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Severe drought events are known to cause important reductions of gross
primary productivity (GPP) in forest ecosystems. However, it is still unclear
whether this reduction originates from stomatal closure (Stomatal Origin
Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we
investigated the impact of edaphic drought in 2018 on GPP and its origin
(SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers.
In all stations where GPP reductions were observed during the drought,
these were largely explained by declines in the maximum apparent canopy
scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable
water content dropped below around 0.4. Concurrently, we found that the
stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified
optimization model linking vegetation conductance and GPP remained
relatively constant. These results strengthen the increasing evidence that
NSOL should be included in stomatal conductance/photosynthesis models
to faithfully simulate both GPP and water fluxes in forest ecosystems during
severe drought.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.
1. Introduction
With global climate change, droughts are likely to be more intense [1,2]. In 2018,
a severe drought event occurred in Northern and central Europe causing forest
fires and crop yield losses [3]. Europe experienced a major reduction of gross
primary productivity (GPP) and transpiration (E) similarly to previous extreme
events such as the 2003 Europe drought-heatwave [4] mostly because of soil
water limitation [5,6]. Continuous measurements of ecosystem CO2 and water
fluxes captured throughout Europe at eddy covariance (EC) flux tower stations
thus provide a great large-scale ‘natural experiment’ to study the impact of
drought on GPP and E [7].
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There is increasing evidence that GPP reductions due to
droughts could originate from both changes in stomatal
behaviour (stomatal origin limitation, SOL) and non-stomatal
traits (non-stomatal origin limitation, NSOL) [8–12]. Proposed
NSOL mechanisms are reduced Rubisco activity (carboxyla-
tion rate) and/or electron transport activity [13], reduced
active leaf area index (LAI) [13], reduced mesophyll conduc-
tance (including the intercellular airspace, cell walls, plasma
membranes, cytoplasm and the chloroplast envelopes [14],
gm) [15] or a combination of those [11,16]. The cause of GPP
reduction is still subject to debate [17,18] and the modelling
of SOL and NSOL and their (de)coupling is still poorly
constrained by data. As a result, there is a strong need to exam-
ine whether different mechanisms are relevant and if models
could be improved by developing more evidence-based
functions for the impact of drought stress [19,20].

In leaf/canopy photosynthesis models, gross primary
assimilation (A) is very often modelled using the Farquhar
et al. [21] photosynthesis model for C3 species [9,10,13]. In
this model, Rubisco-limited photosynthesis (usually close to
light saturation) is a function of the maximum carboxylation
rate (Vcmax) and the internal CO2 leaf concentration (Ci)
which implicitly considers that Ci is equal to the CO2 concen-
tration in the chloroplasts (Cc). As Ci cannot be measured
directly, it is usually approximated by employing Fick’s
diffusion law through the stomata using a stomatal conduc-
tance (gs). This representation requires the determination of
stomatal conductance by modelling. In this study, following
Zhou et al. [10], we use the concept of apparent Vcmax

(Vcmax,app) recognizing that variations in Vcmax,app can
result either from changes in the actual maximum rate of
carboxylation or from changes in gm which are not explicitly
represented in this diffusion model. Consequently, when
drought occurs, it impacts directly stomatal behaviour (clo-
sure) and then photosynthesis by limiting the diffusion of
CO2 into the leaf which results in reduced Ci (SOL) or/and
it impacts non-stomatal mechanisms (NSOL) which result
in decreases of Vcmax,app [10,20].

A long standing stomatal conductance model from
Cowan & Farquhar [22] states that stomata should act to
maximize carbon gains while minimizing water losses (tran-
spiration, E), that is to maximize the integrated sum of A–E
where λ (mol C mol−1 H2O) is the carbon cost of water gain
@A=@E or marginal water-use efficiency [23] (note that we
inverted the original expression). Medlyn et al. [24] proposed
a reconciliation of the optimal stomatal behaviour theory [22]
with empirical stomatal models linking gs and A. Their work
resulted in a unified stomatal optimization model (USO) with
a form similar to former empirical expressions [25,26] (see
equation (2.3)) where the slope between gs and A*f (g1) is a
key parameter (called the stomatal slope parameter). g1 is
directly interpretable as inversely related to λ and to intrinsic
water-use efficiency (iWUE, A/gs) normalized by vapour
pressure deficit (VPD) and CO2 air concentration (Ca) [27].

The USO model has been used both at the leaf level using
leaf gas exchange data [28] and at the ecosystem level using
EC flux observations [29] during non-water limited periods.
During water limited periods, various responses of g1 (leaf
level, SOL) to soil moisture were found [10] for a large range
of species while a more consistent pattern of decreasing
Vcmax,app was found. In a recent work, a good correlation
between leaf scale and ecosystem scale g1 (or G1) response to
soil moisture was found in a woodland dominated by Acacia
trees thereby demonstrating the ability of both leaf and
ecosystem scale approaches to quantify drought effect [30].

In this study, we used the USO model combined with the
Farquhar C3 model (considering that Ci =Cc) to study the
origin of edaphic drought impacts on GPP (SOL and/or
NSOL) in forest ecosystems using EC flux measurements by
replacing leaf-level variables by their ecosystems analogues
using a big leaf framework [27,31]. The surface conductance
(Gs analogous to gs) was estimated by inverting the
Penman–Monteith equation [32]. We then inferred the bulk
stomatal slope parameter (G1 analogous to g1) and the maxi-
mum apparent carboxylation rate of the ecosystem (VCMAX,

APP) [33] at a daily time step for each ecosystem. The study
was restricted to the growing period excluding any autumn
senescence or spring leaf emergence influence on the
variation of VCMAX,APP.

In addition, drought intensity was quantified using the
relative extractable water (REW) as proposed by Granier
et al. [5], which is a normalized index of soil water deficit
varying from 0 to 1 that allows for edaphic status inter-site
comparisons. This index was used in previous studies [5,34]
and, based on their results, we hypothesize that both E and
GPP reductions will occur when REW falls below ≈0.4.

The objective of this work is to examine the response of G1,
as a measure for SOL, and VCMAX,APP, as a measure for NSOL,
to soilwater deficit using ECdata collected in forests during the
2018 European drought. More specifically, we intend to answer
the following questions: (1) how was REW impacted by the
drought in forest sites in 2018? (2) Can we confirm the REW
threshold of≈0.4 forGPP reductions found in previous studies
[5,34]? (3) To what degree did SOL and NSOL impact GPP
during the drought? (4) What were G1 and VCMAX,APP

responses to REW function shapes and how did these
responses vary across sites?
2. Material and methods
(a) Site and data description
Data have been processed by the EcosystemThematic Centre of the
Integrated Carbon Observation System (ICOS) and form the 2018
drought ICOS/Fluxnet dataset [35], which is a compilation of
EC fluxes, meteorological and edaphic data during the 2018 Euro-
pean drought at half-hourly resolution. Only sites with a
sufficiently resolved vertical profile of soil water content sensors
were selected. The main site characteristics are summarized in
table 1. Flux data followed the standard FLUXNET processing
[46], including friction velocity (u*) filtering [47] andGPP determi-
nation by night-time flux partitioning [48]. Only datamarkedwith
highest quality flags were used for this study. Latent heat fluxes
were not corrected for energy balance closure.

(b) Quantification of drought
The intensity of edaphic drought was quantified by computing
the REW content [5] at each time step and for the entire root
depth using:

REW ¼
P

iððSWCi � SWCWP,iÞ=ðSWCFC,i � SWCWP,iÞÞDhi
hmax

, ð2:1Þ

where i is the index of each soil layer over the rooting depth,
SWCi is the actual soil water content, SWCWP is the soil water
content at the wilting point, SWCFC is the soil water content at
field capacity, Δh is the thickness of each layer and hmax is the
maximum rooting depth. Each soil horizon was divided into



Table 1. Main characteristics of the flux tower sites included in this study. The LAI corresponds to the maximum LAI typically observed at the sites.

site ID country latitude longitude dominating species LAI m2 m−2 soil texture
rooting
depth m ref

BE-Bra Belgium 51.308 4.52 Pinus syvlestris 3 sand 1 [36]

BE-Vie Belgium 50.305 5.998 Fagus sylvatica/Pseudotsuga

menziesii

5 silty clay loam 1.4 [37]

CZ-Lnz Czechia 48.682 16.946 Quercus robur/Fraxinus

angustifolia/Carpinus

betulus/Tilia cordata

6.5 sandy loam 1.2 [38]

CZ-Raj Czechia 49.444 16.697 Picea abies 5 sandy loam 0.7 [39]

CZ-Stn Czechia 49.036 17.97 Fagus sylvatica 5.5 sandy loam 0.7 [40]

DE-Hai Germany 51.0792 10.453 Fagus sylvatica 6 clay loam 0.7 [41,42]

DK-Sor Denmark 55.486 11.645 Fagus sylvatica 5 sandy clay loam 1 [43]

FR-Bil France 44.494 −0.956 Pinus pinaster 2.5 sand 1.1 [44]

FR-Hes France 48.674 7.065 Fagus sylvatica 6.5 silty clay loam 1.6 [45]

IT-Sr2 Italy 43.732 10.291 Pinus pinea 2.5 sand 1.2
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soil layers corresponding to the number of sensors installed in
the horizon. The layer boundaries were the horizon limits or
the midway point between two sensors. Soils related data are
summarized in the supplements (electronic supplementary
material, table S1). For each layer, SWCWP and SWCFC were
estimated using soil retention curves based on either measure-
ments (by research teams) or modelling (based on soil textures)
and checked for consistency with SWC 48 h after a rain event
for SWCFC and with minimum SWC values observed at the
site for SWCWP to avoid negative REW values. When not avail-
able, the maximum depth was defined as the bedrock depth
[5]. When data were available (BE-Vie and BE-Bra), REW was
corrected for the coarse fraction by applying a correction factor
for each layer. According to Granier et al. [5,34] it is expected
that both GPP and Gs start to decrease when REW drops below
≈0.4. The evolution of REW at each site in 2018 is presented in
the electronic supplementary material, figure S1.

(c) Canopy surface variables
Detailed computation procedures for canopy surface variables
are fully described in Knauer et al. [31]. First the aerodynamic con-
ductance to water transfer (Gaw) was computed as a combination
of an aerodynamic conductance to momentum (first term) and a
boundary layer conductance (second term) as follows:

Gaw ¼ u2�
u(z)

þ (6:2u�0:67
� )

�1
� ��1

, ð2:2Þ

where u* is the friction velocity (m s−1), and u(z) the wind speed at
measurement height (z). Canopy surface conductance for water
(Gs, m s−1) was computed by inverting the Penman–Monteith
equation [32]:

Gs ¼ LEGawg

s(Rn � G� S)þ rCpGawVPDa � lE(sþ g)
, ð2:3Þ

where LE is the latent heat flux (Wm−2), γ is the psychrometric con-
stant (Pa K−1), s is the slope of the saturation vapour pressure curve
at air temperature (Pa K−1), Rn is the net radiation (Wm−2),G is the
groundheat flux (Wm−2), S is the sum of all storage terms (Wm−2),
Cp is the heat capacity of dry air (1005 J kg−1 K−1) and VPDa is the
VPD of ambient air (Pa). G was considered negligible when not
available while S was not available and was set to 0 at all sites.
The CO2 concentration at the canopy surface (Cs), needed in
the USO and diffusion equations, was computed as:

Cs ¼ Ca þ NEE
ðGaw=1:32Þ , ð2:4Þ

where Ca (μmol CO2 mol−1) is the CO2 air concentration at the
measurement height, NEE (μmol CO2 m

−2) is the net CO2 ecosys-
tem exchange and the factor 1.32 is the ratio of diffusivities of
CO2 and water vapour in the boundary layer. The VPD at the
canopy surface (VPDs, Pa) was also computed (see [31] for more
details). Gs is a good predictor of bulk stomatal conductance
only when evaporation is small compared to transpiration; data
collected during a period of 48 h following a rain event were
discarded. Secondly, the analysis was restricted to the growing
season, avoiding senescence and leaf emergence periods. We
defined this period as the days when the daily GPP (averaged
over all the available years) smoothed with a 15 days moving aver-
agewindowwas higher than 70%of the 95th percentile of the daily
GPP distribution. Gs data were also filtered excluding half hour
with LE < 0 or Rn < 0. Negative Gs values were filtered and Gs out-
liers were also discarded by removing data when Gs were higher
than the 98th percentile of the Gs distribution.

(d) Stomatal origin limitations
Similarly to previous work [10,49], reductions of GPP originating
from SOL were assessed by analysing dependence on REW of the
G1 parameter used in the USO model developed by Medlyn et al.
[24] but adapted to the ecosystem scale using bulk ecosystem
parameters [27]:

Gs ¼ G0 þ 1:6 1þ G1ffiffiffiffiffiffiffiffiffiffiffiffi
VPDs

p
� �

GPPhigh

Cs
, ð2:5Þ

where, GPPhigh is the GPP at high radiation (Rg > 500 W m−2)
and replaces net assimilation in the original leaf scale expression
of the model, Gs replaces stomatal conductance and leaf surface
variables were replaced by their corresponding canopy surface
values [50] (Cs the air CO2, VPDs). In this expression, the noctur-
nal stomatal conductance G0 was set to 0 as its magnitude can
be considered negligible when compared to the other terms at
saturating daylight conditions [27]. G1, the slope parameter, is
a physiologically meaningful parameter as it was shown to be
inversely related to λ [24] and to iWUE [27].
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G1 was obtained by inverting equation (2.5) using half-hourly
measurements. Because leaf respiration was neglected in equation
(2.5), the equation was inverted only for high radiation data so that
GPPhigh should be much higher than leaf respiration. Negative G1

values were filtered and outliers were also discarded by removing
datawhen absoluteG1was two times higher than the average absol-
ute deviation from the median. Finally, daily G1 averages were then
computed for days with at least five valid half-hourly values.

The response of G1 to REWwas fitted with a segmented linear
response curve (two segments) in order to test the presence of an
REW threshold (break point) above which G1 is constant (no
effect range) and under which stomatal regulation occurs (G1

decreases or increases) [51]. After a first fit, outliers were removed
by exclusion of the G1 value having absolute residuals more than
2.2 times the standard deviation of the residuals distribution.
A second fit was then done. Parameters obtained from a second
fit were G1*, i.e. the average G1 value within the ‘no effect range’,
the break point REW value (REWB,G1 I) and the slope/intercept
of the G1 decrease/increase. The presence of the break point was
further tested by comparing the residuals of the model to those
of a simple linear regression model using an F-test.

(e) Non-stomatal origin limitations
ReductionsofGPPoriginating fromNSOLwere studiedbyassessing
the effect of water stress on apparent bulk Vcmax hereafter called
VCMAX,APP. It was obtained by inverting the expression of Rubisco-
limited photosynthesis during high radiation conditions [21]:

VCMAX,APP ¼ GPPhigh(Ci þ Km)
(Ci � G�)

, ð2:6Þ

whereVCMAX,APP is expressed perm2 of soil and not of leaf as usual.
Km is the effectiveMichaelis Menten coefficient kinetics and Γ* is the
CO2 compensation point, which were both computed using temp-
erature responses following Bernacchi et al. [52], GPPhigh is the GPP
at Rg> 500 Wm−2 while Ci was computed using Fick’s diffusion
law [53]:

Ci ¼ Cs �
GPPhigh

ðGs=1:6Þ : ð2:7Þ

Note than in equations (2.5)–(2.7), leaf respiration was neg-
lected which should have a small effect on the results as, at high
radiation, leaf respiration should be much smaller than GPP.
Half-hourly values of VCMAX,APP were then normalized for temp-
erature to 25°C using an Arrhenius equation [31] fitted for each
decile of REW as VCMAX,APP response to temperature was found
to decrease under drought conditions. Finally, VCMAX,APP was
averaged on a daily basis and days with less than 5 half-hourly
values were discarded. Considering the way we estimated
VCMAX,APP, a decrease in VCMAX,APP indicates NSOL of GPP
including either changes in mesophyll conductance or in actual
VCMAX or other processes limiting GPP (apart from stomatal clo-
sure). The response of VCMAX,APP to REW was assessed using the
same segmented linear regression model as explained in the pre-
vious section. VCMAX,APP* and REWB,VCMAX were defined as the
average of VCMAX,APP values (normalized at 25°C) within the no
effect range and the break point REW value, respectively.

( f ) Degree of stomatal and non-stomatal origin
limitation

To illustrate the degree of SOL and NSOL due to edaphic drought,
following Zhou et al. [10], a sensitivity analysis was performed to
explore the impact of drought-induced changes in G1 and VCMAX,

APP on GPP. The impact of NSOL was assessed by comparing
measured GPP to a theoretical non-affected value corresponding
to a ‘modelled’ GPP computed using inverted equation (2.5) with
VCMAX,APP* instead of VCMAX,APP and a Ci obtained from equation
(2.6) using observed Gs values (equation (2.2)) and measured GPP
values. Similarly, the impact of SOL was assessed by comparing
measuredGPP to ‘modelled’ unaffectedGPP computed using con-
stant G1* values and observed VCMAX,APP values. The degree of
limitation (DoL) was computed as the ratio of modelled ‘unaf-
fected’ GPP against measured GPP and represents the factor by
which GPP was divided because of SOL or NSOL.
3. Results
(a) Gs and GPPhigh
GPPhigh and Gs (for Rg > 500) normalized by their respective
maximum values in relation with REW are presented in
figure 1. At all sites, we can observe that both GPPhigh and
Gs behave similarly. High values of both GPPhigh and Gs

were observed for high REW while both variables decreased
simultaneously with REW. There was an exception at BE-Vie
where such a pattern was not observed although both vari-
ables still behaved similarly. The lowest GPPhigh and Gs

values were observed at sites such as CZ-Raj, FR-Bil and
DE-Hai where very low REW values (lower than 0.15) were
reached. At IT-Sr2, Gs and GPPhigh were still quite high
(around half of maximum values) even for very low REW
values most probably because, in this sandy soil, rooting
depth was probably deeper than the deepest available SWC
sensor (1.2 m, see electronic supplementary material, table
S1) which caused an underestimation of REW.
(b) Response of G1 to edaphic drought
G1was found to be constant at all sites apart fromDE-Hai even
for sites where REW values lower than 0.4 were observed
(figure 2). In BE-Bra G1 seems to be enhanced at low REW
but the segmented model did not perform significantly better
than the linear one. In DE-Hai, G1 was found to increase
when REW dropped below a very low value of 0.2, which is
quite close to the wilting point. Such low REW were also
observed during the growing season at CZ-Raj and IT-Sr2
but no similar behaviour was observed. The lowest G1

* (1.5 kPa0.5 at CZ-Raj) was three times lower than the highest
value (4.5 kPa0.5 at FR-Bil, table 2).
(c) Response of VCMAX,APP to edaphic drought
The effect of NSOL caused by drought was studied by
analysing the dependence of the temperature normalized
VCMAX,APP values on REW (figure 3). At all sites that experi-
enced low REW conditions (below ≈ 0.4) apart from BE-Vie
and IT-Sr2, constant VCMAX,APP were observed for large REW
values followed by a decrease when REW declined below
an REWB,VCMAX threshold. The REWB,VCMAX were not signifi-
cantly different (according to the confidence intervals) than the
value of 0.4 which was found in previous studies, with an
exception at DK-Sor where REWB,VCMAX was higher (REWB,

VCMAX = 0.8 ± 0.09, table 2). The high REWB,VCMAX observed
at DK-Sor might result from an overestimation of REW as the
shallowest available SWC probe was at 15 cm depth (see elec-
tronic supplementary material, table S1) and was not able to
catch the beginning of the progressive drying of the upper
layers that contain a large amount of roots. The most impacted
site was DE-Hai where REW almost reached the wilting point
(REW≈ 0) with very low VCMAX,APP values (≈15 µmol m−2 s−1)
probably because of shallow soil and rooting depth (0.6 m).
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Figure 1. Dependence of GPPhigh (blue, left axis) and Gs at high radiation (Rg > 500, red, right axis) normalized by their maximum value on REW for each site.
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(d) Degree of stomatal and non-stomatal limitation
DoL reached values of 5 for NSOL at DE-Hai while it remained
close to 1 for SOL at all sites (figure 4). This analysis therefore
confirms that, at all sites, NSOL as the dominant mechanism.
As a result, reducingVCMAX,APPwhilemaintainingG1 constant
could capture the variations of both GPPhigh and Gs with
drought (identical conclusions are obtained if we focus the
analysis onGs instead ofGPP, data not shown). It is alsoworth-
while noticing that the increasing G1 observed at DE-Hai (and
at BE-Bra to a lesser extent) did not lead to important changes
in GPP.
4. Discussion
(a) Methodological limitations
Although the responses of VCMAX,APP and G1 to REW
were relatively consistent, some sites showed unexpected
behaviours. For example, REWB,VCMAX at DK-Sor was much
higher than expected (0.85) because some SWC sensors experi-
enced failures during the drought. At IT-Sr2, no limitation of
GPPwas found although very lowREW valueswere estimated,
probably because the SWC sensor profile was not deep enough
to capture the whole rooting depth. Multiple and deeper
sensor profiles (with matching wilting points and field
capacities) would certainly help to reduce these uncertainties.
Complementary measurements such as predawn leaf water
potential and soil matric potential [17,54], when REW
approaches values close to 0.4 at the site, would also be useful.

The big leaf approach used in this study also has several
limitations [31] which could be critical when comparing leaf
scale-derived parameters to big leaf canopy scale estimates
[27,29,31] or when attributing a behaviour to a specific
species. First, the approach is only able to derive bulk par-
ameters and is unable to distinguish the vertical and
horizontal distribution of the properties.Horizontal heterogen-
eity is especially crucial at mixed forest sites where different
species could show different responses to drought (and differ-
ent root depth and therefore REW) which would blur their
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Table 2. Maximum extractable water (EW), minimum observed REW in 2018 during the growing season, REWb,VCMAX and REWb,G1 (REW break points for VCMAX,
APP and G1, respectively) given with 95% confidence intervals. VCMAX,APP* and G1* (VCMAX,APP and G1 values in unstressed conditions) given with 95% confidence
intervals. P-values are given for the F-test comparing the segmented mode (three parameters) to the linear model (two parameters).

site ID

EW min REW VCMAX,APP* REWb,VCMAX p-value G1* REWb,G1 p-value

mm — μmol m−2 s−1 — — kPa−0.5 — —

BE-Bra 133 0.30 58 ± 3 0.57 ± 0.19 <0.05 2.9 ± 0.2 — 0.28

BE-Vie 215 0.19 81 ± 5 — 1 1.5 ± 0.1 — 1

CZ-Lnz 241 0.49 116 ± 10 — 1 2.0 ± 0.2 — 1

CZ-Raj 92 0.07 80 ± 7 0.36 ± 0.11 <0.001 1.2 ± 0.8 — 1

CZ-Stn 236 0.46 120 ± 7 — 1 2.3 ± 0.3 — 1

DE-Hai 143 0.00 86 ± 17 0.36 ± 0.07 <0.001 1.3 ± 0.2 0.2 ± 0.05 <0.001

DK-Sor 176 0.25 104 ± 3 0.80 ± 0.09 <0.001 2.2 ± 0.2 — 1

FR-Bil 159 0.08 76 ± 7 0.45 ± 0.15 <0.05 4.5 ± 0.4 — 1

FR-Hes 338 0.33 121 ± 13 0.44 ± 0.08 <0.05 2.0 ± 0.5 — 1

IT-Sr2 108 0.08 89 ± 6 — 1 2.1 ± 0.2 — 1
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respective responses in the measured signal. This is especially
critical at BE-Vie where the two most frequent wind directions
(southwest and northeast) correspond to different stands (con-
iferous and beech stands) with possibly different root depth,
REWandweather conditions [37]. Separating the data between
each sector did not however improve the relation because of the
lack of data (data no shown).

At sites with dense canopy and high LAI, vertical gradients
of the parameters (Gs, G1 and VCMAX,APP) could result from
vertical gradients within plants of the same species or from
physiological differences across species [27]. Sun leaves, devel-
oped under high irradiance, usually exhibit higherWUE (lower
G1) than those developed under shady conditions [55], primar-
ily because of higher photosynthetic capacities. However, more
critical for this study, little is known about to what degree these
vertical gradients (within and across species) could affect the
response of G1 and VCMAX,APP to drought. To our knowledge,
in most Earth system models, the same reduction functions of
photosynthesis during edaphic drought (either NSOL or
SOL) are used for sun and shade leaves [17]. More complex
multiple layers and/or sun-shade models as well as additional
data gathered at multiple canopy layers would be needed to
assess this question more closely.
Moreover, soil and vegetation components cannot be dis-
tinguished so that critical variables such as Gs (and variables
depending on it, such as G1 and Ci) will inevitably contain
some signal from the soil. This signal can be reduced by filter-
ing the data after rain events [27] and should be small for dense
canopies with LAI higher than 2–3 [56] (which is the case in all
sites) and even smaller when the upper soil layer dries.

Finally, systematic errors (energy balance non-closure
[57]) in EC fluxes are also major sources of uncertainties
that affect G1 and VCMAX,APP magnitudes. However, it was
found that, at multiple flux tower sites, the surface energy
balance was not modified during the 2018 drought [58].
This source of error is therefore unlikely to affect G1 and
VCMAX,APP responses to REW.

Nevertheless, despite all the limitations of the big leaf
approach detailed above, this framework was very suitable
for this multi-site study as it relied on very few ancillary
data [31]. If the comparison ofG1 andVCMAX,APP (which inher-
ently has a different meaning than leaf-level Vcmax,app) is not
straightforward, analysing the dynamics of these parameters
inferred from in situ EC data during drought provides very
useful information about how forest ecosystems reacted to
these events.
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(b) Implications of non-stomatal origin limitation for
the modelling of gross primary productivity
and transpiration

In this study, similarly to Granier et al. [5], we found that GPP
and Gs reductions can be expected when REW drops below
≈0.4. To account for these reductions, using empirical
reduction factors (ranging from 1 to 0) when soil water content
falls below a given threshold is a widely used approach [17].
However, it is questionable whether the reduction factors
should be applied to SOL and/or to NSOL. This was pre-
viously investigated in Mediterranean ecosystems [8,13,59]
and it was found that, calibrating the model on either GPP or
transpiration (E) (not both) by considering only SOL during
edaphic drought conditions systematically led to overestimates
of WUE which did not allow the correct simulation of both
fluxes. Surprisingly, it was found that applying NSOL only
was sufficient to correctly simulate both GPP and E.

In this study,we found that reducingVCMAX,APPwhenREW
dropped below ≈0.4 and using a constant G1 parameter (from
the USO model [24]) allowed the capture of both GPP and Gs

reductions at European forest sites. Similar conclusions were
also found by Chen et al. [60] in four different ecosystems (tem-
perate grassland, tropical savannah, boreal and one temperate
forest). More specifically, relatively consistent behaviour was
observed at the three beech (Fagus sylvatica) forest sites (FR-
Hes, DK-Sor and DE-Hai) where NSOLs were the main
source of photosynthesis reductions with relatively constant
G1. Similarly, in a study carried out on adult beech using leaf-
level measurements, the Ball–Berry slope was found to be
almost insensitive to soil water potential [61]. Our results are
in agreement with Granier et al. [5] who observed constant
WUE even for very low REW during the 2003 drought and
with Hentschel et al. [62] who also found unchanged annual
iWUE derived from tree ring carbon isotopic composition.
Studies were also performed at the leaf scale to study the
impact of drought on NSOL and SOL. In their meta-analysis,
Zhou et al. [10] found highly variable responses of g1 (leaf
level) forwoodyspecies ranging fromrather constant to severely
decreasing g1 with drought. Decreasing Vcmax,app (NSOL) were
however found for all species. It was also highlighted that
NSOL was the main factor limiting photosynthesis under
severe stress in 10 Mediterranean herbs and shrubs species
[11,63] and,more importantly for this study, for four tree species
[20]. Unfortunately, a direct comparison with our results cannot
be carried out as the studied species were different. Such direct
comparisons have been carried out in a woodland dominated
by Acacia trees by Tarin et al. [30] who found a close agreement
between G1 and g1 estimated from ecosystem (EC big leaf) and
leaf-level approaches, respectively.

According to Keenan et al. [64], NSOL could be caused by
the variations of a finitemesophyll conductancewith soil water
availability [65]which, if not taken into account, leads towrong
estimates of actual Vcmax [66] (which was implicitly taken
into account by using VCMAX,APP). In addition, the hypothesis
that, under severe droughts, GPP can be directly impacted by
biochemical limitations which cause the reduction of actual
VCMAX should not be discarded [67]. Separating NSOL
between these two mechanisms (mesophyll conductance and
actual VCMAX) was not done in this study. Currently, without
additional leaf-level data to better understand the mechanisms
underlying mesophyll conductance changes during droughts,
we use an apparent VCMAX,APP [15,17,20].

(c) Optimal stomatal behaviour during drought
and intrinsic water-use efficiency

We did not find a general pattern of systematically decreasing
G1 during drought or, in other words, an increasing iWUE for
stomatal closure (increasing λ) across ecosystems as



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190527

9
theoretically predicted [23,68]. To the contrary, we found con-
stant G1 (and therefore λ) values at most sites, and even
increasing values at DE-Hai (and BE-Bra to a lesser extent).
This result (a constant G1) is rather surprising as it would
suggest that changes in stomatal conductance responses
were not needed to model Gs under long-term water stress
events [59] and that λ does not increase with drought. We
argue that this is caused by the fact that NSOLs were not con-
sidered by Manzoni et al. [23] and Mäkelä et al. [68] in their
analyses as stomatal closure (reduced Gs) is known to regu-
late leaf water flows in response to soil water availability
[69]; without such mechanisms, leaves would be quickly
dehydrated. However, one should consider that stomatal clo-
sure in response to drought does not necessarily lead to a
decrease in G1 as, in USO, any reduction of VCMAX,APP lead
to a reduction in stomatal conductance [10]. At very low
REW values, previous studies showed that Ci could even
increase because of NSOL [70], which would explain the
increase of G1 we observed at DE-Hai.

Another more complex approach to stomatal conductance
modelling is to model stomatal conductance in the function of
leaf water potential which is expected to regulate Gs [71]. This
approach requires a complete model of water flow from the
soil through the plant to the atmosphere [72]. This kind of
model was tested by reducing the stomatal slope of the Ball–
Berry–Leuning model [26] with leaf water potential, but the
model did not account for NSOL [54]. Recently, Dewar et al.
[73] proposed a new optimization model in which stomatal
behaviour maximizes photosynthesis and where the costs of
stomatal closure arise from NSOL (mesophyll conductance
and/or carboxylation rate) and/or loss of hydraulic conduc-
tance [74]. This results in a parameter, equivalent to G1, which
is expressed as a function of measurable variables such as
hydraulic conductivity, leaf water potential and Vcmax. This
model has been successfully tested on saplings for different
plant functional types [75] and fitted well sub-daily leaf scale
observations; however, this still needs to be tested for longer
term in situ ecosystem droughts. This could not be done in this
study as leaf and soil water potentials were lacking. It does,
however, highlight a promising research path for the future.

5. Conclusion
In this study, we used a big leaf framework to investigate the
origin of edaphic drought impacts on GPP (stomatal origin
limitation and non-stomatal origin limitation) in European
forest ecosystems during the 2018 drought. In agreement
with Granier et al. [5], we found that GPP and Gs were both
greatly affected by soil moisture depletion at many sites. We
went a step further by showing that these reductions could
be faithfully modelled by decreasing VCMAX,APP (NSOL)
when the REW dropped below around 0.4 while keeping the
G1 (SOL) parameter from the USO model [24] constant.
These results were rather unexpected as it would suggest that
stomatal closure was not responsible for GPP reductions with
drought. We argue that this was caused by the fact that G1

was not representative of stomatal behaviour during drought
because GPP was not only regulated by stomatal closure but
also by NSOL. Nevertheless, these results strengthen the
increasing evidence that NSOL should be included in stomatal
conductance/photosynthesis models to faithfully simulate
both GPP and water fluxes in forest ecosystems.
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