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Abstract 21 

Vitis vinifera L. can be divided into two subspecies, V. vinifera subsp. vinifera, the cultivated grapevine, and its wild 22 

ancestor, V. vinifera subsp. sylvestris. Three flower types have been described: hermaphrodite and female in some 23 

varieties of vinifera, and male or female flowers in sylvestris. We have conducted an expression analysis of the functional 24 

genes candidate to sex determination in the newly defined sex locus described by Picq et al (2014) using four flower 25 

types. The candidate gene Ethylene overproducer-1 (ETO1) localized in the sex locus region and which inhibits the 26 

enzyme activity of the enzyme ACS (1-aminocyclopropane-1-carboxylic acid synthase) was showed highly significantly 27 

different expression pattern according to the sex flower. Other genes studied in the sex locus do not reveal significant 28 

different expression patterns. For genes located outside of the sex locus, only the SAUR (Small auxin up RNAs) protein 29 

and the ACS gene showed different expression among sex flowers. Therefore, as ETO1 is only expressed in female and 30 

hermaphrodite flowers, it could be a good candidate for the recessive female fertility mutation and ACS copy could be 31 

implied in the reaction cascade leading to the inhibition of stamens in female flowers. However, the ETO1 only 32 

negatively interacts with type 2 ACS and our ACS phylogeny analysis confirmed that the VviACS copy is not type 2. 33 

Therefore, it is unlikely that there is such molecular interaction in grapevine. Another hypothesis could be that the 34 

molecular mechanisms that regulated the activity of VviACS2 are induced by the VvETO1 protein regulating the activity 35 

of both families of ACS type I and type 2.  The last gene showing differential expression according to sex is the SAUR 36 

protein. This gene consists in early auxin response genes family playing key role in hormonal and environmental signals. 37 

Our results pointed out that one gene (ETO1) inside of the flower sex locus region and two genes (ACS, SAUR) located 38 

outside of the sex locus region, could be considered as putative candidate genes for the control of sexual traits in 39 

grapevine.   40 
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1 Introduction 41 

Among flowering plants, dioecy, i.e male and female flowers on separate individuals, occurs in only 5-6 % of the species, 42 

and has evolved from hermaphroditism independently in many phyla (Renner 2014). The emergence of dioecy is thought 43 

to follow the perfect linkage between two mutations with complementary dominance: a recessive mutation resulting in 44 

male sterility and a dominant female-suppressing factor (Charlesworth and Charlesworth 1978a). This two-factor sex 45 

determination model has been confirmed in some plant species as in garden asparagus (Asparagus officinalis) or in date 46 

palm (phoenix ssp.) (Harkess et al. 2017; Torres et al. 2018). In Actinidia ssp. (kiwifruit), a cytokinin response regulator, 47 

named Shy Girl (SyGI) acts as the suppressor of female development, while a fasciclin-like gene named Friendly boy 48 

(FrBy) enables the maintenance of the male functions (Akagi et al. 2018; Akagi et al. 2019). However, the two-factor 49 

model is not the only path to dioecy, a single factor is a possible alternative (Charlesworth and Charlesworth 1978b). In 50 

diploid persimmon (Diospyros lotus), the OGI gene encodes a small RNA that regulates in dosage-dependent fashion the 51 

MeGI, a homeodomain transcription factor regulating anther fertility (Akagi et al. 2014). Thus, in the past few years, the 52 

discovery of genetic mechanisms for sex determination in a handful of plant species has strengthen the two main 53 

theoretical models advanced to explain the emergence of dioecy (one or two-factor model). The study of additional 54 

species in a wider taxonomic sample will no doubt be valuable to perfect our understanding of the dioecy evolution in 55 

Angiosperm. 56 

The wild grapevine Vitis vinifera subsp. sylvestris is the wild ancestor of the domesticated grapevine Vitis vinifera subsp. 57 

vinifera (Levadoux 1956), cultivated for wine and table production. During grapevine domestication, the sexual system 58 

has incurred a radical evolution, with the change from dieocy, to hermaphroditism i.e. flowers with both functional sexes 59 

(This et al. 2006). ). For grape cultivation, the switch to hermaphroditism ensures greater yield given that all individuals 60 

contribute to fruiting and to pollination (This et al., 2006).  The male flowers in wild grapevines possess erected stamen 61 

producing fertile pollen, and a pistil reduced to a very small but viable ovary on which the style and the stigma do not 62 

develop (Valleau, 1916; Levadoux 1956; Gallardo et al. 2009).  The carpel becomes sterile as a result of the embryo sac 63 

abortion in a fully developed ovule (Caporali et al. 2003). Interestingly, certain male flowers present a more developed 64 

pistil (android), and in favorable conditions can produce fruit (Levadoux, 1946; Picq, pers. Com.). In female flowers, the 65 

pistil is well developed, and the stamens are curved and produce ovale sterile pollen (Valleau, 1916; Levadoux 1956; 66 

Gallardo et al. 2009). Pollen infertility is cause by an abnormal microspore cell wall architecture (Caporali et al. 2003). 67 

Thus, the abortion of reproductive organs resulting in unisexual flower occurs in the very last stages of flower 68 
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development. Based on the inheritance of sex in different progenies, sex determination in Vitis was supposed to be 69 

controlled by an unique sex locus with three alleles, M (male), H (hermaphrodite) and F (female), in the following 70 

dominance relationship: M>H>F (Valleau 1916; Oberle 1938; Antcliff 1980; Carbonneau 1983).  Genetic map and 71 

population genomics analyses confirmed the presence of a single sex-determining region of about 150 kb located on the 72 

chromosome 2 between position ~4.90 and 5.05 Mb ( Fechter et al., 2012; Picq et al., 2014; Zhou et al. 2017; Zhou et al. 73 

2019). These same studies also support the existence of three alleles with the allelic combination for each sex: MF or MH 74 

for male, HF or HH for hermaphrodite, and FF for female. The sex locus of the grapevine displays haplotype diversity, 75 

linkage disequilibrium and differentiation (Picq et al. 2014; Zhou et al. 2017; Zhou et al. 2019) that typically correspond 76 

to a small XY non-recombining region (Ming et al. 2011). Such a region is expected under the “two-factor model” of sex 77 

determination in dioecious species (Charlesworth and Charlesworth 1978a). Thus, assuming a two-factor model in Vitis, 78 

the F allele contains a recessive, “loss-of-function” type, male sterility mutation, while the M allele harbors a fully-79 

functioning male fertility allele coming together with a dominant sterility female mutation (Charlesworth 2013). The 80 

allele H may derive from the allele M through the loss of the dominant female sterility mutation. This is coherent with 81 

genetic diversity analyses revealing a closer proximity between the H and M allele (Picq et al. 2014). In the sex locus, 82 

several genes have been already suggested as good functional candidates for flower sex determination in grapevine: the 83 

flavin-containing monooxygenase (FMO), the adenine phosphoribosil transferase (VviAPRT3), and the Ethylene 84 

Overproducer-like 1 (ETO1) (Fechter et al., 2012; Picq et al. 2014). Indeed, the expression pattern of VviAPRT3 85 

assessed by RT-qPCR revealed a higher expression in the carpel primordia of male plants suggesting a possible role in 86 

the abortion of the pistil (Coito et al. 2017). For the FMO gene, transcriptomic analyses showed differential expression 87 

among sex (Ramos et al. 2014; Zhou et al. 2017; Zhou et al. 2019). However, the gene expression are female or male 88 

biased according to the reference genome used, the F haplotype in the PN40024 12X (Jaillon et al. 2007) or the H 89 

haplotype in the Char04 reference (Zhou et al. 2019) respectively.  90 

In order to get a more detailed understanding of flower sex locus in grapevine we have analyzed several candidate genes 91 

which were predicted in the genomic region described by Picq et al., (2014) and they were used in order to know which 92 

one could be involved in the formation of flower sex. The present study used qPCR analysis for a comparation of 93 

differentially expressed genes during different developmental stages in the male, female and hermaphrodite flowers of 94 

grapevine.  95 

 96 
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2 MATERIALS AND METHODS. 97 

 98 

2.1 Tissue collection. 99 

The plant material consisted of 2 female and 4 male wild grapevines (V. v. sylvestris), and 1 hermaphrodite cultivated 100 

grapevine (V. v. vinifera; Pinot noir cutivar). These 7 accessions are maintained at the germplasm bank of El Encín 101 

(IMIDRA, Madrid, Spain). The 6 wild grapevines were originally collected in two different sites in Spain (north vs. 102 

south; 1 female accession CA1.6 and 2 males accessions CA2.2 and H7.7 (android) from the South of Spain and 1 female 103 

accession LE1.6 and 2 males accession S 2.9 and NA2.5 (android) from the North of Spain, and introduced 16 years ago 104 

in the germplasm center. Regarding the male individuals, we have included male type and androids (pistil uncompletedly 105 

aborted).  106 

Floral buds were collected in 2010 at 6 inflorescence developmental stages (Figure 1): rosette of leaf tips visible (stage 5), 107 

shoots10 cm long with 5 unfolded leaves and inflorescence visible (stage 12), shoot with 8 unfolded leaves and single 108 

flowers in compacted groups (stage 15), 14 unfolded leaves and flower caps still in place but their colour fading from 109 

green (stage 18),17-20 leaves separated and 50% caps off (stages 23), and cap fall complete (stage 26). We have choose 110 

those developmental stages because the morphological differentiation between male and female flowers of the dioecious 111 

grapevine can only be identified at a late stage of flower development, since at early stages a hermaphrodite development 112 

pattern is observed (Caporali et al., 2003). The growth stages description and numerical codification follow the scale 113 

developed by Combe et al. (1995). In all this work we will make the assumption that some stages are more important 114 

such as 15 and 18 for biological reason of flower development (Caporali et al., 2003). Until early 15 stage there are no 115 

morphologic cues that allow distinguish male from female plants or even from hermaphrodite ones (Figure 1). At a later 116 

developmental stage (stage 18), male and female flowers show the first morphological indication before blooming. Floral 117 

bud samples were immediately frozen in liquid nitrogen and maintained at -80ºC until their analysis.  118 

 119 

 120 

2.2 Total RNA isolation, purificacion and cDNA synthesis. 121 

RNA was extracted from grounded frozen floral buds following the protocol developed by Zeng and Yang (2002). Then, 122 

the total RNA was purified and concentrate using a MicroElute
®
 RNA Clean up Kit (Omega bio-tek, Norcross, USA). To 123 

eliminate genomic DNA from total RNA preparation,  DNA digestion was done with theDNase I digestion set (Sigma-124 

Aldrich, St. Louis, USA). RNA concentration and purity were assessed using a NanoDrop ND-1000 spectrophotometer 125 
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(NanoDrop Technologies, Wilmingon, DE, USA). RNA integrity was checked by electrophoresis in 1% agarose gels. 126 

Eventually, cDNAs were synthesized from 0,5-1μg of total RNA using the SuperscriptTM III first-strand Super-Mix for 127 

qRT-PCR (Invitrogen, Carlsbad, USA), according to the manufacturer's instructions. 128 

 129 

2.3 PCR primer design. 130 

We have used the grapevine reference genome (12X.v1) to annotation and design primers. Primers for the genes flavin-131 

containing monooxygenase (FMO;VIT_02s0154g00160), Ethylene overproducer-1 (ETO-1; VIT200s0233g00090), 132 

WRKY transcriptional factor (VIT_02s0154g00210), SAUR protein (VIT_02s0154g00010), NAC domain protein 133 

(VIT_02s0154g00020), AGAMOUS (VIT_02s0025g04980); YABBY (VIT_02S0154G00070), 1-aminocyclopropane-1-134 

carboxylic acid synthase (ACS) gene (VIT_02s0234g00090), ACS-X (VIT_02s0025g04650) and ACS-S 135 

(VIT_02s0025g04980; identified by Marguerit et al. 2009) were designed using PRIMER3 software (Misener et al., 136 

2003; Table 1). VviAPRT3 and VviFSEX primers used were described by Coito et al. (2017). The housekeeping gene 137 

EF1-α was employed as control gene, using published primers (Reid et al., 2006).  138 

 139 

2.4 qPCR conditions and analysis. 140 

The expression pattern of selected genes was validated by quantitative PCR method using three independent biological 141 

replicates for each flower gender accession and developmental stage, mean of each gender and stage, except 142 

hermaphrodite, were calculated. PCR reactions were performed in 96-well plates with an ABI PRISM® 7300 Real Time 143 

PCR system (Applied Biosystems, Foster City, USA) using SYBR® Green to detect dsDNA synthesis. Reactions were 144 

done in 20μl volumes containing 0.8 μl of each primer 5μM, 10μl of 2× PerfeCTaTM SYBR Green SuperMix with ROX 145 

(Quantabio, Beverly, USA) and 2μl of cDNA (corresponding to ~6 ng). Reactions conditions were 95°C for 10 min, 40 146 

cycles of 95°C for 15 s, and 60°C for 1 min. Dissociation curve was obtained to verify the specificity of each 147 

amplification reaction. Each PCR reaction was completed in duplicate. Data were analyzed using the SDS v1.4 software 148 

(Applied Biosystems, Foster City, USA). Expression levels were determined as the number of amplification cycles 149 

needed to reach a fixed threshold in the exponential phase of the PCR reaction (Ct). All amplification plots were analyzed 150 

with an Rn threshold of 0.2 to obtain Ct values. The PCR efficiency was determined for each gene with LinReg software 151 

(Ramakers et al., 2003), which uses absolute fluorescence data captured during the exponential phase of amplification of 152 

each reaction. Relative expression was obtained as Ct GeneEfficiency/ Ct EF1-αEF1-α Efficiency (Pfaffl, 2001) and this 153 
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value was corrected with the value obtained for the Pinot noir control in both experiments. In this study, we have used a 154 

T-student analysis with the cutoff for statistical significance p value is < 0.05. 155 

 156 

2.5 Sequence analysis  157 

 158 

The PCR amplified fragments for the candidate gene ACS were sequenced in both directions to ensure sequence 159 

authenticity. We have sequenced the ACS gene in 8 wild grapevine accessions (GenBank accession MN539724-160 

MN539735) that correspond 2 female accessions (CA1.6 ;CA2.4) and 2 males accessions (CA2.2; H7.7) from the South 161 

of Spain and 1 female accession (LE1.6) and 3 males accessions (S 2.9; NA2.5; SS3.5). Sequence analysis was carried 162 

out using BLAST searches (http.//www.ncbi.nlm.nih.gov/BLAST/). Nucleotide and amino-acid sequences were aligned 163 

using ClustalW (Thompson et al., 1994). The orthology analysis according MCMC (Arvestad et al., 2003) were 164 

developed using Bayesian software program MrBayes 3.2.7 (Ronquist et al. 2012). 165 

  166 
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1 RESULTS. 167 

3.1 Expression analysis of candidate genes 168 

In the present study, we propose to characterize expression of genes located in the sex-determining region of about 150 kb 169 

for male, female and hermaphrodite flower using qPCR technology in order to identify candidate for sex determinism in 170 

grapevine. Based on previous work in grapevine and knowledge in other plant species, we selected the adenine 171 

phosphoribosil transferase (VviAPRT3), flavin-containing monooxygenase (FMO, VIT_02s0154g00160), the Ethylene 172 

Overproducer-like 1 (ETO1) (VIT_200s0233g00090), VviFSEX (VIT_02s0154g00200) and the WRKY transcription 173 

factor (VIT_02s0154g00210) (Figure 2). We also considered genes outside of the sex locus in the chromosome 2 as they 174 

are potentially implied downstream in sex determination pathway: SAUR protein (VIT_02s0154g00010), NAC domain 175 

protein (VIT_02s0154g00020), AGAMOUS protein (VIT_02S0025G04650), and the YABBY protein 176 

(VIT_02s0154g00070) already identified by Battilana et al. (2013) (Fig 2). Eventually, we added the 1-177 

aminocyclopropane-1-carboxylic acid synthase (ACS-S; VIT_02s0234g04980; Marguerit et al.2009) known to be 178 

involved in flower sex determination in melon (Cucumis melo, Boualem et al., 2009). We also considered two other ACS 179 

copy also located in chromosome 2: the ACS (VIT_02s0234g00090) and the ACS-X (VIT_02S0025G00360) (Figure 2) 180 

In order to test if the differential expressions for the candidate genes in the sex locus region and outside of the region, the 181 

expression patterns of the candidates genes were analyzed at the six developmental stages of the female, male and 182 

hermaphrodite floral buds by qPCR (Figure 3). The results from these qPCR experiments showed that in the sex locus, 183 

the gene Ethylene overproducer-1 (ETO1) showed significant different expression pattern according to the sex flower 184 

(Figure 3B). This gene is highly expressed in stage 18 in female e flowers and in stage 15 in hermaphrodite flowers. The 185 

SAUR protein showed different expression among sex flowers. This gene was more strongly expressed in the stage 18 for 186 

female flowers.  The other genes studied in the sex locus i.e. the adenine phosphoribosil transferase (VviAPRT3), flavin-187 

containing monooxygenase (FMO), VviFSEX and the WRKY transcription factors (Figure 3C, D, E, H) does not reveal 188 

significant different expression patterns. For genes located outside of the sex locus and possibly implied downstream in 189 

sex determination pathway, only the 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene 190 

(VIT_02s0234g00090) showed different expression among sex flowers. This gene is more strongly expressed in female 191 

flowers in the stage 15 and 18 (Figure 3A). Regarding the ACS copies we have found no differential RNA expression for 192 

the ACS-S and ACS-X copies outside of the sex locus region. These elements converge to exclude these ACS-S and ACS-193 

X copies as functional candidate genes for sex determinism in grapevine.  194 
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The genes related with flower development as YABBY and AGAMOUS genes appeared to have a higher expression in 195 

the stage 15 in the hermaphrodite flowers (Figure 3I and J) at the late stages of flower development. These results pointed 196 

out that sexual determination can occur during great part of flower development.  197 

In our analysis, we have included the phenotype called “android” (male with pistil uncompletedly aborted) we have 198 

observed different expression level between male and android flowers of the putative candidate genes located in the 199 

flower sex locus as APRT3 and FSEX in early developmental stages and outside of the flower sex locus as YABBY and 200 

AGAMOUS in the late developmental stages. (Figure 3 C, D, I and J).  201 

 202 

3.2 Isolation and characterization of the VvACS gene copies 203 

Taking in consideration that the ACS gene was associated with sexual dimorphism in different species as melon (Yoshida 204 

et al., 2005) we have analysed the sequence of the different ACS copies. We have designed PCR primers to amplify a 205 

2420-bp genomic fragment. Based on the amino acid sequence of C-terminal region the ACS proteins can be divided into 206 

three types (type 1, 2 and 3) (Yoshida et al., 2005). After sequencing, phylogenetic and molecular analyses were 207 

conducted using MEGA version Mrbayes program, by comparing the three ACS-like copies outside of the sex locus 208 

region with ACS-like sequences from different plant species (Figure 4). The phylogenetic tree, representing 88 ACS 209 

sequences, belonged ACS, ACS-like, and Alanine Aminotransferases from different plant species showed that ACS-X and 210 

ACS copy are similar to ACS peptides involved in the synthesis of ACC (1-aminocyclopropane-1-carboxylate). The 211 

results indicated that the ACS copy showed the highest homology value with CsACS2 (Figure 4) and they are inside type 212 

1 ACS group. Thus, we have concluded that ACS copy is likely the cucumber orthologue of CsACS2, and for that reason 213 

we have renamed the ACS copy as VviACS2. The ACS-X had the lowest homology to known ACS are related with 214 

AtACS7 and belong to type 3 ACS. Finally, the ACS-S was closely matched to AtACS10 and AtACS12, which are 215 

presumed as putative amino acid transferases without ACS activity (Boualen et al., 2008).  216 

Sequence analysis of VviACS2 showed that it has a 73% homology to the ACS copy from melon (ACS2). In addition, the 217 

predicted protein of VviACS2 (506 amino acid) and the ACS protein in cucumber, CsACS2 (445 amino acid), share 98% 218 

of identity and only differ in eight residues, all of which are located in non-conserved positions among seed plants.  219 

  220 
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4 DISCUSSION.  221 

The objective in this work was to identify the candidate genes in sex specification in Vitis vinifera subs sylvestris by 222 

comparation with Vitis vinifera subs sativa using expression patterns analysis. Three genes possibly playing a role in sex 223 

specification have been detected: VviETO1; VviACS2 and VviSAUR. 224 

Sex determinism in Vitis is supposed to be controlled by a  single sex-determining region with three alleles, M (male), H 225 

(hermaphrodite) and F (female) and located on the chromosome 2 between position ~4.90 and 5.05 Mb  (Fechter et al., 226 

2012; Picq et al., 2014; Zhou et al. 2017; Zhou et al. 2019). Based on previous work, we analyzed expression pattern of 227 

genes that might contribute to sex determination of grapevine flower (Fechter et al., 2012; Picq et al., 2014;Coito et al. 228 

2017; Zhou et al. 2017; Zhou et al. 2019). Among the 5 genes studied in the sex locus, only the Ethylene overproducer-1 229 

(ETO1) revealed highly different expression between sexes: this gene is over-expressed in female and hermaphrodite 230 

flower in the last stages of development, stage 18 and stage 15 respectively. As mentioned in the introduction, if we 231 

assume a two-factor model for sex determination in grapevine, the F allele contains a recessive male sterility mutation, 232 

while the M allele harbors a fully-functioning male fertility allele coming together with a dominant sterility female 233 

mutation (Charlesworth 2013). The allele H may derive from the allele M through the loss of the dominant female 234 

sterility mutation. Thus, as ETO1 is only expressed in female and hermaphrodite flowers, it could be a good candidate for 235 

the recessive female fertility mutation shared by the F and H alleles. Indeed, the eto1 is a recessive mutation in 236 

Arabidopsis that results in a 10-fold ethylene overproduction (Guzman and Ecker, 1990), and in Cucumis ethylene favors 237 

development of female organs (see Henry et al. 2018). However, in previous studies, sequence diversity and gene 238 

expression analysis did not find differences between female/hermaphrodite and male individuals (Picq et al. 2014, Zhou 239 

et al. 2019). Future works will have to be conducted to understand this discrepancy between studies. 240 

 The gene VviACS2 involved in ethylene hormonal production (Kende, 1993), shown higher expression in female 241 

flowers and hermaphrodite, but particularly in female, that in male and android at the stage 15 and 18. This observation 242 

suggests that this gene could be involved in pollen sterility. Moreover, the gene encoding the enzyme 1-243 

aminocyclopropane-1-carboxylic acid synthase (ACS), involved in melon male organ sterility and located close to the 244 

grapevine sex locus, could be considered as a putative candidate gene for the control of flower sex in grapevine. Indeed, 245 

most of the molecular studies in cucumber have targeted the role of ethylene in sex determination, specifically the role of 246 

the key regulatory enzyme of ethylene biosynthesis, ACS (Knopf and Trebitsh, 2006; Li et al., 2009; Martin et al., 2009; 247 

Mibus and Tatlioglu, 2004; Shiber et al., 2016; Trebitsh et al., 1997). It has been described that the genes involved in sex 248 
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determination are related to ethylene biosynthesis and perception (Ando and Sakai, 2002; Saito et al., 2007; Yamasaki et 249 

al., 2000) such as CsACS1 and CsACS2 (Li et al., 2009; Martin et al., 2009; Saito et al., 2007; Shiber et al., 2016; 250 

Trebitsh et al., 1997). Our sequence analyses showed that VviACS2 gene is ortholog to CsACS2 which correspond to the 251 

type 1 isoform from melon in which it is differential expressed in grape flower development. Although this gene is 252 

outside of the flower sex locus, it could be possible that some proteins from the sex locus region affect the ACS gene 253 

expression. In fact, one gene in the sex locus region, annotated as ETO1, has been described as a protein that specifically 254 

inhibits the enzyme activity of ACS (Yoshida et al., 2005). The results suggest that the high expression of ETO1 in the 255 

stage 15 of hermaphrodite flower could induce the repression of the ACS in the stage 18 allowing the hermaphrodite 256 

flower development. In the other hand, the significant high expression in the female flower in the stage 18 allowed the 257 

development of female flower and putative involved pollen sterility. However, Yoshida et al (2005) showed the 258 

interaction between ETO1 and ACS protein family is restricted to type 2 ACS isozymes which possess specific C-259 

terminal amino acid sequences. Yoshida et al (2005) also showed that the suppression of a type 2 ACC synthase, in 260 

transgenic tomato was produced by the constitutive expression of ETO1. These results suggest that members of the ETO1 261 

protein family are negative regulation of type 2 ACC synthases in the plant kingdom. A negative interaction between 262 

ACS and ETO1 in grapevine would be not easy to explain if we suppose that ETO1 is possibly the recessive female 263 

fertility mutation and ACS is involved in the inhibition of stamens in female flowers. Actually, the ETO1 only negatively 264 

interacts with type 2 ACS (Yoshida et al. 2005), and our ACS phylogeny analysis combined with a previous work by Xu 265 

and Wang (2012) confirmed that the ACS copy studied here is not type 2. Therefore, it is unlikely that there is such an 266 

interaction in grapevine. Another hypothesis could be that the molecular mechanisms that regulate the activity of 267 

VviACS2 are induced by the VvETO1 protein regulating the activity of both families of ACS type I and ACS type 2 (Li 268 

et al., 2011), this coordinate regulation is necessary for flower development. In this way, our results suggest that the gene 269 

VviACS2 could be involved in sex development but the molecular mechanisms is unclear. The VviACS2 expression data 270 

agree with those reported by Saito et al (2007) for CsACS2 on melon, of which our candidate gene VviACS2 is 271 

orthologous. Saito et al (2007) proposed that the mechanisms of action of CsACS2 was that the expression of CsACS2 272 

was mainly accumulates just under the pistil primordia of flower buds at the stage 6 in cucumbers which correspond with 273 

sexual determination stage (Bai et al., 2004). Saito et al (2007) found that the persistent accumulation of CsACS2 mRNA 274 

was correlated with the expression of the active enzyme inhibits the development of male organs and is not required for 275 

carpel development. These findings suggest the relationship between the permanent arrest of stamen development and the 276 

expression of CsACS2. In addition, Li et al. (2012) suggested a positive feedback mechanism for CsACS2 gene leading 277 
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to a stable level of transcription, and this level might produce ethylene constantly, and then continually prevent the 278 

stamen development. These results suggest that the ethylene-responsive elements (EREs) in the cucumber CsACS2 279 

promoter had a conserved function. However, the model for melon may be not completely adapted for grapevine, since 280 

the ACC synthase will not allow enough ethylene accumulation to eliminate the development of stamen primordia, 281 

because in grape female flowers the suppression of maleness appears to be the consequence of pollen sterility (Caporali et 282 

al., 2003). In this way, further studies should be done in the future. 283 

The last gene showing differential expression according to sex is the SAUR protein  (SMALL AUXIN UP RNAs). SAURS 284 

consists in a large early auxin response genes family playing key role in hormonal and environmental signals that regulate 285 

plant development and growth (Ren and Gray, 2015). In the current state of knowledge, it is difficult to explain the role of 286 

SAUR proteins in the determinism of sex in the grapevine. However, it has been described in grapevine that a synthetic 287 

kinin, SD 8339, at 1000 parts per million in alcohol solution, applied to flower clusters of a male grapevine about 3 weeks 288 

before anthesis, completely converted the flower sex from male to hermaphrodite (Negi and Olmo, 1966). Therefore, sex 289 

reversion by hormonal application may indicate that this gene can be involved in hormonal signaling and could be 290 

important in the development of male and female flowers. Recently, It has been described by ( Ni et al., 2018) that 291 

cytokinin regulated the biosynthesis, transportation and signaling of other phytohormones in the regulation of sex 292 

determination in S. sebiferum (oil plant) then they suggest some cross talk between different hormones including ethylene 293 

that could be involved in flower development. Taking into consideration the cross talk between hormones, we cannot 294 

exclude that flower type and sex specification may be controlled through hormone regulation. 295 

 Two of the most obvious candidate genes are the flowering-related genes which map close to important regions 296 

controlling flower sex in grapevine, AGAMOUS and YABBY, which along with other genes in A. thaliana are involved in 297 

the specification of stamens, carpels and ovules (Mizukami and Ma 1992; Ray et al. 1994; Boss et al. 2001). We have 298 

showed that these genes involved in different carpel structures development showed significant expression difference in 299 

the stage 15 during grapevine hermaphrodite flower development. The high expression level of these genes in this stage 300 

could be linked to their role in determining the carpel. Finally, we have to consider that could be possible that the genome 301 

assembly and annotation could be fragmented or incorrect at this 150 kb sex-linked region as has been described 302 

previously (Ramos et al., 2014). 303 

 304 

 305 
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Conclusions 306 

The results pointed out that one gene (ETO1)  inside of the flower sex locus region and two genes (ACS, SAUR) located 307 

outside of the sex locus region, could be considered as putative candidate genes for the control of sexual traits in 308 

grapevine. All these genes are related with hormone biosynthesis or signaling. However, it is difficult to distinguish 309 

normal floral development pathways from the abnormal carpel formation through this approach, since these pathways 310 

seem dependent on an expression balance of hormone related genes (Coito et al., 2019). The mechanism of sex 311 

determination is of great interest to researchers. However, the direct regulators and the molecular details in grape remain 312 

poorly understood. Nevertheless, other genes in other regions could be involved in flower sex determins in Vitis.  313 
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Figures 478 

479 

Figure 1. Sampled points from the shoot and inflorescence development for the gene expression study. Adapted from 480 

Coombe et al (1995). 481 

482 

Figure 2. Genes located in the sex locus defined by Fetcher et al. (2012) and Picq et al. (2014). 483 

484 

Figure 3. Expression levels of the genes A) VvACS; B) VvETO ; C) VvFSEX ;D) VvAPTR3 ; E) VvWRKY ; F) VvSAUR ; 485 

G) VvNAC4 ; H) VvFMO ; I) VvYABBY  and J) VvAGAMOUS throughout flower development in four genders evaluated486 

by qPCR using three independent biological replicates for each flower gender. 487 

488 

Figure 4. Phylogenetic analyses of 88 ACS copies from different species: Arabidopsis, tomato, rice, Amborella 489 

trichopoda, conifers, the lycophyte Selaginella moelendorfii, the mosss Physcomitrella patens, humans, the cnidarian 490 

Nematostella vectensis, and the green alga Ostreococcus lucimarinus, Chlamidomonas and Volvox carteri. The arrows 491 

showed the Vitis vinifera L ACS copies. Clade values are indicated at nodes. 492 

493 

494 



Table 1. Primers used on qPCR. The primers for APTR3 and FSEX were described in 

Coito et al (2017).  

Primers Sequence 

YAB Fw 5´ACG CCT TCT TCT CTC CTT CC 3´ 

YAB Rv 5´AAG TCA TTT GCG GTG GTC TG 3´ 

AGAM Fw 5´CGC TAC CAA AGT AAA GCC AAG 3´ 

AGAM Rv 5´CAA ACA TTC GCC TAA TAG TCT TCG 3´ 

FMO Fw 5´CGG TGT TCT CTC CGA TCG GAT TA 3´ 

FMO Rv 5´AGC CAT TGT ACT CGA ACA GAT GGG 3´ 

SAUR Fw 5´GCG AAA TCA AAG TCC GAG AG 3´ 

SAUR Rv 5´GGA AAA CAG AGC CCC TTA GC 3´ 

NAC Fw 5´ATT GAG CCA TGG GAT CTT CA 3´ 

NAC Rv 5´CAG AAT CCG GCT TTT GTA GC 3´ 

WRKY Fw 5´CTT TCA GAC TGG CCA TCC AT 3´ 

WRKY Rv 5´TGA TCC AAG ATG CAA CAA GC 3´ 

ETO-Fw 5´CAG GCC CTT AAC AAC CTT GGC 3´ 

ETO-Rv 5´AAT GAA CCC TAG CAA GGC CC 3´ 

ACS-X Fw 5´GAT CCT GGT GAT GCA TTC CT 3´ 

ACS-X Rv 5´TGT TGT CCT CTT GGG CTT TC 3´ 

ACS Fw 5´CCG GCA ATG AAA TAC TCA CA 3´ 

ACS Rv 5´TAT CCA CCC CAG TTC TCC AC 3´ 

Tables 1



Stage 5: Rosette of leaves tips 
visible. 

Stage 12: Shoots about 10cm long. 
Inflorescence clear, 5 leaves 

separated 

Stage 15: 8 leaves separated;Shoot 
elongating rapidly; single flowers in 
compact groups 

Stage 26: Cap fall complete 

Stage 18: 14 leaves separated; 
flower caps still in place, but 
cap colour fading from green. 

Stage 23: 17-20 leaves 
separated; 50% caps off (=full 
bloom) 
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