplasma genomes, (0.58 to 1.8Mb; G+C%<40%) is routine, bacterial genomes with much higher G+C% require adding an ARS to the target genomes for maintenance in yeast[4,48]. Another issue is ectopic expression of the cloned genome that may be toxic to yeast[51]. This can be solved by empirical identification of the culprit toxic gene(s), or through the engineering of new host cells that are genetically isolated from their cargo (e.g. using orthogonal promoters and RBS, or having a non-standard genetic code). Lastly, the presence of repeat sequences in target genomes may present issues in yeast, especially if they are in the overlapping homologous

sequences during TAR assembly. However, in our experience, if the repeat sequences are buried within the fragments or genomes to be assembled, they have not caused problems[10,11,35,36].

In-yeast engineering. Current methods are effective to perform a few modifications at a time. TAR assembly alleviates this issue to some extent but it is somewhat limited by the number of fragments that can be used as well as the efficiency of homologous recombination. A potential improvement may be the use of yeast mutants impaired in competing repair pathways, such as non-homologous end-joining, as engineering hosts for microbial genomes. Another possibility is the use of other yeasts as hosts, such as *Schizosaccharomyces pombe*, *Yarrowia lipolytica*, *Pichia pastoris* and *Kluyveromyces marxianus*. In addition, development of improved technology should increase the speed and widen the scale of microbial genome engineering in yeast[31,52–54].

Rescue of viral genomes. For the most part, rescue of viral genomes is not a major concern. However, there are still a few viruses, such as African swine fever virus (ASFV), whose genomes are not infectious or for which there are no known helper genes or helper viruses to reconstitute live virus from recombinant genomes[55]. In addition, novel dangerous viruses may emerge as humans encroach into new environments for which reverse genetics would need to be developed. Thus, for these types for viruses, generalized methods to boot them up would need to be developed.

Rescue of bacterial genomes. Currently, the most broadly applicable strategy is to transfer sections of the engineered genome back to the original cell and proceed in an incremental manner to completely replace the original genome[3,47]. Alternatively, GT can be attempted to transfer in one step the entirety of the engineered genome. However, this strategy has only been achieved for a small cluster of *Mollicutes* and appears to have multiple hurdles that limit its broad application. First, the recipient cell should be closely related to the donor genome, in order to process and replicate the donor's genetic information[10,45]. Therefore, to apply GT to other species, one needs to develop a specific set of recipient cells and transplantation methods. The recipient cell may also be engineered to remove a number of natural systems that might limit the efficiency of GT. For instance, secreted or membrane-bound nucleases[56], internal defense mechanisms against foreign DNA, such as restriction-modification systems[57–59] or CRISPR-Cas9[60,61], may degrade unprotected donor genomes prior to or after entry in the recipient cell. A recipient cell with a strong recombination activity may be problematic GT, as it could lead to increased frequency of illegitimate exchanges between the donor and recipient genomes, leading to transfer of the selection marker to the recipient' genome or the emergence of chimeric

chromosomes and thus, to hybrid cells rather than the desired outcome. Using ghost cells devoid of the resident DNA as recipient cells or using DNA-damaging agents to make the resident genome non-functional for recombination may overcome this issue. Another important concern is that DNA uptake may be limited by transformation efficiency and cell surface structure. To bypass these obstacles, improvement of methods to make spheroplasts/protoplasts in target organisms may be used to remove cell walls to increase DNA uptake. In addition, other DNA transfer methods, such as conjugation, can be used to transfer a genome from the donor species to the recipient.

CONCLUSIONS AND PERSPECTIVES: BENEFITS AND RISKS OF SUCH TECHNOLOGIES

The combination of genome transplantation/transfection and genome engineering in yeast is an exciting approach to manipulate synthetic and native genomes. This approach could be of importance for genetically intractable yet, medically and industrially important organisms, such as *Chlamydia*, *M. leprae* and *Clostridia* and ASFV for which it would provide convenient tools to better understand their biology. However, there are still many unanswered questions regarding the process of GT and at a lower degree back transfection. More investigation in understanding the process would facilitate its expansion to other organisms.

Moreover, the ability to quickly synthesize or modify viral or bacterial genomes might be a critical factor to respond to emerging pathogens[62–64]. Indeed, while acquiring genomic information is now a matter of days due to (meta)genome sequencing, creating new microbial strains is much longer. These new strains can be used as vaccines, or to decipher the virulence of pathogens. The design of such strains is often not the most limiting step but rather, the actual manufacturing of the modified biological entity. However, progress made in DNA synthesis, and now extremely short turnaround times of commercial suppliers, suggest that this bottleneck may soon disappear. Recently, it was shown that only 30 days were necessary to go from a publicly released sequence of SARS-CoV2 to a functional, rescued recombinant virus, using yeast to assemble synthetic DNA fragments[39]. This example highlights the potential of in-yeast cloning and editing, and indicates that it can be highly beneficial to the global population.

Nevertheless, as discussed elsewhere, advances in synthetic genomics methods, including methods described herein, raise several dual-use concerns[36,64,65]. A number of measures can be adopted to ensure biological control: some are inherent to the organism (engineered

auxotrophy; use a non-standard genetic code) while other devices can be added (genetically encoded kill-switches, incorporation of unnatural amino acids into essential proteins...). In conclusion, while it is clear that budding yeast is a powerful engineering factory, there is still room for improvement to fulfil its use for synthetic biology applications.

REFERENCES

- 1. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. *Science* 2010, **329**:52–56.
- 2. Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma LL, et al.: **Design and synthesis of a minimal bacterial genome**. *Science* 2016, **351**:6253–6253.
- **Fredens J, Wang K, de la Torre D, Funke LFH, Robertson WE, Christova Y, Chia T, Schmied WH, Dunkelmann DL, Beránek V, et al.: Total synthesis of Escherichia coli with a recoded genome. Nature 2019, 569:514–518.
 Fredens et al. have used assembly of synthetic E. coli 100kb fragments in yeast as an intermediate to generate an E., coli strain that used only 61 codons for protein synthesis, instead of the native 64 codons. In total, more than 18 000 codons were rapidly re-coded.
- *Venetz JE, Del Medico L, Wölfle A, Schächle P, Bucher Y, Appert D, Tschan F, Flores-Tinoco CE, van Kooten M, Guennoun R, et al.: Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality.
 Proceedings of the National Academy of Sciences 2019, 116:8070–8079.
 The authors report the chemical synthesis and testing of an essential genome of Caulobacter crescentus. This is a computer-designed reduced and recoded genome.
- 5. Schlessinger D: Yeast artificial chromosomes: tools for mapping and analysis of complex genomes. *Trends in Genetics* 1990, **6**:248–258.
- 6. Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR, Resnick MA: **Specific** cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. *Proc Natl Acad Sci U S A* 1996, **93**:491–496.
- 7. Kuspa A, Vollrath D, Cheng Y, Kaiser D: **Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes**. *Proceedings of*

- the National Academy of Sciences of the United States of America 1989, **86**:8917–8921.
- Ketner G, Spencer F, Tugendreich S, Connelly C, Hieter P: Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone.
 Proceedings of the National Academy of Sciences of the United States of America 1994,
 91:6186–6190.
- 9. Garcia-Ramirez JJ, Ruchti F, Huang H, Simmen K, Angulo A, Ghazal P: **Dominance of virus over host factors in cross-species activation of human cytomegalovirus early gene expression**. *J Virol* 2001, **75**:26–35.
- 10. Lartigue C, Vashee S, Algire MA, Chuang R-Y, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, et al.: **Creating bacterial strains from genomes that have been cloned and engineered in yeast**. *Science* 2009, **325**:1693–1696.
- 11. Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang R-Y, Carrera W, Moodie M, Algire MA, et al.: Cloning whole bacterial genomes in yeast. *Nucleic Acids Res* 2010, **38**:2558–69.
- 12. Karas BJ, Jablanovic J, Sun L, Ma L, Goldgof GM, Ramon A, Manary MJ, Winzeler EA, Venter JC, Philip D, et al.: **Direct transfer of whole genomes from bacteria to yeast**.

 Nature Methods 2013, **10**:410–412.
- 13. Kouprina N, Larionov V: Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes. *FEMS Microbiol Rev* 2003, 27:629–649.
- 14. Lee NCO, Larionov V, Kouprina N: **Highly efficient CRISPR/Cas9-mediated TAR** cloning of genes and chromosomal loci from complex genomes in yeast. *Nucleic Acids Research* 2015, **43**:55.
- 15. Kouprina N, Larionov V: **Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology**. *Chromosoma* 2016, **125**:621–632.
- *Kouprina N, Noskov VN, Larionov V: Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast. Nature Protocols 2020, 15:734–749.
 - The authors describe an extension of the transformation-associated recombination (TAR) cloning protocol, enabling selective isolation of any DNA segments from microbial genomes or from environmental DNA samples. The TAR method is a reference method for

- cloning genomes of various nature and set the stage for using yeast as a factory to engineer genomes.
- 17. Ruiz E, Talenton V, Dubrana M-PM-P, Guesdon G, Lluch-Senar M, Salin F, Sirand-Pugnet P, Arfi Y, Lartigue C: **CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9**System. ACS Synthetic Biology 2019, 8:2547–2557.
- 18. Noskov VN, Segall-Shapiro TH, Chuang RY: **Tandem repeat coupled with** endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. *Nucleic Acids Res* 2010, **38**:2570–2576.
- 19. Hsu PD, Lander ES, Zhang F: **Development and Applications of CRISPR-Cas9 for Genome Engineering**. *Cell* 2014, **157**:1262–1278.
- 20. Rath D, Amlinger L, Rath A, Lundgren M: **The CRISPR-Cas immune system: Biology,** mechanisms and applications. *Biochimie* 2015, **117**:119–128.
- 21. De La Fuente-Núñez C, Lu TK: **CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects**. *Integrative Biology (United Kingdom)* 2017, **9**:109–122.
- 22. Brooks AK, Gaj T: Innovations in CRISPR technology. Elsevier Ltd; 2018.
- 23. Missirlis PI, Smailus DE, Holt RA: A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. *BMC Genomics* 2006, 7:73.
- 24. Lartigue C, Lebaudy A, Blanchard A, Yacoubi BE, Rose S, Grosjean H, Douthwaite S: The flavoprotein Mcap0476 (RlmFO) catalyzes m⁵U1939 modification in Mycoplasma capricolum 23Ś rRNA. *Nucleic Acids Research* 2014, 42.
- 25. Schieck E, Lartigue C, Frey J, Vozza N, Hegermann J, Miller RA, Valguarnera E, Muriuki C, Meens J, Nene V, et al.: Galactofuranose in *M ycoplasma mycoides* is important for membrane integrity and conceals adhesins but does not contribute to serum resistance. *Molecular Microbiology* 2016, 99:55–70.
- 26. Chandran S, Noskov VN, Segall-Shapiro TH, Ma L, Whiteis C, Lartigue C, Jores J, Vashee S, Chuang R-Y: **TREC-IN:** gene knock-in genetic tool for genomes cloned in yeast. *BMC genomics* 2014, **15**:1180.
- 27. Jores J, Ma L, Ssajjakambwe P, Schieck E, Liljander A, Chandran S, Stoffel MH, Cippa V, Arfi Y, Assad-Garcia N, et al.: **Removal of a Subset of Non-essential Genes Fully**

- Attenuates a Highly Virulent Mycoplasma Strain. Frontiers in Microbiology 2019, 10.
- 28. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM: **Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems**. *Nucleic Acids Research* 2013, **41**:4336–4343.
- 29. Kannan K, Tsvetanova B, Chuang R-Y, Noskov VN, Assad-Garcia N, Ma L, Hutchison III CA, Smith HO, Glass JI, Merryman C, et al.: **One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9**. *Scientific Reports* 2016, **6**:30714.
- 30. Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P: In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9. ACS Synth Biol 2016, 5:104–109.
- 31. Jones S: **SCRaMbLE does the yeast genome shuffle**. *Nature Biotechnology* 2018, **36**:503.
- 32. ** Blount BA, Gowers GOF, Ho JCH, Ledesma-Amaro R, Jovicevic D, McKiernan RM, Xie ZX, Li BZ, Yuan YJ, Ellis T: Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. *Nature Communications* 2018, **9**:1–10.
 - The authors used SCRaMbLE to rapidly generate new, improved host strains with genetic backgrounds favorable for desired applications, including violacein and penicillin biosynthesis and for xylose utilization.
- 33. Noskov VN, Ma L, Chen S, Chuang R-Y: **Recombinase-mediated cassette exchange** (RMCE) system for functional genomics studies in Mycoplasma mycoides. *Biological Procedures Online* 2015, **17**:6.
- 34. Ando H, Lemire S, Pires DP, Lu TK: **Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing**. *Cell Systems* 2015, **1**:187–196.
- 35. Vashee S, Stockwell TB, Alperovich N, Denisova EA, Gibson DG, Cady KC, Miller K, Kannan K, Malouli D, Crawford LB, et al.: Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination. *mSphere* 2017, 2.
- 36. Oldfield LM, Grzesik P, Voorhies AA, Alperovich N, MacMath D, Najera CD, Chandra DS, Prasad S, Noskov VN, Montague MG, et al.: Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proceedings of the National Academy of Sciences of the United States of America 2017, 114:E8885–E8894.

- 37. Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ, Adhya S: Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria.

 Proceedings of the National Academy of Sciences of the United States of America 2018, 115:567–572.
- 38. Brown DM, Chan YA, Desai PJ, Grzesik P, Oldfield LM, Vashee S, Way JC, Silver PA, Glass JI: Efficient size-independent chromosome delivery from yeast to cultured cell lines. *Nucleic Acids Research* 2017, **45**:50.
- 39. *Thi Nhu Thao T, Labroussaa F, Ebert N, V'kovski P, Stalder H, Portmann J, Kelly J, Steiner S, Holwerda M, Kratzel A, et al.: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020, 582:561–565.
 The authors demonstrate the possibility to reconstruct, within one week of receipt of synthetic DNA, in the laboratory, emerging viruses (such as the SARS-CoV2). This method is of major importance as it accelerates our capacity to understand emerging viruses and find potential cures.
- *Rustad M, Eastlund A, Jardine P, Noireaux V: Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synthetic Biology 2018, 3.
 In this work, the authors present the complete synthesis and reconstitution of the phage T4, one of the largest enterobacteriophages that infects E. coli, from its 169-kbp genome in one-pot TXTL reactions. This work provides an in vitro approach to engineering complex bacteriophages
- 41. Domi A, Moss B: Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. *Proceedings of the National Academy of Sciences of the United States of America* 2002, 99:12415–12420.
- 42. Noyce RS, Lederman S, Evans DH: Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. *PLoS ONE* 2018, **13**.
- 43. Stobart CC, Hotard AL, Meng J, Moore ML: **BAC-based recovery of recombinant respiratory syncytial virus (RSV)**. In *Methods in Molecular Biology*. Humana Press Inc.; 2017:111–124.
- 44. Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, Smith HO, Venter JC: **Genome transplantation in bacteria: Changing one species to another**. *Science* 2007, **317**:632–638.
- 45. Labroussaa F, Lebaudy A, Baby V, Gourgues G, Matteau D, Vashee S, Sirand-Pugnet P,

- Rodrigue S, Lartigue C: Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. *Nucleic Acids Research* 2016, 44.
- 46. Baby V, Labroussaa F, Brodeur J, Matteau D, Gourgues G, Lartigue C, Rodrigue S: Cloning and Transplantation of the Mesoplasma florum Genome. ACS Synthetic Biology 2018, 7:209–217.
- 47. Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schäafer E, Lips D, Weinstock MT, et al.: Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Research 2017, 45:6971–6980.
- 48. Zhou J, Wu R, Xue X, Qin Z: CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. *Nucleic Acids Research* 2016, 44:e124–e124.
- 49. Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, Zhou F, Xiao S, Liu L, Zeng X, et al.: Creating a functional single-chromosome yeast. *Nature* 2018, **560**:331–335.
- 50. Luo J, Sun X, Cormack BP, Boeke JD: **Karyotype engineering by chromosome fusion** leads to reproductive isolation in yeast. *Nature* 2018, **560**:392–396.
- 51. Karas BJ, Tagwerker C, Yonemoto IT, Hutchison CA, Smith HO: Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synthetic Biology 2012, 1:22–28.
- 52. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD: Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. *Metabolic Engineering* 2015, 28:213–222.
- 53. Dicarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM: **Yeast oligo-mediated genome engineering (YOGE)**. *ACS Synthetic Biology* 2013, **2**:741–749.
- 54. Mosbach V, Poggi L, Viterbo D, Charpentier M, Richard GF: TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats. Cell Reports 2018, 22:2146– 2159.
- 55. Revilla Y, Pérez-Núñez D, Richt JA: **African Swine Fever Virus Biology and Vaccine Approaches**. In *Advances in Virus Research*. Academic Press Inc.; 2018:41–74.
- 56. Sharma S, Tivendale KA, Markham PF, Browning GF: **Disruption of the membrane** nuclease gene (MBOVPG45_0215) of Mycoplasma bovis greatly reduces cellular nuclease activity. *Journal of Bacteriology* 2015, **197**:1549–1558.
- 57. Tock MR, Dryden DTF: The biology of restriction and anti-restriction. Current

- Opinion in Microbiology 2005, 8:466–472.
- Vasu K, Nagaraja V: Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews 2013, 77:53–72.
- 59. Roberts RJ, Vincze T, Posfai J, Macelis D: **REBASE-a database for DNA restriction** and modification: enzymes, genes and genomes. *Nucleic Acids Research* 2015, **43**.
- 60. Horvath P, Barrangou R: **CRISPR/Cas, the Immune System of Bacteria and Archaea**. *Science* 2010, **327**:167–170.
- 61. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, et al.: **An updated evolutionary classification of CRISPR–Cas systems**. *Nature Reviews Microbiology* 2015, **13**:722–736.
- 62. Dormitzer PR, Suphaphiphat P, Gibson DG, Wentworth DE, Stockwell TB, Algire MA, Alperovich N, Barro M, Brown DM, Craig S, et al.: Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Science Translational Medicine 2013, 5.
- 63. Dormitzer PR: **Rapid production of synthetic influenza vaccines**. *Current Topics in Microbiology and Immunology* 2015, **386**:237–273.
- 64. Wimmer E, Mueller S, Tumpey TM, Taubenberger JK: **Synthetic viruses: a new opportunity to understand and prevent viral disease**. *Nat Biotechnol* 2009, **27**:1163–1172.
- 65. Wimmer E: The test-tube synthesis of a chemical called poliovirus The simple synthesis of a virus has far-reaching societal implications. *EMBO reports* 2006, 7.
- 66. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, et al.: Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008, 319:1215–1220.
- 67. Rideau F, Le Roy C, Descamps E, Renaudin H, Lartigue C, Bébéar C: Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast. ACS Synthetic Biology 2017, 6:891–901.
- 68. Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, et al.: **Design, synthesis, and testing toward a 57-codon genome**. *Science* 2016, **353**:819–822.
- 69. Tagwerker C, Dupont CL, Karas BJ, Ma L, Chuang RY, Benders GA, Ramon A, Novotny

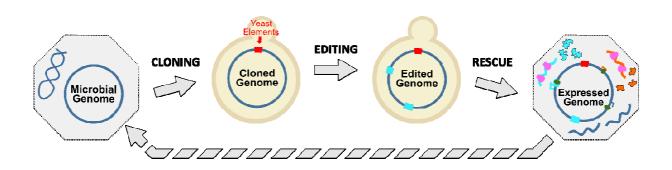
- M, Montague MG, Venepally P, et al.: **Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast**. *Nucleic Acids Res* 2012, **40**:10375–10383.
- 70. Noskov VN, Young L, Chuang R-Y, Gibson DG, Lin Y-C, Stam J, Yonemoto IT, Suzuki Y, Andrews-Pfannkoch C, Glass JI, et al.: **Assembly of large, high G+ C bacterial DNA fragments in yeast**. *ACS Synthetic Biology* 2012, **1**:267–73.
- 71. Karas BJ, Molparia B, Jablanovic J, Hermann WJ, Lin Y-C, Dupont CL, Tagwerker C, Yonemoto IT, Noskov VN, Chuang R-Y, et al.: **Assembly of eukaryotic algal chromosomes in yeast**. *Journal of biological engineering* 2013, **7**.
- 72. Polo S, Ketner G, Levis R, Falgout B: **Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast.** *Journal of virology* 1997, **71**:5366–5374.
- 73. Nikiforuk AM, Leung A, Cook BWM, Court DA, Kobasa D, Theriault SS: Rapid onestep construction of a Middle East Respiratory Syndrome (MERS-CoV) infectious clone system by homologous recombination. *Journal of Virological Methods* 2016, 236:178–183.
- 74. Shang Y, Wang M, Xiao G, Wang X, Hou D, Pan K, Liu S, Li J, Wang J, Arif BM, et al.: Construction and Rescue of a Functional Synthetic Baculovirus. *ACS Synthetic Biology* 2017, **6**:1393–1402.

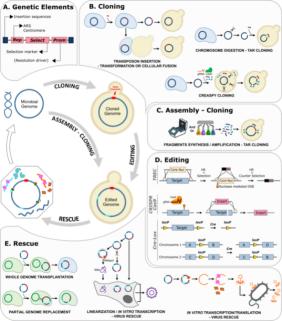
FUNDING

This work was supported in part by the National Institutes of Health [Grant numbers 1R01AI137365, R03AI146632], the IDRC [Grant number 109212] and the French National Funding Research Agency [N° ANR-18-CE44-0003-02].

FIGURE LEGEND

Figure 1: Overview of the in yeast cloning and editing process and associated techniques. (A)Specific genetic elements derived from yeast must be added to the target genomes to ensure proper replication and segregation. (B) Multiple strategies can be used to introduce the yeast element in the genome, and to introduce the genome in the yeast cells. (C) The target genome can be fully synthesized chemically or biochemically and assembled in yeast cells. (D) A wide


array of tools are available in yeast to perform genome editing. (E) Biological entities can be reconstituted from the edited microbial genomes using diverse strategies depending on their viral or bacterial nature.


Table 1: Key examples of microbial genomes cloned or edited in yeast *

Organism	Size (Mbp)	% G+C	Genetic code	Cloning strategy **	Rescue strategy	References*
Mollicutes						
Mycoplasma genitalium	0,58	32	Non standard	Synthesis & Assembly	N/A	[66]
Mycoplasma mycoides subsp. capri	1,1	24	Non standard	Cloning	Transplantation	[10]
Mycoplasma pneumoniae	0,81	41	Non standard	Cloning	N/A	[11,17]
JCVI Syn 1.0	1,1	24	Non standard	Synthesis & Assembly	Transplantation	[1]
Acholeplasma laidlawii	1,5	32	Universal	Cloning	N/A	[51]
JCVI Syn 3.0	0,53	24	Non standard	Synthesis & Assembly	Transplantation	[2]
Mycoplasma mycoides subsp. mycoides	1,2	24	Non standard	Cloning	Transplantation	[45]
Mycoplasma capricolum subsp. capricolum	1,1	25	Non standard	Cloning	Transplantation	[45]
Mycoplasma leachii	1	24	Non standard	Cloning	Transplantation	[45]
Mycoplasma putrefaciens	0,8	27	Non standard	Cloning	Transplantation	[45]
Spiroplasma citri	1,8	26	Non standard	Cloning	N/A	[45]
Mycoplasma hominis	0,66	27	Non standard	Cloning	N/A	[67]
Mesoplasma florum	0,79	27	Non standard	Cloning	Transplantation	[46]
Mycoplasma capricolum subsp. capripneumoniae	1	24	Non standard	Cloning	Transplantation	Pers. com 2020
Mycoplasma feriruminatoris	1,2	24	Non standard	Cloning	Transplantation	Pers. com. 2019
			Proteobacteria			
Haemophilus influenzae	1,8	38	Universal	Cloning	N/A	[12]
Escherichia coli (reduced genome)	1,03	51	Universal	Synthesis & Assembly	N/A	[48]
Escherichia coli (recoded genome)	3.98	N/A	Universal	Synthesis & Assembly	Partial replacement	[68]
Salmonella typhimurium (recoded genome)	4.47	N/A	Universal	Synthesis & Assembly	Partial replacement	[47]
Escherichia coli (recoded genome)	3,98	N/A	Universal	Synthesis & Assembly	Partial replacement	[3]
Caulobacteur ethensis 2.0 (reduced/recoded genome)	0,78	57	Universal	Synthesis & Assembly	N/A	[4]
			Cyanobacteria			
Prochlorococcus marinus	1,6	31	Universal	Cloning	N/A	[69]
Synechococcus elongatus (fragments)	2,7	55	Universal	Cloning	N/A	[70]
			Diatoms			
Phaeodactylum tricornutum Chromosome 25	0,5	48	Universal	Cloning	N/A	[71]
Phaeodactylum tricornutum Chromosome 26	0,44	48	Universal	Cloning	N/A	[71]
			Viruses			
Dengue virus type 2	0,011	46	Universal	Cloning	RNA transfection	[72]
MERS-CoV	0,029	41	Universal	Synthesis & Assembly	DNA transfection	[73]
AcMNPV	0,14	45	Universal	Synthesis & Assembly	DNA transfection	[74]
HCMV	0,23	49	Universal	TAR cloning & Assembly	DNA transfection	[35]
Herpes simplex virus type 1	0,15	68	Universal	TAR cloning & Assembly	DNA transfection	[36]
Horsepox Virus	0,21	33	Universal	Synthesis & Assembly #	DNA transfection	[42]
SARS-CoV-2	0,03	38	Universal	Synthesis & Assembly	RNA transfection	[39]
MHV	0,032	42	Universal	Synthesis & Assembly	RNA transfection	[39]
MERS-CoV	0,03	41	Universal	Synthesis & Assembly	N/A	[39]
HCoV-229E	0,027	38	Universal	Synthesis & Assembly	N/A	[39]
ZIKA virus	0,011	51	Universal	Synthesis & Assembly	N/A	[39]
Human RSV-B	0,015	34	Universal	Synthesis & Assembly	N/A	[39]

^{*} Sorting is done by year of publication ** Cloning refers to any method described in the text # The assembly was performed in mammalian cells

Graphical Abstract

