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Abstract
Introduction: Network and systems medicine has rapidly evolved over the past decade, thanks to computa-
tional and integrative tools, which stem in part from systems biology. However, major challenges and hurdles
are still present regarding validation and translation into clinical application and decision making for precision
medicine.
Methods: In this context, the Collaboration on Science and Technology Action on Open Multiscale Systems
Medicine (OpenMultiMed) reviewed the available advanced technologies for multidimensional data generation
and integration in an open-science approach as well as key clinical applications of network and systems med-
icine and the main issues and opportunities for the future.
Results: The development of multi-omic approaches as well as new digital tools provides a unique opportunity
to explore complex biological systems and networks at different scales. Moreover, the application of findable,
applicable, interoperable, and reusable principles and the adoption of standards increases data availability
and sharing for multiscale integration and interpretation. These innovations have led to the first clinical applica-
tions of network and systems medicine, particularly in the field of personalized therapy and drug dosing. Enlarg-
ing network and systems medicine application would now imply to increase patient engagement and health
care providers as well as to educate the novel generations of medical doctors and biomedical researchers to

1Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
2TUM School of Life Sciences Weihenstephan (WZW), Technical University of Munich (TUM), Freising-Weihenstephan, Germany.
3Holon Institute of Technology, Holon, Israel.
4Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
5Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
6Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
7The Cancer Clinic, St. Olav’s University Hospital, Trondheim, Norway.
8Digital Health Systems, Einsingen, Germany.
9Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands.

10Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
11Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
12Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
13Department of Computer Science and Systems Engineering, Universidad de La Laguna, Tenerife, Spain.
14Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
15Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
16CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy.
17GIGA-R Medical Genomics-BIO3, University of Liège, Liège, Belgium.
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shift the current organ- and symptom-based medical concepts toward network- and systems-based ones for
more precise diagnoses, interventions, and ideally prevention.
Conclusion: In this dynamic setting, the health care system will also have to evolve, if not revolutionize, in terms
of organization and management.

Keywords: big data; data integration; integrated health care; omics; systems medicine

Introduction
Why we need new medicine
About 70% of all medical interventions pertain to the
prescription of a drug. However, for several drugs
that are on the market, population-based studies fail
to show patient-relevant benefits.1,2 Research covering
drug approval since the 1970s suggests that only a lim-
ited number of new drugs provide real advances over
existing ones; most studies place the proportion of
true innovation at less than 15%.3 For every person
they do help, the 10 highest grossing drugs in the
United States fail to improve the conditions of most
other patients, leading to so-called high ‘‘numbers
needed to treat’’ (NNT, Fig. 1C).4

Since the 1950s, the efficacy of translating biomedi-
cal research into successful drug discovery is on a con-
stant decline.4,5 Two key factors have contributed to
this innovation roadblock. One is the irreproducibility
of pre-clinical and basic research data6 to which, be-
sides data manipulation/fabrication, poor study qual-
ity, such as lack of statistical power, and positive
publication bias by scientific journals are the main con-
tributors.7,8 The second reason is the conceptual med-
ical knowledge gap about many of our current, in
particular chronic, disease definitions. Except for infec-
tious and rare diseases, most disease definitions are
based on signs and reported symptoms, pointing to
organ-centric mechanisms (Fig. 1B), and not on causal
molecular mechanisms that, for many diseases, are not
even known. Consequently, there is a disease-based
care system, where the focus is placed on treating and
monitoring the symptoms (Fig. 1A), rather than true
health care that treats the causes by helping to imple-
ment lifestyle decisions for a healthier life.

A drug can only be effectively developed and applied
in a precise manner if the molecular disease mechanism
is known. Not knowing a disease mechanism also affects
basic and pre-clinical (animal) research, where often cel-
lular or animal models that mimic symptoms of human
disease are used, but neither the underlying mechanism
of the animal model nor that of the human disease is
known.9–14 Noteworthy exceptions to these limitations

and shortcomings are again infectious or rare diseases,
where a precise—often monogenetic—mechanism is
known. Many common and complex clinical disease
phenotypes, once they are fully endo-phenotyped and
mechanistically understood, will segregate into several
distinct mechanotypes.15

Many common diseases appear complex, because we
combine several molecular diseases under one um-
brella term based on shared prominent signs and
symptoms. For example, high blood pressure is in
95% of the cases diagnosed as essential hypertension,
meaning that the blood pressure is elevated, but we
do not know why. These patients are then treated
with different blood vessel-dilating drugs and the clin-
ical sign, elevated blood pressure, disappears, yet the
cause is not known and remains untreated. Once
mechanistically understood, chronic diseases can be
cured or even prevented and no longer just treated
(Fig. 1D).

The United Kingdom National Institute for Health
and Care Excellence published a list of the absolute ben-
efits of treatments of common conditions in terms of
their NNT. For example, for every thousand low-risk pa-
tients prescribed statins for primary prevention, only a
single stroke is prevented per year; one needs to treat
more than a thousand patients with antihypertensives
per year to prevent one death, more than 800 to prevent
one heart attack, and nearly 600 to prevent one stroke.
In high-risk patients, the NNTs are smaller, but the
problem persists.16 Thus, a move toward a more precise
ideally curative therapy that works for almost every pa-
tient is of utmost importance.

Applied biomedical research and drug discovery
This efficacy problem also pertains to basic research
and its translation into applications such as drug dis-
covery. Of 25,190 articles published from 1979 to
1983 in the six basic science journals, Science, Nature,
Cell, the Journal of Experimental Medicine, and the
Journal of Clinical Investigation, which had the highest
impact factors in 2000, and the Journal of Biological
Chemistry, which received the most citations, only a
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single claim of relevance may have led to actual appli-
cation follow-up.17 Regarding the discovery of new
drugs, for three decades, costs have increased exponen-
tially and are now stable at an extremely high level. Since
the 1950s, however, the efficacy of drug discovery is on a
constant logarithmic decline, indicating a fundamental
and conceptual problem of how we define and approach
disease.5 For drug discovery, recently, systematic drug
repurposing is being increasingly explored and repre-
sents a conceptual change to a mechanism-based disease
definition, allowing for a mechanism-based patient
stratification, which increases the precision for any sub-
sequent mechanism-based drug intervention. This will
massively de-risk drug development, yet at the downside
that in the future, drugs will be developed for much
smaller patient numbers.

From single targets to validated, causal networks
In the diseasome, disease clusters are mechanistically de-
fined by several genes and proteins forming a signaling
network.18 This has been most extensively hypothesized
for three distinct networks for macular degeneration18,19

and cancer.20 The validity of these networks is essential,
because both the diagnostic and therapeutic strategies
reside on it. Defining the causal signaling network is
not trivial and not at all obvious. It is state-of-the-art
to rely on highly curated signaling pathway databases
such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) or WikiPathways, a collection of manually
drawn pathway maps representing our apparent knowl-
edge on molecular interactions, reactions and relation
networks, or review articles. KEGG, however, shows
29 cyclic guanosine monophosphate (GMP) and 12 re-
active oxygen pathways, none of which is comprehen-
sive and all of which fail to cover a recently discovered
functional and molecular link between the two,21 uniting
both, in fact, to one network. Moreover, subcellular
compartmentalization and transition over time also
matter in defining disease modules,18,21 contributing to
further deviation from static pathway concepts.

Mechanism-based diagnostics
Biomarkers are increasingly hypothesized as important
for precision medicine,22–24 although the term is am-
biguous and used for several applications such as
screening, stratification, efficacy, differentiation, toxic-
ity, and prognosis. In place of validated causal disease
mechanisms, the state-of-the-art biomarkers used for
these purposes are mostly correlative surrogate and
omic markers, rarely established risk factors, and

never a full functional analysis of a patient’s activity
state of a causal disease mechanism.22 The limited
availability of predictive and precise biomarkers rep-
resents a key bottleneck in the progress from
mechanism-based disease definition to clinical valida-
tion by mechanism-based therapeutic intervention.
This causes inefficient drug therapy and clinical trials
with a high failure rate (see above).

From single or combination therapy
to network pharmacology
The first line of treatment for many diseases involves
the administration of a single drug, assuming a single
relevant target. If the therapeutic effect is insufficient,
drugs are combined. Sometimes, such combination
therapies can get out of control when so-called poly-
pharmacy results in 10 or more drugs being prescribed
to a patient with unwanted drug–drug interactions and
side effects. Network pharmacology may be easily con-
fused with such combination therapies. The important
difference, however, is that in combination therapy
symptomatically acting drugs on unrelated targets are
combined and act in an additive manner; whereas in
network pharmacology, all drugs act on the same and
causal network, and are thereby highly synergistic.
This allows for a substantial reduction in the dose of
each drug while still achieving the same therapeutic
effect. This will in all likelihood reduce any side ef-
fect of each drug or possible unwanted drug–drug
interactions.21,25

Definition and goals of network
and systems medicine
Major socioeconomic innovations are not only triggered
by unmet needs as described earlier but also by critical
technological advances. Insofar, network and systems
medicine would not have emerged without decades of
development of its antecedent discipline, that is, systems
biology as defined by pioneers in the field.26,27 There-
fore, it is impossible to discuss systems medicine alone
without first talking about systems biology.

Systems biology emphasizes analyzing interactions
within complex biological systems by using holistic
and integrative high-throughput experimental and com-
putational approaches. One of the hallmarks in the com-
plex systems, such as multicellular organisms and
multiorgan organisms (e.g., animals and humans), is
that several components (different cell types, tissues, or
organs) interact with each other as a local subnetwork
or global network to generate emergent effects.28,29
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The challenges behind this hallmark cannot be solved
per se by the reductionist paradigm that decomposes
the complex systems into smaller and simpler compo-
nents and understands their functions and roles one by
one. Thus, the emergence of systems biology is to tackle
the essential limits of the reductionist approaches.30

Systems biology focuses on basic mechanisms and
principles in biology or on most translational preclinical
research, but systems medicine aims at directly han-
dling the challenges related to health and diseases.31–33

In a way, it can also be considered as a modern advance-
ment of physiology. So far, there is no consensus on the
definition of systems medicine, an emergent and fast
evolving field. Our perception about systems medicine
is the application of systems biology approaches to
the clinical settings of individuals by the combination
of large-scale, multilayer, high-throughput quantitative
molecular and image measurements at different spatial
scales (from molecules, through cells and tissues, to or-
gans), over various time scales, with different types of
clinical information.34

The aims of systems medicine are also multidimen-
sional, that is, from the understanding of disease mecha-
nisms to accurate diagnosis, prediction, and eventual
prevention by using accessible biopsies, tissues, and sam-
ples, to patient subgroup stratification of complex dis-
eases, to the development of novel approaches in drug
discoveries, to more precision treatment based on tai-
lored measurements of distinct patients.35 Systems med-
icine is based on a holistic approach to medicine, in
opposition to the current symptom/organ-based view.
As proposed by Leroy Hood, systems medicine should
eventually enable predictive, preventive, personalized,
and participatory (P4) medicine to improve the wellness
of our society.36 Network and systems medicine is at the
crossroad of pure and applied sciences, wet and dry labs,
life, and computer sciences. Main scientific and techno-
logical components of this new field have, therefore, yet
to emerge and evolve into a well-established process.

Network and systems medicine is built similarly to
a modern knowledge discovery flow. To implement
systems medicine, as the name ‘‘systems’’ indicated,
the first required technology should be the develop-
ment of system-level multidimensional technologies.
In this context, the present review on systems medi-
cine first introduces the intended outcomes and defini-
tions. It discusses in the ‘‘Basic science and data for
network and systems medicine’’ section the required
technologies for multidimensional data generation,
the current data availability, as well as the computa-

tional tools for data integration and interpretation. In
the ‘‘Clinical Applications’’ section, it illustrates its po-
tentiality through some clinical applications. Finally, it
discusses the current remaining issues and prospects of
this large domain.

Basic Science and Data for Network
and Systems Medicine
Network and systems medicine is built similarly to a
modern knowledge discovery flow. In particular, mul-
tidimensional omics data generation and integration
are key elements in the big data analytics era.

Multidimensional omics
The importance of taking into account the complexity of
biological systems has been recognized as the basis of sys-
tems approaches. Indeed, it appears that in individuals, a
different combination of genetic and environmental fac-
tors defines the pathology progress, which accumulates
with age. We face co-occurrence of pathologies in the
ever-aging population. In addition to cardiovascular
complications, there is a rise in neurodegenerative pa-
thologies and metabolic pathologies, where diabetes mel-
litus and nonalcoholic fatty liver disease are among the
key components. It is important to note that metabolic
diseases (metabolic syndrome, type 2 diabetes, osteopo-
rosis, etc.) show strong comorbidities or co-occurrence
with other diseases, such as cardiovascular diseases, can-
cers, and even neurodegenerative diseases, all major
health problems of today’s societies.37–39

There is a challenging situation where, on one hand,
there is a large progress in understanding the molecular
players of disease stages and overlap with other diseases;
whereas on the other hand, the inconsistencies from dif-
ferent studies and different populations leave the impres-
sion that we are indeed at the start. In this context, the
objective of omics research within systems medicine is
to study and understand regulatory mechanisms, identify
corresponding specific biomarkers, and characterize
their interaction within and between systems,40 with
the analysis of large sets of biological molecules, includ-
ing genomics, epigenomics, proteomics, metabolomics,
and much more, in combination with methodologies
from the computer and mathematical science.

Genome-wide association studies (GWASs) have
shown their importance in the discovery of single-
nucleotide polymorphisms as markers associated with
disease-specific clinical phenotypes or their risk factors.
As an example, in liver diseases, the genome-wide asso-
ciation studies, transcriptome analyses, meta-analyses,
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and other clinical studies in different populations and
ethnic backgrounds are until 2019 concordant in poly-
morphisms of a single gene, PNPLA3.41 However, liver
pathologies remain a major health burden of modern
societies where sex dimorphism remains a crucial, yet
neglected factor.42,43

Generally speaking, complex disease phenotypes can
rarely be explained by a single gene, and genomic anal-
ysis integrated with protein–protein interaction net-
works has evidenced the role of groups of genes and
variants, and new pathways in multiple diseases.44

Therefore, the need for new disease risk models has
emerged, including not only genetic factors, transcripts,
and proteins but also elements such as metabolites, with
the metabolome being closer to the phenotype.

Metabolomics, described as a global analysis of small
molecules present in a biofluid (blood, urine, saliva, etc.),
produced or modified as a result of stimuli (intervention,
drug, genetic perturbations, etc.),45,46 is giving an inte-
grated view of metabolism. Among different approaches,
the untargeted strategy is a data-driven approach dedi-
cated to biomarker discovery. Based on the use of mul-
tiple analytical platforms, such as mass spectrometry, it
allows the detection of thousands of features and offers
the possibility of characterizing global alterations associ-
ated with disease conditions.47 It has been widely applied
in epidemiology for metabolic disease diagnosis and
candidate biomarker discovery, pathophysiological
exploration of underlying mechanisms, and diagnosis
and prognosis.48,49 It is now recognized as a powerful
phenotyping tool to better understand not only the bio-
logical mechanisms involved in pathophysiological pro-
cesses but also the complexity of regulations in
interaction with environmental factors.

The concept of the exposome was defined to charac-
terize the environmental exposure in a broad sense of
‘‘non-genetic’’ factors, considering internal, specific ex-
ternal, and general external exposure.50 In particular,
important advances have also been done for the identi-
fication of the contribution of the microbiome to the
human metabolome and to study their interac-
tions.51–53 Associations between nutrition, microbiota,
and immune system are being actively studied as con-
tributors to chronic metabolic diseases.54

The application of the multi-omics approach has
been shown to be of great interest to better characterize
the complexity of phenotypes in human cohorts, but its
translation to the clinical setting remains to be devel-
oped. Technical advances in biomarkers and personal
monitoring devices open the door to translate the con-

cept to utility and increase the completeness of the
human system. Integrating communication tools and
the exposome as a full part of systems in medicine is
now under development, as are analytics that can
make full use of the complexity of multidimensional
omics data (see the section about ‘‘Embracing the chal-
lenge of data integration and validation’’).

Big data availability and information systems
The emergence of powerful approaches allowed large
datasets to be produced and analyzed, in the perspec-
tive of developing decision-making tools for health
management. One of the challenges is the security of
personal and private health data.55 Moreover, the gen-
eration of high volumes of big omics data, combined
with the health care provider’s high rate of data gener-
ation (also known as data velocity) constitute a critical
challenge for supporting research and practical imple-
mentation of system medicine and tools. Securing per-
sonal and private health data is an additional crucial
challenge for managing systems. Therefore, the future
development of systems medicine requires advanced
informatics tools for merging the different kinds of
data to be shared among different communities.

Findable, applicable, interoperable, and reusable,
privacy and federated machine learning
Big data also harbors risks to the safety of sensitive clin-
ical data, in particular, when such data need to be cop-
ied to clouds to provide software for learning statistical
models with the required large-volume, high-quality
data. The barrier for secure health data exchange over
the internet is perceived to be insurmountable, thus
posing a massive bottleneck hampering big data and
prohibiting progress in computational systems medi-
cine. Therefore, it makes the development of medical
artificial intelligence (AI) tools for prognosis, response
prediction, or treatment optimization de facto impossi-
ble, as sharing and cloud-based storage of health data
is ethically problematic and often legally prohibited.

Modern omics technologies have paved the way for
large-scale quantitative profiling of all kinds of biomol-
ecules (genome, mRNAs, proteins, small molecules).
With such data for many patients, we can build compu-
tational models that can predict medically relevant fea-
tures (biomarkers). The PAM50 gene signature and the
MammaPrint panel are such biomarker models,56,57

helping clinicians to determine whether a breast cancer
patient will benefit from chemotherapy, and from what
kind of chemotherapy. However, recent results raise
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concerns regarding their predictive clinical value.58,59

The major problem is the selection of biomarkers due
to the small number of samples compared with a
very high number of features. The Cancer Genome
Atlas60 and the International Cancer Genome Consor-
tium data portal61 are, by far, the most comprehensive re-
positories for clinical cancer omics data worldwide. For
breast cancer, gene expression data for < 2000 patients
are available. These few thousand samples, however,
stand against more than 20,000 genes that AI may com-
bine to predict the outcome. Even when following best
practices in machine learning (ML), the consequence is
model overfitting and a significantly reduced impact of
such kinds of AI-based medical diagnostics tools.

Big Data is clearly in its infancy, even in oncology
(the most advanced research area of precision and sys-
tems medicine). At the same time, one in eight women
(ca. 12%) will develop breast cancer. In the European
Union (EU), there are more than 350,000 new cases
per year.62 How come that we need to train ultra-
high-dimensional AI models with > 20,000 features
(genes) on < 2000 breast cancer samples, whereas in
the EU alone > 350,000 new cases occur every year
that are often investigated by using gene expression
(PAM50, MammaPrint)? Even if only 20% of them
were analyzed computationally, and even if only 50%
of the samples would be of sufficient quality to be
used for AI learning, over the past 5 years we could
have accumulated > 300,000 samples—in contrast to
the 2000 samples mentioned earlier, exemplifying
how far we are away from Big Data analytics in preci-
sion and systems medicine.

Legal and ethical considerations dictate these cir-
cumstances. Patient data may not be shared, in partic-
ular neither the molecular data nor the electronic
health records, and most certainly not over the inter-
net. In contrast, conventional AI tools require access
to all data locally for training, resulting in the need to
aggregate available data in a centralized cloud reposi-
tory. But data protection legislation usually prohibits
depositing sensitive medical patient data in central
storage outside the hospital, with massive conse-
quences. For example, the EU’s laudable attention to
privacy and respective national legislation is further
feeding this problem and creating contradicting re-
quirements: The General Data Protection Regulation
and its national implementations, as well as the crimi-
nal laws on confidential medical communication and
the restrictions in terms of data ‘‘ownership’’ prohibit
the exchange of sensitive patient data,63 whereas simul-

taneously the findable, applicable, interoperable, and
reusable (FAIR) principles are enforced, for example,
in the H2020 programme, where projects are required
to make research data publicly available.64

One potential way out of this dilemma is federated
ML. However, many challenges are to be overcome
until client-sided ML becomes ubiquitous65; however,
recent experiments on deep learning demonstrated
that it can be made practical and that there are many
intriguing opportunities.66 Europe has dedicated re-
search projects to this task, for example, FeatureCloud,
but no applications for federated systems medicine
(e.g., for federated network enrichment, federated com-
posite biomarker extraction, or federated mechanotyp-
ing) exist yet; however, it would be necessary to make
systems medicine big-data-ready.

From a Health care Services perspective, data avail-
ability is a sensitive matter. For example, in the United
Kingdom, the National Health Services is financed by
the government but health care customers’ data are
not centralized. In contrast, in some countries, such
as Denmark67,68 and Israel although the health care sys-
tem is also financed and regulated by the government,
health care customers’ data are centralized. In Israel,
these data are centralized by the Healthcare Manage-
ment Organizations (HMO) whereas some of the
data reside at hospitals and the Health care ministry.
The data available to the HMO include, among others,
socio-demographic data, and information on biologi-
cal tests, clinical examinations, pharmacological treat-
ments, and communication channels. These data have
been continuously collected and stored at the health
care customer level for the past 25 years.69 In Israel,
the health care data de facto fit the FAIR standards.70,71

Standardization
Large datasets are often generated at great cost, con-
suming significant time and resources. Critical to real-
izing their full value is that we can quickly and easily
deploy a diverse and well-developed set of software
tools for analysis. This is best achieved when the datasets
are made available following a common set of data stan-
dards used by a wide range of software tools. Conversely,
the incentive for developing software tools is invariably
stronger when a rich landscape of suitable data already
exists that is easily accessible via data standards.
Hence, data standards are vital to realizing the potential
in large datasets. The adoption of Binary Alignment
Map and Variant Call Format file formats, for example,
has underpinned the explosive growth in the availability
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of genome data and the software tools for analysis. As we
move into the era of systems medicine, data standards
will be central to maximizing the value we derive from
systems-level datasets.

Larger and more complex datasets require more
sophisticated analysis and, as analysis grows in sophisti-
cation, it becomes increasingly challenging to reproduce.
This is in part due to the network of software dependen-
cies associated with the analytical tools and in part due
to the array of design choices that form part of the ana-
lytical workflow. Hence, we not only need standards to
optimize data availability but also need standards that
make analyses reproducible and verifiable.

Among the key current standards that will support
the growth of systems medicine are the Systems Biol-
ogy Graphical Notation (SBGN), a set of symbols
and usage rules that have been developed through
open community action, as tools for mapping out the
network of molecular interactions between genes, pro-
teins, and small molecules.72 Although many mapping
systems exist, SBGN’s strength lies in its lack of ambi-
guity and its machine-parsable structure, which means
that maps can be translated straight to mathematical
models. Three different flavors of SBGN have been cre-
ated with the Process Diagram, providing the most de-
tails and the highest level of parsability whereas the
activity Flow and Entity Relationship provide greater
levels of abstraction and lower levels of parsability.*

Such models typically require great effort to devel-
op73,74 and to facilitate their reuse, expansion, and re-
finement, they can be made available by using the
SBGN-ML file format that captures the structure of
the maps and encodes the biological meaning of the
symbols.75 It is based on coded use of plain text and
therefore it can be edited not only in SBGN-ML com-
pliant software but also manually in any text editor.
The mathematical model that facilitates simulation of
the pathways can be encoded and disseminated by
using the Systems Biology Markup Language (SBML).
Similar to SBGN-ML, it makes use of a coded plain
text file format that can be edited either by SBML com-
pliant software or manually in any text editor.76 How-
ever, SBML captures the system of Ordinary
Differential Equations that describe the kinetics of all
the interactions between genes, proteins, and small
molecules in a machine-parsable form along with
their structure and meaning.{

Ensuring the reproducibility of simulations and com-
putational experiments requires the adoption of the
standards for the maps and models mentioned earlier
as well as a further set of standards to describe how
they were used. In particular, the minimum informa-
tion about a simulation experiment (MIASE) standard
requires users to (i) specify and make available the
exact model used, (ii) specify exactly how the model
is simulated, and (iii) specify how the outputs are cal-
culated from the model.77

The MIASE standard is descriptive and, therefore,
exposed to the subjectivity of the author. A more com-
prehensive approach is to capture (i) all the codes that
have been used to analyze the maps/models, (ii) all the
outputs from the code, and (iii) a copy of the software
used to run the code all in one place, so that this collec-
tion can be disseminated and other users can rerun the
analysis and edit to experiment with the map or model.
This is now possible with the advent of interactive
scripting. Among the most prominent examples is the
Jupyter Notebook in which authors can create word
processor standard documents with code and code
outputs embedded in the document along with a pro-
gramming environment that enables the code to be ex-
ecuted.78 Jupyter Notebooks originally supported the
Python, R, Haskell, and Ruby programming languages,
but the list of supported languages has since grown
considerably. MATLAB supports similar scripting with
its Live scripts, though they only support MATLAB’s
scripting language.

The ultimate approach to disseminating maps, mod-
els and how they have been analyzed is to take a snap-
shot of the computer on which they have been run
and to transmit this snapshot. The snapshot contains a
copy of the code and software needed to run the code,
all the relevant files from the hard disk of the computer,
and all the relevant parts of the operating system needed
to run the software. The Docker platform achieves this
by creating minimal virtual machines called containers
that hold everything needed to run the analysis.79

These container files can be distributed to other users
who can run them on their computer by using the
Docker engine. Because the containers hold everything
needed to run the analysis, other users do not need
any compatible software beyond the engine. This not
only reduces the challenge of rerunning the analysis
but also eliminates the challenges of cross-compatibility
between platforms and operating systems.

Therefore, one of the most important points in
systems medicine is to develop conceptual models for

*For details see https://sbgn.github.io
{For details see http://sbml.org

Comte, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0004

74



their integration.80 Once a computational model of the
disease pathophysiology is available, a systems medicine
model allows the setting of experiments that would not
otherwise be possible for logistical or ethical reasons,
especially around the iterative development and refine-
ment of new mono- or multidrug therapies.

Embracing the challenge of data integration
and validation
Several discussion articles and reviews exist on omics
data integration, from the perspective of model organ-
isms,81,82 including microbes82 and bacteria,83 or from
the perspective of humans,84–86 and host–microbe in-
teractions.87 The available tools and methods of inte-
grative omics analytics are not sufficient, and they
even fail to successfully integrate, let alone analyze, dif-
ferent levels and sources of omics data. Important
lessons can be learned from smaller-scaled analysis ef-
forts. For instance, only adding one level of complexity
to GWAS, namely multiple marker interaction analy-
sis, has been a sobering lesson.88 It has pointed toward
problems that need to be tackled in omics integration
efforts as well, as they are expected to be elevated
when dealing with multiple non-independent, possibly
interacting, dimensions. These problems include signif-
icance assessment, heterogeneity modeling in meta-
analysis to increase power, replication, validation, and
replication88,89 and are widely applicable to systems
medicine modeling in general.

Traditionally, integrative analysis techniques have
focused on combining evidence derived from real
data combined with public database knowledge.90,91

The field then moved on, from exploiting the combina-
tion of private and publicly available knowledge to
accelerate drug discovery,92 to combining multidimen-
sional views in, for instance, gene mapping.93 Method
developers are only gradually pacing up with the vast
amount of heterogeneous data sources that become
available and with introducing the necessary complex-
ities into the models.94,95 With omics data increasingly
being collected on the same set of individuals, it be-
comes theoretically possible to connect different layers
of cellular or molecular information (for instance in
causal models96), while combining analytics to avail-
able expert knowledge.

Integrative tools for Big Data ideally combine kernel
theory (to bring in notions of nonlinearity), compo-
nents theory (to reduce dimensionality), and graph
theory (to handle dependencies and interactions in sys-
tems). From a practical point of view, it remains essen-

tial to understand the minimum requirements that
each analytic tool for omics integration should have
for it to be able to distinguish ‘‘noise’’ from ‘‘signal’’
and to compensate for the intrinsic power deficits
resulting from having relatively small numbers of indi-
viduals with huge numbers of omics measurements.
The metabolomics community has recently published
viewpoints and recommendations for the development
of multi-omics integration in the context of systems bi-
ology.97 ‘‘Special Issues’’ on omics integration (e.g.,
Genin and Devoto)94 highlight remaining challenges,
including the integration of dependent and indepen-
dent omics datasets in meta-analyses,98 and the inte-
gration of omics with non-omics data.99

Once omics data have been curated, Hamid et al.
have identified three general roads to travel.84 Either
the data are fused before modeling (Fig. 2A) or the rep-
resentation of each omics data sources is altered to
make it more digestible before deriving an integrative
solution to the problem of interest (Fig. 2B), or each
omics dataset is modeled separately and results are in-
tegrated (Fig. 2C). Although these stages of integration
are often discussed in the framework of association an-
alyses, they also apply to prediction and profiling (pat-
tern recognition) contexts. Notably, most of the novel
analytic approaches to integrate multiple omics dimen-
sions do not concern analysis on fused data (Fig. 2A).

The main reason is that such analyses imply quite
many information technology–infrastructure and com-
putational challenges as well as analytic challenges in
that any model is believed to be a too severe over-
simplification of the rich information that the inter-
related data potentially entails. There are different
omics levels of informativity and errors to account
for, as well as for different measurement types and
patterns of missingness. Regardless of this, fusing
data before analysis seem to be the only natural way
to fully account for non-independence between omics
data records and the analysis of data according to the
spirits of systems biology. Does this mean that omics
integrative analysis will be hopeless for many years to
come? We do not think so.let us be creative!

Out-of-the-box thinking
One of the ways to overcome the computational bur-
den and analytic complexities described earlier is to
re-define the boundaries of the system we wish to elu-
cidate. Taking the example of gene mapping, we can
take a ‘‘gene’’ as a mini-system (Fig. 3) and combine
principles of data fusion (Fig. 2A) with ideas to change
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omics data representation (Fig. 2B). In particular, we
first capture the relationship between a meaningful
set of omics features (Fig. 3A) and then change the rep-
resentation of that set (Fig. 3B) while converting it into
a single aggregated feature (i.e., a multidimensional
module). Structure within each set can be modeled
via prior knowledge or analytically on the observed
data, such as via partial least square-based path model-
ing that offers more possibilities than classic principal
components analysis.100 Such a strategy can be applied
to any meaningful ‘‘unit of analysis’’ with characteriz-
ing features that can be represented as a network.

From our perspective, the most promising strategies
within an omics integration process are based on
components-based association modeling,101 diffusion
kernels on graphs for prediction,102,103 and similarity
network fusion profiling.104,105

Validation
One critical step of modeling approaches is validation,
as fitting a model to data does not prove that it will
accurately capture the clinical outcome. In particular,
the high dimensionality of datasets is a major challenge
in data analysis, especially for model reliability, as it

FIG. 2. Traditional choices to handle different omics data sources before deriving an integrated solution.
Different colors and symbols represent different data origins. (A) Data fusion, which allows accounting for
structure between omics data. Evidence for such structural relationships may be derived from biological
knowledge or analytically (full lines), or it may be deduced from the latter (dashed lines). (B) Changing the
representation of each data source. This may be based on principles of dimensionality reduction or the
identification of communities (cf. corresponding data corresponding symbols with gradient fill). (C) Obtaining a
data-specific solution, hereby ignoring detailed inter-relationships between data sources as part of obtaining
an integrative solution. Once data are represented as in (B), cross-data source relationships may be accounted
for (A) or specific within-data source solutions may be targeted first (C), before obtaining an integrative
solution. This is indicated by the arrows connecting panel B with, respectively (A, C).
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is prone to overfitting. Therefore, there is a special need
to develop dedicated protocols for validation of inte-
grative (systemic) analyses. This effort requires tools
that enable simulating realistic and sufficiently com-
plex data. Consequently, simulation-oriented ap-
proaches have been increasingly applied over the past
5 years. Different alternatives exist in terms of valida-
tion strategy:

1. In silico data generation: As an example, a multi-
omics data simulator for complex disease studies
was developed and applied to evaluate multi-omics
data analysis methods for disease classification.106

Another tool, iOmicsPASS, allowing network-
based integration of multi-omics data for predictive
subnetwork discovery was recently published.107

2. Validation protocols and the interpretation of
validation studies: In contrast to replication,
validation in other samples does not require sam-

pling from the same populations as the discovery
study. This poses particular challenges toward
interpreting the results from a validation study
due to sample heterogeneity. Especially when
thousands of features from heterogeneous data
types are being collected, the problem of hetero-
geneity between individuals—assessed via the
collected data—may become more pronounced.

3. Preclinical validation suffers from the limited in-
terpretability of in vitro cellular or in vivo animal
models. Currently, we do not know for most dis-
eases the underlying mechanism, which makes it
close to impossible to decide whether the animal
model that mimics a human disease symptom
is due to the same mechanism. Once we know
the human mechanism, there will be almost no
need for an animal experiment; alas a drug re-
purposing study requires this, for example, for
regulatory reasons.

FIG. 3. Fully acknowledging inter-relationships between omics data on reduced genomic sets when deriving
integrative solutions. (A) Per meaningful genomic concept, such as a gene, create a network of inter-
relationships between omics elements ‘‘mapped’’ to that concept. (B) Represents the concept-based integrated
data by using kernel-based principal components, where the kernel is chosen in such a way that the structure
of the data is optimally captured. This leads to a new integrated concept-related signature for each individual in
the sample. Each concept, therefore, gives rise to a new variable. The combined set of concepts (new variables)
is submitted to subsequent analyses to obtain an integrated solution to the problem of interest.
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4. Clinical trials have to be viewed as ultimate vali-
dation and with the shift from imprecise
symptom-based disease definitions and symptom-
based therapies, we will be able to design much
smaller highly precise mechanism-based interven-
tions with small NNT, up to n-1-trials.

Defining the network and systems medicine frame-
work is now allowing us to disclose some current and
future clinical applications. In the next section, we elab-
orate on how systems medicine is being implemented
on the field and in the real world.

Clinical Applications (on the Horizon)
Systems medicine is starting to be greatly used not only
in the context of cancer but also in pharmacology. It
has opened the door to advanced personalized medi-
cine in these areas, improving the clinical approaches.

Cancer pathways and personalized therapy
Recent personalized therapeutic approaches in oncol-
ogy target multiple pathways within a mechanistically
defined cancer type by combining several drugs with
the aim of curing or at least significantly improving
survival and quality of life beyond current symptomatic
or cytotoxic approaches. In this context, the increasing
availability of pathway knowledge that is relevant for
human systems modeling, for instance from databases
including Signor108 and Reactome,109 provides quite
extensive information for building cellular signaling
networks that allow the analysis of cancer cell function.

The conversion of such a cell fate decision Prior
Knowledge Network to a Boolean model is in practice
a relatively trivial task, starting with the use of the
causal interaction information to generate the logical
rules that mathematically define the interactions of
the network as a whole. An accurately designed logical
model of a cell will follow these rules to arrive at a sta-
ble state in which the activities of the model compo-
nents will quite accurately represent the activities of
their biological counterparts in the cell that is repre-
sented. Logical models built using Signor data, com-
plemented with some additional ad hoc literature
curation, have allowed, for instance, the assembly of
several versions of a colorectal cancer model that have
quite significant predictive power in assessing the effect
of combinations of targeted drugs109,110,{ on cellular
states, and they can be used to identify potential syner-

gistic drugs that together are more effective for inhibit-
ing cell proliferation than separately. The procedure to
do this is as follows: A general logical model is config-
ured to represent a specific cancer cell line using base-
line biomarker data that inform the logical model
about the activity states of Boolean network nodes
(Active = 1, Non-Active = 0), and the resulting cell
line-specific model can be used to filter out in silico
the combinations that are least likely to display synergy.
The remaining potential synergistic drug pairs can sub-
sequently be tested in cancer cell line cultures to validate
the synergy predictions.111 From this proven system,
the next challenge is to implement it in a clinical setting,
and to develop patient-specific logical models by using
biomarker data from tumor biopsies obtained from a
cancer patient, use these to select potential synergistic
drug pairs, and test these on in vitro cultured spheroids
or organoids derived from the same tumor material
(Fig. 4, see also refs.112,113). The timeline needed to per-
form such an analysis would be a matter of weeks, dur-
ing which the patient would receive standard
postoperative chemotherapy.108,109

Personalized drug therapy
Drug dosing. Precision medicine will also be oriented
to personalized drug dosing to improve their efficacy
and safety. In this roadmap, two important problems
need to be addressed. On one hand, it is necessary to
design personalized drugs for each disease and patient.
New opportunities are arising with the arrival of tech-
nologies that allow the printing of three-dimensional
(3D) drugs. Thus, new improvements such as person-
alized dosages, chewable pills, multi-active pills, and
fast-dissolving tablets have been proposed. The second
problem in the improvement of treatment efficiency is
related to the administration of drugs to the patient. In
general, very low differentiation in dosage is done for
the same disease in similar patients. However, even in-
dividuals who share similar characteristics have differ-
ent responses to drug administration (inter-patient
variability). Also, for the same patient, the response to
drug administration can vary with time (intra-patient
variability). This can occur due to changes in the
patient’s condition during the treatment.

Systems medicine arises as an approach that can help
in the personalization of drug dosing. One of the key
ideas in the development of personalized drug dosing
mechanisms is the concept of closed-loop or feed-
back control. This concept plays an important role in
both engineering applications and natural systems.{https://github.com/druglogics/cascade
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The main idea behind it is the observation of the output
variable (variable of interest) to decide how to modify
the input that is applied, to change the value of the out-
put variable.

One of the most relevant medicine areas where feed-
back control systems are being applied is anesthesi-
ology. Three main variables are involved in general
anesthesia: hypnosis, analgesia, and neuromuscular
blockade. For each of these variables, a different drug
is applied. The anesthesiologist needs to estimate the
correct dose for each of these variables. In traditional
clinical practice, drug dosing is according to patient
characteristics (body mass index, age, gender, and
height). During the process, the anesthesiologist cor-
rects the drug dose according to the patient’s response
to drugs.

If more accurate and safer drug dosing is desired,
closed-loop control appears as the best option to be
considered. The design of advanced control systems
in anesthesiology involves methodologies included in
the systems medicine approach. In particular, three
main challenges need to be addressed:

1. Effect assessment: The first step toward personal-
izing drug infusion is the availability of an index
that correlates well with the variable of interest. For
general anesthesia, different measures have been
proposed to measure the unconscious level of
the patient:114,115 Bispectral index (Medtronic),
Spectral Entropy (Datex-Ohmeda), Narcotrend
index (Monitortechnik), Patient State Index
(Masimo), or Auditory Evoked Potentials Index
(Danmeter). For neuromuscular blockade moni-
toring, there are also reliable techniques, and
most of them are based on Train-of-four stimula-
tion.116 However, one of the current challenging
issues is the proposal of a reliable index to assess
analgesia level in patients. This is a much-
complicated problem due to the complexity of
the involved mechanisms and the disturbances
affecting the process. Current monitoring devices
for analgesia focus only on one or two variables
(electroencephalogram signal, electrocardiogram
signal, respiratory frequency, pupil diameter,
mean arterial pressure, photoplethysmographic
signal, etc.) to generate a pain measurement
for the patient.116,117

It seems that a more general focus should be con-
sidered at this point. Thus, systems medicine pro-
poses new approaches based on the development

of new indexes for drug effect assessment based
on the integration of multiple sources of infor-
mation. This could lead to more reliable indexes
that can be used to implement efficient and safe
feedback control systems.

2. Modeling of patient response: The improvement in
the design and personalized titration for drugs
greatly depends on the availability of reliable mod-
els. The aim is to be able to predict patient response
and use this information to design personalized
drugs and to administer them. Different method-
ologies can be used to model patient response.
Thus, the main methods for this are physiological
models (built on the basis of physiology, anatomy,
and biochemistry of the body), compartmental
models (based on the assumption that the body
can be represented as a set of interconnected com-
partments),118 and black box models (representa-
tions of the functional relationships between
system inputs and system outputs). Compartmen-
tal models are much simpler than physiological
ones and have been intensively used in practice.
In the past, many studies were conducted by
using black box models, based mainly on neural
networks, fuzzy logic, evolutionary computation,
and ML119,120

3. Drug infusion control systems: The third great
challenge for personalized drug dosing is the de-
sign of efficient controllers to decide the correct
drug dose that the patient needs. In the field of
general anesthesia, three main possibilities can
be found. The first option is the signal-based con-
trollers. These strategies are mostly based on
proportional integral derivative controllers. The
algorithm decides the drug dose according to
the measured errors observed. The performance
of these methods is satisfactory, although they
have the inherent limitation of using only infor-
mation of the history of the patient.
Alternatively, model-based controllers predict the
response of the patient (using any of the methods
described earlier) and compute the solution that
optimizes the response of the patient.121 These
controllers, also known as predictive controllers,
greatly depend on the reliability of the prediction
model. A third option is intelligent controllers
that include all those methods based on AI tech-
niques. It is common to find applications using
fuzzy logic control that are based on heuristic
rules.121,122 These methods allow a direct
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translation of the expertise of the anesthesiologist
to the computer. Besides, applications based on
neural networks can be found.123 The ML tech-
niques are also being used for the design of
computer-aided decision systems for the anesthe-
siologists.124

Current research in anesthesia control systems is
focused on three main issues. The first is the design
of a control system with robust capabilities to reject dis-
turbances occurring in the operating room. This is of
great importance, as the patient is affected by many
stimuli that change during the surgery. The second im-
portant issue is the study of the interaction effect of
different drugs. If an optimal drug dose is desired, it
is necessary to study the patient’s entire system and
his/her response to the different drugs that are being
administered. A third important problem during sur-
gery is related to the changes in the response to drug
infusion between different patients (interpatient vari-
ability). This means that the controller must be able
to offer a satisfactory response regardless of the patient
profile. The problem also occurs for a given patient
during the surgery, as his/her response to drug infusion
changes with time (intra-patient variability). The solu-
tion is the inclusion of adaptive systems in the closed-
loop system. The controller should be able to adapt to
the observed patient response. The complexity of this
problem makes it necessary to use systems medicine
approaches to help not only in the description and
prediction of patient responses but also regarding the
design of robust and efficient controllers.

This discussion about key issues in anesthesiology
and the need for new approaches based on systems
medicine opens up new perspectives for future re-
search. It is important to note that most of the concepts
explained for general anesthesia drug infusion can be
extended to any other discipline in medicine.

Two-dimensional- and 3D drug printing. Network
and systems medicine will enable not only individual
and genetic diagnoses but also precisely designed
therapies—currently mainly pharmacotherapy. Indi-
vidual pharmacotherapy is not entirely new, for exam-
ple, it has always been individual in infusion therapy.
Patients suffering from a tumor, for example, receive
a therapy tailored to their needs, in which the strength
or dose is precisely matched to the patient. Type 1 di-
abetics inject exactly as much insulin as they need in
the respective situation. In drug therapy with tablets

or capsules, individualization stops. Patients receive
the active ingredient or combinations of active ingredi-
ents available on the market, each in a standardized
strength or dose. These active strengths and doses are
determined in phase I–III studies that do not represent
the collective in which they will later be used. The one-
size-fits-all philosophy dominates therapy with oral
drugs and thus prevents possible individual pharmaco-
therapy. This is particularly problematic in patients
with impaired organ function (e.g., kidneys) or with ac-
tive substances with a narrow therapeutic window. In
addition, various drugs are metabolized hepatically.
This varies greatly between individuals and to a clini-
cally relevant extent (e.g., Clopidogrel, Tamoxifen).

Even the introduction and elimination of therapies is
currently only sub-optimally possible, with the help of
digital printing technology, it is now possible to print
the active substances required by a patient in exactly
the strength or dose and in the needed combination.
Patients, in particular those who have to take several
tablets, will benefit because they will no longer have
to take several tablets but only one in the future,
which will contain all the active ingredients in the cor-
responding strength and release kinetics. Three-
dimensional printing technology125 uses digitally con-
trolled devices for formulating active pharmaceutical
ingredient (API) and excipients in a layer-by-layer pat-
tern for developing a suitable personalized drug deliv-
ery system as per the need of the patient. It includes
various techniques such as inkjet printing (two-
dimensional printing), fused deposition modeling (3D
printing), which can further be classified into a contin-
uous inkjet system and drop-on demand.

To formulate such dosage forms, scientists have used
various polymers to enhance their acceptance as well as
therapeutic efficacy. Polymers such as polyvinyl alco-
hol, poly (lactic acid), poly (caprolactone) etc. can be
used during manufacturing. A varying number of dos-
age forms can be produced by using 3D printing tech-
nology, including immediate-release tablets, pulsatile
release tablets, transdermal dosage forms etc. Thus, it
is foreseeable that in a few years, patients will receive
not only highly individualized diagnoses but also person-
alized, precision therapies, which, by combining APIs
into one printed tablet, will also increase compliance.
With the help of digital printing technology, it will be
possible to perform compounding with oral drug ther-
apy. Ultimately, this technology will lead to higher effi-
ciency and effectiveness and, consequently, significantly
reduce overall therapy costs.
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Drug repurposing. To have an impact and induce
the necessary changes in our approach to medicine,
network and systems medicine needs to provide clini-
cal evidence. If this would involve new targets and de-
pend on drug discovery and drug development, the
proof-of-concept for network and systems medicine
would take at least another 15–20 years. This gap
can, however, be overcome by drug repurposing, that
is, the reuse of a registered drug for a new indication.
By repurposing a registered (set of) drug(s) for a new
indication, nearly the complete lead optimization and
most or all of the clinical phase I is eliminated. Ideally,
immediate phase II clinical trialing is ethically possible
and medically justified, provided solid preclinical evi-
dence on the target and drug can be provided. Com-
pared with having to start from lead discovery, the
net gain in time is at least 9 years on average. Depend-
ing on the indication (acute or chronic) and resulting
trial length, the gain may be even more.

This process is not new but has so far rather been
serendipitous and projects such as the EU-funded
Horizon 2020 project REPO-TRIAL (repo-trial.eu)
takes this to another level and makes it more predict-
able and precise. REPO-TRIAL, a 5-year project, fo-
cuses on indications that allow short-duration trials,
either because the patient-relevant outcomes can be ob-
served within days or weeks (stroke, myocardial infarc-
tion, resistant hypertension) or because predictive
biomarkers are available (diastolic heart failure, gout).
Ultra-short or short trials are increasingly common
and acceptable from a regulatory point of view, in par-
ticular for the most likely initial phase II, safety phase,
with efficacy parameters rather being secondary out-
comes. In REPO-TRIAL, a cluster of comorbid disease
phenotypes has been associated with dysregulated reac-
tive oxygen and cyclic GMP signaling. Patients are
stratified based on biomarkers indicating this dysregu-
lation and then treated with repurposed registered
drugs that target these signaling pathways.

The first trials on stroke (REPO-STROKE) and heart
failure with preserved ejection fraction (REPO-HFPEF)
are expected to be finalized in 2021 and 2022, respec-
tively. With 2538 approved small-molecule drugs
(Drugbank), the likelihood is high that for any given
causal network at least one drug would be available.
Indeed, this is the case for most targets. A fascinating
recent observation, based on the PISCES dataset, is
that registered drugs bind with high affinity to con-
served binding pockets of, on average, 39 pro-
teins.126,127 Thus, small-molecule drugs are highly

promiscuous and, in all likelihood, can be repurposed
from one to many other target proteins with similar
binding pockets. Repurposing registered drugs with
known safety profiles may be so powerful that they
may rapidly address therapeutic needs in many other
causal disease pathways and thus outcompete classical
drug discovery. Moreover, drug repurposing has oc-
curred earlier, but mostly in a serendipitous manner;
with network medicine this will become highly predict-
able, pathway by pathway.

Enlarging Network and Systems
Medicine Applications
Improving patient engagement
and treatment adherence
Network and systems medicine applications are further
enlarged by improving patient engagement and treat-
ing adherence. Day-to-day health care services are
not based on genotyping but rather on phenotyping.
How to treat a patient is generally based on a physical
examination and understanding a patient’s behavior.
Accordingly, improving patient engagement and treat-
ment adherence strongly relates to the concept of the
exposome, which, among others, deals with the com-
plexity of patient–caregiver interactions and other
environmental factors such as the sociological and eco-
nomic factors.

In recent years, the number of channels allowing
health care customers and practitioners (a.k.a. provid-
ers) to communicate has grown dramatically. These
channels are one dimension of the exposome, allowing
a measurement of the strength of the interactions be-
tween the health care systems actors. Historically, pa-
tients and providers used face-to-face meetings as a
standard means of communication. When phones
were added to the health care organization arsenal,
they were used for scheduling appointments or asking
for services such as prescription renewals or medical
recommendations.128–137

Since the beginning of 2010, the advent of the Inter-
net, and the popularization of smartphones and social
media, the rules of communication between health
care customers and health care providers have pro-
foundly changed.138,139 This digital revolution is also
allowing the health care system to integrate new tools
supporting teleconsultation and tele-diagnostic sys-
tems, and to continuously develop and integrate inno-
vating tools for both patients and health care
providers.140,141 The main purpose of a large number
of communication channels available today is to
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provide new ways to search, get, and share health-
related information and knowledge. Nevertheless, the
level by which health care customers and practi-
tioners used these channels depends on numerous en-
vironmental factors such as economics, culture, and
regulations. The interactions between health care cus-
tomers and practitioners must, therefore, be tracked
and integrated as part of the system medicine data, as
exposed-generated data, to provide an overall under-
standing of the patient so that the treatment and the
educational and therapeutic messages are delivered to
each patient in the most suitable way.142 Consider the
following real-life example: HMOs record medical
data and their interactions with their insured health
care customers.

One way by which patients’ engagement and treat-
ment adherence can be improved is based on the iden-
tification of subpopulations of patients by considering
their communication usages and then characterizing
each one with socio-demographic and bio-clinical
data for improving treatment effectiveness and treat-
ment adherence. This approach has been implemented,
in 2015, on 309,460 patients with diabetes and 7 dom-
inant profiles have been discovered and characterized to
help health care decision makers to improve follow-up
policies and tools. Personalized services focusing on pa-
tients’ needs and preferences were implemented based
on this analysis.140,141

Altogether, to increase the frequency of successful
translational stories, the research enterprise needs to
re-design research studies by considering the com-
plexity and variability of human physiology, and by
collecting high-dimensional datasets that will allow re-
searchers to identify confounding variables and to
stratify populations at early phases of biomarker dis-
covery. As the ‘‘omics’’ term is expanding to wider
systems, all of these have to be interrelated.

One of the remaining challenges of health care sys-
tems is patient accessibility. One way to improve this
is to find the most suitable communication channel(s)
to interact with a patient based on his/her profile,
which combines socio-demographics, clinical, biologi-
cal, and therapeutics data over time. This approach
induces, at least for part of the population, proactive
behavior and engagement in follow-up and treatment
when relevant.140,141 The HMOs around the world
are developing digital services, such as online counsel-
ing services, which integrate videocalls to physicians
when the clinics are closed. This kind of consultation
is based on the overall patient’s data shared over the

electronic medical record, thus allowing any health
care practitioner to have a clear view of the patient
anamnesis and therefore delivering low-biased recom-
mendations and treatment. Sharing data is an essential
part of developing and delivering personalized medi-
cine. As an example, when searching for patterns of
interactions of patients with diabetes, an Israeli HMO
allowed pointing out the need to tune its communica-
tion tools and messages to patients, more particularly
to those with special needs, such as elderly people, im-
migrants, and minorities, who are not fluent in the
local language, and those with low socioeconomic sta-
tus. Matching a communication tool and message to
the patient will improve the patient’s accessibility to
HMO services, generate a better patient engagement
and responsiveness to treatment, and improve the
quality of treatment and treatment experience within
existing budgetary constraints. Particularly, for patients
with diabetes communication is a key dimension of
systems medicine, which will provide an opportunity,
for example, to collect more patient-reported outcome
measures143 for some basic follow-up measurements
such as glycemia values, weight (for computing body
mass index), and smoking status.

Training
There is a consensus that systems medicine-specific
training is a need, recognized by trainers, students,
but also by the authorities. A major challenge of to-
day’s medicine is the ability to integrate the techno-
logical revolution, expansion of data collection that
comes in multiple formats and is stored in different
computers at different clinical sites, into the coordi-
nated everyday clinical practice. Many of us believe
that one, or even two generations of new medical doc-
tors (MDs) and researchers might be needed for this
to be achieved. We also believe that a society must
educate their new generations on the data and tech-
nology revolution in medicine. The younger genera-
tions are already sensitized to comprehend and
adapt to these changes due to their experience dealing
with new technologies (smartphones and other gad-
gets, social media, etc.)144

Although the medical community is becoming in-
creasingly aware of these educational needs, the how
(and when) to introduce these new subjects is not so
obvious. One view is to apply systems biology ap-
proaches and tools to biomedical problems, and to
start educating biomedical students in an interdisci-
plinary manner as early as possible. In addition, these
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educational efforts have to take into account ethical
concerns as well as economic circumstances and spe-
cific aspects of the different health care systems. There-
fore, a joint effort of all (bio-)medical education and
health care delivery stakeholders is key in this process.
It seems evident that systems medicine training of fu-
ture physicians cannot include a deep education in pro-
gramming, mathematical modeling, or computational
sciences—given the wealth of medical information
that has to be tackled in the course of medical studies.
Instead, medical students need to learn the skills of
using professional software solutions that have been
developed by specialists in an interdisciplinary manner,
together with practicing doctors. To state it simply, a
car driver does not need to know and understand in
detail how the engine of a modern car works but has
to know how to drive the car. Similarly, future MDs
have to know how to apply systems medicine solutions
that have been developed by specialists in their daily
medical routine.

Undergraduate education. Despite the recognized
need to change and adapt the education programs of
(bio)medicine studies, there is no agreement on the
best practices and ways to achieve this goal.

The reason lies in the generally fragmented approach
in the European higher education system, where even
within a single country, universities teach similar sub-
jects by different principles and keep the decision
autonomy. Universities are independent in offering
novel courses; accreditation for these is requested in
countries that follow the Bologna process. Some steps
toward the implementation of a systems medicine edu-
cation have already been tested within the FP7 CASyM
(Coordinated Actions Systems Medicine) and later
within EASyM (European Association for Systems
Medicine). Similarly, the International Network and
Systems Medicine Association provides such resources
at an international level and is a direct spin-off of the
Collaboration on Science and Technology action
OpenMultiMed.

Several medical schools in Europe teach subjects that
are relevant to systems medicine. What is missing is the
combination of relevant subjects into modules that
would receive the formal name of ‘‘systems medicine.’’
If such modules are provided mostly into elective
courses, we should ensure that students receive the
proper information regarding the systems medi-
cine subjects. For example, at the Faculty of Medicine,
University of Ljubljana, systems medicine topics are

currently covered within computational and practi-
cal/research elective courses in (bio)informatics, math-
ematics and computer-supported approaches, and
e-learning; whereas in senior years, interdisciplinary
courses are given in functional genomics and pharmaco-
genetics. At Maastricht University, the Netherlands,
medical students can choose a Network and Systems
Medicine elective.

Doctoral education. Similar to the undergraduate sit-
uation, doctoral education is also dispersed in Europe.
Three possibilities appear feasible in the future:

1. Introducing (accredited or non-accredited) sys-
tems medicine concepts or subjects into the exist-
ing biomedical doctoral programs.

2. Introducing novel interdisciplinary systems med-
icine research training networks for doctoral stu-
dents within the ITV Marie Curie or similar
programs.

3. Establishing a formal systems medicine doctoral
program at individual universities. This option
has not yet been tested in Europe but is active
in the United States. The Georgetown University
MS degree in Systems Medicine is designed for
students interested in bringing systems medicine
into biomedical science and clinical practice and
setting the stage for bridging research and clinical
care. The MD/MS dual program is designed for
students already accepted into medical school,
and who will take an additional year beyond the
four required for the traditional MD to complete
the MS. Students will be accepted into the pro-
gram after completion of their second year in
medical school.
The program educates physicians to understand
and apply new approaches to diagnose, prevent,
or delay disease manifestation and improve clini-
cal outcomes for patients. The MS and MD/MS
Dual Degree programs in Systems Medicine
teach students to use cutting-edge technology to
train the next generation of physicians and bio-
medical scientists. Students learn a new language,
which is the application of omics technology and
Big Data to patient care. In addition to credits
gained by courses, students carry out a semester-
long Capstone internship where they gain
hands-on work experience in renowned institu-
tions and are matched with a mentor based on
their career goals and interests. The Capstone pro-
ject culminates in presentations or even journal
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articles. This model could be used as an example
for future implementation in institutions across
Europe and North America.

Education of medical specialists. We also need to
develop training opportunities for established MDs,
medical specialists, to promote timely integration of
systems medicine topics into the clinical practice.
This is a more demanding task, since MDs have limited
time available for education and training. However, ex-
perience shows that they want to gain this knowledge
once they see the benefits for their patients, such as bet-
ter diagnostics and treatments. To reach this target
group, a variety of lifelong education possibilities has
to be offered, such as systems medicine meetings, ex-
pert guided workshops and summer schools, targeted
lecture series, etc. The MDs could better be attracted
if the courses are accredited with the Continuous
Medical Education credits, which are required for
maintaining the practitioner license in several Euro-
pean countries.

Strengths, Weaknesses, Opportunities,
and Threats Analysis
To outline the different important issues for network
and systems medicine, a strengths, weaknesses, oppor-
tunities, and threats analysis (Fig. 5) was performed.
This thorough analysis is key for the design and devel-
opment of a strategic plan that would contribute to
the implementation of systems medicine in a wide
spectrum of clinical applications within precision
health care. In terms of strengths, that is, the innate
advantages of systems medicine, the availability of
multidimensional data and computational tools are
important and solid elements for the field, as well as
the input of the big pharma industry for applications.
However, the lack of standardization in methods and
data storage, as well as interindividual variability and
populations limit hypothesis generations and clinical
applications.

Nonetheless, major opportunities were identified:
The development of multidisciplinary communities
and collaborations will result in a rapid advance in

FIG. 5. Strengths, weaknesses, opportunities, and threats analysis for network and systems medicine.150
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knowledge and translation that should be strengthened
with education, which will finally lead to a truly per-
sonalized health care system. Lastly, prompt actions
will be necessary to overcome the tradition and way
of thinking in medicine to reinforce participation of
stakeholders and funding agencies.

Concluding Remarks and Outlook
A considerable number of obstacles still need to be
overcome for more profitable and successful imple-
mentation of practical systems medicine in the clinical
setting.

Among these issues, with no claim of completeness,
we include the fact that a high number of scientific hy-
potheses can be generated via systems medicine meth-
ods, and that corresponding reliable testing and solid
validations—essential before safe clinical practice—
are still lacking. This is mainly due to the limitation
of resources to test many of such hypotheses. A com-
prehensive validation practice should ultimately steer
toward the adoption of certified, harmonized, and
partly machine-operated workflows and protocols,
finally capable and designed to function in dynamic
clinical contexts.

Another problem concerns the vast imbalance of sys-
tems biology studies that still focus on smaller biological
systems, over the systems medicine ones, targeting larger
systems/whole organisms. Along with this, there is also
the interrelated difficulty to scale up to the whole organ-
ism tier, clearly necessary in the clinical practice, due to
the intrinsic limits of the conclusions related to the nar-
row experimental/biological context (e.g., gene regula-
tory networks acting in cellular processes, signaling
pathways analysis, etc., whose analyses often provide
views that are too limited to be relevant in the clinic).

Several issues occur when collecting supporting,
comprehensible, and secured (another buzzword itself,
nowadays) datasets in clinical settings. Indeed, the
type, arrangement, and nature of medical and clinical
data have their peculiar production methods, schemas,
ontologies, standards, complexity, and access limits,
which often conflict with the requirement and the
complications to tie unambiguously such clinical data
with the clinical samples.

An often-overlooked consideration resides in the cir-
cumstance that in silico methods, models, and research
outcomes should not be excessively complicated or
abstruse to MDs, personnel, and policymakers. About
this point, it may be relevant to refer here to the problem
of AI, that is, machine and deep learning approaches,

used to perform predictive analyses in the clinical prac-
tice. It is well known that AI algorithms often work and
produce results as ‘‘black box,’’ that is, for its nature, it
conceals the relationship and the importance of a set
of data features from the output, which should finally
represent the biological/medical interpretation. This is
mainly because such correlations are multidimensional
and not reducible enough to be easily grasped by the
human mind (which is exactly why AI is used). This pe-
culiarity of AI methods can often hamper or delay the
deployment of predictive models, because humans sim-
ply do not understand, and thus trust them.145 Relevant
efforts are being made to overcome this issue by provid-
ing interpretable ML methodologies that are capable of
balancing accuracy, human interpretability, and, last but
not least, computational viability.146,147

As a final consideration, it is now clear that the struc-
ture of the health care system will have to adjust radi-
cally to be able to run with highly interdisciplinary
crews, operating daily with multi-omics, multisource
data, large-scale databases and storage facilities, com-
plex analytical processes, and—clearly—effective man-
agerial and organizational frameworks. Such practices
call for tailored education programs and continuous,
complimentary training for hospital personnel as well
as for systemic scientists.36,148,149
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API¼ active pharmaceutical ingredient
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EU¼ European Union
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GMP¼ guanosine monophosphate

GWAS¼ genome-wide association study
HMO¼Healthcare Management Organization
KEGG¼ Kyoto Encyclopedia of Genes and Genomes

MDs¼medical doctors
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ML¼machine learning
NNT¼ numbers needed to treat

SBGN¼ systems biology graphical notation
SBML¼ systems biology markup language
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