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ABSTRACT 39 

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 40 

1.5 °C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment 41 

of other climate mitigation strategies are also necessary. Among these, increasing soil organic carbon (SOC) 42 

stocks is an important lever because carbon in soils can be stored for long periods and land management options 43 

to achieve this already exist and have been widely tested. However, agricultural soils are also an important 44 

source of nitrous oxide, (N2O) a powerful greenhouse gas, and increasing SOC may influence N2O emissions, 45 

likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC 46 

storage. Here, we review the main agricultural management options for increasing SOC stocks. We evaluate the 47 

amount of SOC that can be stored as well as resulting changes in N2O emissions to better estimate the climate 48 

benefits of these management options. We conclude that the climate mitigation induced by increased SOC 49 

storage is generally overestimated if associated N2O emissions are not considered, but is never fully offset. Some 50 

options (e.g, biochar or non-pyrogenic amendment application) may even decrease N2O emissions. 51 

 52 

Key points: 53 

• Carbon and nitrogen cycles in soil interact in numerous and complex ways and an impact of a land 54 

management change on one cycle will generally influence the other. 55 

• Several land management options designed to increase soil organic carbon stocks exist and have been 56 

widely evaluated.  57 

• Land management options to increase soil organic carbon also tend to increase nitrous oxide emissions 58 

in some cases. 59 

• We conclude that when increased N2O emissions are taken into account, they partially offset the climate 60 

benefits of increased organic carbon storage, but never negate them completely. 61 

  62 
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1. INTRODUCTION 63 

The United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement adopted in 64 

2015 aimed at keeping global warming below 2°C by 2100, and at possibly further limiting the temperature 65 

increase to 1.5 °C. The Paris Agreement specified that the balance of anthropogenic greenhouse gas (GHG) 66 

emissions and sinks should be attained by the second half of this century. This requires not only drastic 67 

reductions in GHG emissions in the near future, but also net negative emission technologies because not all 68 

emissions will be reducible to zero within this time scale1,2. To a large extent, these negative emissions imply 69 

land-based mitigation strategies3, mostly involving the production of organic matter by plant photosynthesis 70 

coupled with carbon storage in living biomass and / or soil organic matter4. A pathway frequently discussed 71 

known as bioenergy with carbon capture and storage (BECCS) comprises generating energy using biomass, 72 

capturing the CO2 evolved from this process and storing it in geological reservoirs. The deployment of BECCS 73 

faces both technical challenges and most likely limitations due to high costs and adverse environmental 74 

impacts5,6. On the other hand, the net removal of atmospheric CO2 taken up by plants in agricultural soils (i.e., 75 

carbon sequestration) has recently come under sharp focus as a more affordable and practical alternative, 76 

potentially associated with positive economic outcomes and possibly applicable at large scale in managed 77 

lands7,8. The role of soils as a key component of the global carbon cycle is now recognized by the scientific 78 

community and also by policymakers5,6. Soils have never been harnessed at large scale for the purpose of 79 

sequestering carbon, although they currently make up the largest reservoir of organic carbon in the terrestrial 80 

biosphere, with a size of 1,500 Pg C to a depth of one meter9. However, the ecosystems which contain the largest 81 

stocks of soil organic carbon (SOC) are unmanaged (comprising boreal forests, permafrost soils and wetlands), 82 

whereas only soils from managed ecosystems, in particular agricultural soils, may be managed to increase SOC 83 

stocks (i.e., carbon sequestration) Agriculture is also a key target sector for the reduction of methane (CH4) and 84 

nitrous oxide (N2O) emissions10–12. Yet, few countries have included agriculture in their nationally determined 85 

contributions – a roadmap volunteered by national governments as part of the Paris Agreement to express their 86 

efforts to reduce GHG emissions – because of potential trade-offs with food production and uncertainties on 87 

achievable potentials13.  88 

Recent emphasis on promoting SOC storage has resulted in international initiatives such as the “4 per mil” 89 

initiative launched by France during the UNFCCC conference of the parties (COP) 217,14. It relies on the concept 90 

that even a very small relative increase in SOC pools worldwide could offset a significant fraction of CO2 91 

emissions. Preliminary evaluation indicated that increasing global agricultural SOC stocks at an annual rate of 92 
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4‰ would result in a C sequestration potential of 2-3 Pg C yr−17. This may contribute significantly to the 93 

objectives of the land sector to achieve the Paris agreement target15. Nevertheless, several studies have discussed 94 

and criticized the feasibility of enriching soils at a rate of 4‰ over a sustained period of years 16–18 because: (i) it 95 

requires large amounts of new organic matter inputs, (ii) it requires large amounts of nutrients, (iii) it is difficult 96 

to achieve this target rate in all agricultural systems, and (iv) it may be hampered by the climate change-induced 97 

enhancement of SOC decomposition. Moreover, altered management practices may impact farmers’ income and 98 

imply trade-offs with food production17. Data from long-term experiments show that it is very difficult to 99 

achieve the 4 per mil rate in temperate arable systems without drastic changes in management17,19. Finally, the 100 

annual rate of SOC increase generally levels off over time as the SOC pool increases and approaches a new 101 

equilibrium level20. 102 

Nevertheless, concrete management options exist to increase SOC stocks such as cover crops, tillage 103 

management, crop rotations, organic amendments, agroforestry and biochar amendments with effects depending 104 

on local conditions 21–23. It must be noted that organic amendments may, in some case such as manures, be a 105 

transfer of carbon from one terrestrial location to another rather than a net removal of carbon from the 106 

atmosphere17. Nevertheless, well spatially distributed, organic amendments contribute to significant increase the 107 

SOC pools at regional scale24. These options have socio-economic impacts on farmers and land managers and 108 

indirect effects on ecosystem services, through changes in crop yields, water consumption, nitrate leaching, and 109 

CH4 and N2O emissions which have to be considered when evaluating the feasibility and the relevance of 110 

implementing SOC storage options. The SOC storage potential of the various practices has been extensively 111 

assessed in the recent scientific literature 17,23,25–27, and recently revised by IPCC in its 2019 report on climate 112 

change and land12. However, implications for the N cycle (in particular N2O emissions), and other 113 

biogeochemical cycles or crop yields have not been thoroughly documented so far28–30. Neither have been the 114 

consequences of large-scale deployment of these measures, and constraints related to the nitrogen (N), 115 

phosphorous (P) and potassium (K) cycles. These aspects are important because they determine the overall GHG 116 

abatement efficiency of mitigation measures and set limits on their potential deployment. C and N cycles are 117 

strongly interlinked (box. 1) in particular in soils and we assume that the deployment of land based mitigation 118 

options to increase SOC may impact the N cycle and the associated N2O emissions. A recent modelling study 119 

suggests that measure to increase SOC sequestration might be offset by increased N2O, depending on the crop 120 

rotation and on the duration of the land management practices28. A better understanding of such interactions is 121 

necessary to evaluate the benefits of different management practices aimed at increasing SOC storage and to 122 
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predict the full GHG balance of each practice. 123 

Here, we focus on the interactions between soil C and nutrient dynamics, and in particular on N dynamics 124 

and N2O emissions. The aims of the paper are to i) describe the mechanisms linking the C and N cycles in soils, 125 

ii) assess how N2O emissions may be affected by increased SOC pools as a land based mitigation option, iii) 126 

review our knowledge on the other impacts of these practices. 127 

 128 

2. INTERWINED SOIL CARBON AND NITROGEN CYCLES 129 

Because C and N cycles are tightly coupled in soils, altering one will affect the other as shown in Fig. 1. 130 

In soils the C and the N cycles are sometimes totally interdependent, in particular when both are in organic forms 131 

but are sometimes uncoupled when C or N are present as minerals. Nevertheless they may still interact with each 132 

other. This section summarizes the main mechanisms explaining how changes in the soil C cycle and SOC 133 

sequestration interact with N cycle processes, and in particular N2O emissions (Fig. 1, Box 1). The first reason 134 

why soil C and N dynamics are interdependent is that both elements are stored predominantly as organic forms 135 

in the soil, sometimes within the same compounds (amino acids, proteins, etc.), thus mineralisation generally 136 

affects both. Moreover, the availability of mineral N in the soil controls a number of processes in both cycles and 137 

vice versa. For instance, mineral N transformations depend on carbon availability and plant dry matter 138 

production is limited by N availability. Nitrogen is needed to sustain photosynthesis and other physiological 139 

processes31; therefore higher N availability would likely lead to greater primary productivity and inputs of plant-140 

derived organic matter to the soil32. On the other hand, higher N availability also tends to lower the allocation of 141 

photosynthates to the root system33. As root-derived C inputs contribute at least 2-3 times more than shoot-142 

derived C inputs to SOC storage34,35, a high soil N availability could theoretically increase the plant biomass but 143 

the plant biomass produced might not be transformed into SOC as efficiently because of a reduced amount of 144 

root-derived C entering the soil36. Soil organic matter (SOM) turnover (i.e., rate of mineralization and 145 

transformation of SOM) also depends on the N availability for microorganisms. While a low mineral N 146 

availability may limit the mineralization rate of plant residues and amendments37,38, the combination of regular 147 

inputs of fresh organic C with a low soil N availability can lead to positive priming effect, i.e. a higher rate of 148 

SOM mineralization, and a lower SOC storage potential39,40. Moreover, because of the relatively narrow range of 149 

C:N ratios of SOM in mineral layers16 and because of the importance of soil microbial processing for building up 150 

stable SOM41 in some ecosystems, large amounts of N are inevitably required to stabilize large amounts of 151 

SOC42,43. Because of this stoichiometric requirement, it might seem acceptable to maintain a high availability of 152 
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N in the soil by applying large amounts of mineral fertilizers. Such a strategy would however lead to potential N 153 

losses, e.g. as N2O emissions or nitrate leaching from soil, and further increase GHG emissions during fertilizer 154 

production. Thus the modest increases in SOC resulting from N fertilizer applications up to sensible agronomic 155 

rates are welcome in the context of C sequestration, but it would be counter-productive and inappropriate to 156 

recommend higher rates of N application aimed at promoting an additional increase in soil C. 157 

Input of N to terrestrial ecosystems by biological N2 fixation is another example of a close link between 158 

C and N resources. Root-associated or free-living N2-fixing bacteria depend on the availability of organic C 159 

resources for sustaining their heterotrophic needs, which may explain why N2 fixation is only triggered when the 160 

amount of soil mineral N is low. In particular, the energy cost of N2 fixation represents between 5% and 23% of 161 

daily photoassimilated C44. The associated CO2 losses by respiration may therefore decrease the amount of plant 162 

C entering the soil. However, the consequence of this on the potential of SOC storage remains unclear. For 163 

example, the presence of leguminous plants can result in lower belowground C inputs compared to gramineous 164 

plants, leading to lower SOC concentrations45,46. However, the net inputs of N to soils by leguminous plants have 165 

been shown to correlate with a net accumulation of SOC, by providing the organic N required to stabilize an 166 

additional amount of SOC in soils47. Similarly, crop rotations that include leguminous plants appear store more 167 

SOC than conventional monocultures48, although this effect may be mainly due to longer periods of plant cover, 168 

and to the presence of deeper root systems than to biological N2 fixation itself47. These feedbacks also depend on 169 

which non-leguminous plants are associated49 to the N2-fixing plant, and may lead to contrasting results in terms 170 

of SOC storage24. Of course, obtaining N from legumes, where this is practicable, rather than from N fertilizer 171 

does eliminate the GHG emissions associated with N fertilizer manufacture. 172 

Fresh C inputs to the soil through root exudates or amendments may temporarily decrease or increase 173 

soil pH, affecting the magnitude of N2O emissions. Their consumption by microorganisms may also decrease the 174 

local concentration of oxygen, leading to anaerobic conditions which are favourable to denitrification and N2O 175 

emissions50. Furthermore, because organic materials generally act as electron donors in the denitrification 176 

process and because soil organic matter content may lower the redox potential of the soil51, increasing the 177 

amount of soil organic matter may also increase the activity of denitrifiers and therefore increase N2O 178 

emissions52,53. These mechanisms likely explain why higher SOC contents in soils have indeed been shown to 179 

correlate with larger N2O emissions54,55. N2O emissions represent a particular case that illustrates how the soil N 180 

cycle may be influenced by the C cycle. As a rule, net N2O emissions from the soil at a given soil water-filled 181 

pore space (WFPS) will usually be lower when the soil mineral N content is low and when soil pH is alkaline or 182 
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when C availability is reduced. Furthermore, because a low soil redox potential (< 400 mV)52 is required for 183 

denitrification, N2O emissions have been suggested to have their optimum at 70-80% WFPS, while prolonged 184 

waterlogging conditions may result in complete nitrate reduction to N2 instead of N2O 56. Several mechanisms 185 

can therefore explain why attempts to modify the soil C cycle may also affect N2O emissions. On a longer time 186 

scale, the build-up of SOC by various strategies may be expected to increase the retention of water and fertilizer-187 

N in the rooting zone through improved soil properties (eg.. water holding capacity, porosity, hydrophilicity) , in 188 

a manner favourable for the denitrification to occur. This might trigger a higher primary production and 189 

enhancing further SOC storage, but also increase the risk of N2O emissions because of the increase in N sources 190 

and the shift to soil environmental conditions more favourable to N2O emissions. In the remainder of this paper 191 

we consider possible interactions between increased SOC and changes in N2O emission for a range of 192 

management practices designed to increase SOC (Table 1). 193 

3. HOW SOC STORING PRACTICES AFFECT N2O EMISSIONS 194 

  3.1 Balancing the Nitrogen inputs 195 

Since mineral N availability drives N2O emissions as well as crop productivity and C inputs into the 196 

soil57,58, N fertilization should be carefully managed. A balance should be obtained between N inputs (including 197 

fertilizers, manures and biological nitrogen fixation through symbiosis between N2-fixing bacteria and some 198 

plant species) and N exported in harvested products in order to reduce a N surplus that can be source of N2O, but 199 

without a major negative effect on crop productivity. This N surplus should ideally be zero, but it is actually 200 

large and positive in many regions of the world, having intensive agriculture (e.g. parts of China, India, Europe, 201 

North America), and negative in other regions (e.g. Africa)59. Excess N associated with a positive surplus is a 202 

major cause of N2O emissions on farms, but also of nitrate leaching losses, part of which contributes to indirect 203 

N2O emissions if nitrate is denitrified within surface waters. Overall, N surplus is a strong driver of N2O 204 

emissions, especially when considering that the rate of emission is no longer linear for high N input60. The 205 

relatively low cost of mineral N fertilizers in developed countries compared to the price of agricultural products 206 

incentivizes farmers to apply more N than recommended by good practices, as an 'insurance' against unforeseen 207 

N losses due to climate variability. In some regions of the world, but not all, there is considerable potential to 208 

lower agricultural N2O fluxes in intensive farming by reducing the N surplus without affecting farmers’ incomes 209 

61. Therefore, the use of mineral N to increase crop productivity may induce an increase of C input into the soil 210 

but a complex balance must be found to avoid excessive N2O emissions and N leaching. 211 
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 212 

3.2 Reduced tillage/non tillage  213 

  The effect of reduced tillage has attracted attention as a practice leading to increased SOC storage.. 214 

However, recent meta-analyses demonstrate only a small positive effect of no-tillage on SOC stocks in the 215 

topsoil (0-30 cm layer) compared to conventional tillage, while it may vary widely across pedo-climatic 216 

situations62–66. Moreover, it must be recognised that the largest impact of reducing tillage is a redistribution of 217 

SOC toward the soil surface25,64–67. As a consequence, data from field trials must be carefully examined to 218 

distinguish between a genuine increase in SOC stocks in the surface soil layers from a simple change in the 219 

vertical distribution of SOC concentration.   220 

There has been considerable discussion as to whether the increased SOC in soil under zero tillage, 221 

especially near the surface, might increase N2O emissions, because : (i) increased organic matter content can 222 

increase N2O release68, either because of increased energy supply to denitrifying organisms or because increased 223 

biological activity utilises oxygen in soil, thus possibly leading to anoxic conditions at some microsites and ii) 224 

reducing tillage can be associated in the short term with a less porous soil structure, conducive of anoxy69 (Table 225 

1). The different meta-analysis we compiled here (Fig. 2) suggest that N2O emissions may offset the C storage in 226 

no-till system when both fluxes are compared in CO2 equivalents. However, there is conflicting evidence on 227 

whether or not this risk is actually realised68,70. Recent meta-analyses suggest that, in the majority of situations, 228 

N2O emissions are either unchanged or slightly decreased under zero or reduced tillage; the result will certainly 229 

be influenced by soil type and local climate and weather conditions so it may not be possible to draw a 230 

conclusion that is universally valid70,71. Furthermore, in some studies, N2O emissions were expressed on both an 231 

area basis and a yield-scaled basis70; because crop yields were slightly decreased under reduced tillage in some 232 

environments, N2O emissions per unit of grain (or other product) were sometimes increased compared to 233 

conventional tillage.  234 

 3.3 Erosion control - terracing  235 

Erosion control practices are able to maintain or increase SOC content at the plot scale72, although on a 236 

larger scale whether erosion is net C sink or a net source is still debated73–75. Erosion control encompasses a wide 237 

range of practices such as protecting the soil surface with cover crops or unharvested biomass (pruned fronds and 238 

other plant residues), agroforestry, crop rotations, conservation tillage, or terracing on steep slopes. Some of 239 
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these practices are already addressed in other sections of this paper (3.2, 3.4 and 3.5), and the following focuses 240 

on terracing. 241 

  Terracing is an ancient form of erosion control and a soil conservation method performed for thousands 242 

of years in steep landscape regions76,77. Despite its importance, studies focusing on quantifying soil erosion rates 243 

and the resulting C fluxes and SOC stocks in terraced areas are limited, especially at regional scales. Generally, 244 

terracing reduces soil erosion by reducing the slope gradient and length, and can decrease soil erosion rates by up 245 

to 95%78,79. It accordingly preserves SOC and nutrients. A meta-analysis on the ecosystem benefits of terracing 246 

shows that, compared to unterraced slopes, soil in terraced slopes contains 28.1% and 41.7% more N and C, 247 

respectively80. However, the overall net effect of terracing on erosion depends on the terrace structure and 248 

maintenance, crop type, soil conditions, crop management practices or agricultural machinery. To maximize its 249 

positive effects, terracing needs to be combined with other soil conservation measures such as cover crops, 250 

agroforestry, organic amendments or no-till81,82. Furthermore, terraces need to be sustained, otherwise abandoned 251 

terraces can become sources of substantial land degradation due to gully formation. This is the case in the 252 

Mediterranean region where over 50% of the terraces have been abandoned77,80.  253 

 The N2O emissions associated with terracing are still poorly known. Terracing decreases the aggregate 254 

breakdown and transport of soil by erosion, which would lead to reduced N2O emissions. However, as stated 255 

previously, N2O emissions may increase with increased SOC. In addition, terracing tends to change the soil C:N 256 

ratio80 and this may change the N availability for nitrifying/denitrifying bacteria and thus affect N2O emissions. 257 

Finally, to fully estimate the effect of erosion control on N2O budgets, it is important to measure emissions at the 258 

catchment scale not only at the field scale. Since erosion control aims to avoid lateral losses of soil material 259 

(containing various forms of N) ending up in rivers or in floodplains, it is necessary to combine measurements in 260 

the terraced or unterraced fields with measurements and modelling on the fate of eroded N in floodplains and 261 

rivers. 262 

  263 

 3.4 Cover crops 264 

Planting cover crops is an effective management practice to increase SOC content. According to a 265 

recent meta-analysis, it leads to SOC accumulation rates in the order of 1.18 t CO2-eq. ha-1 yr-1 over 50 years83 in 266 

the topsoil, with a positive effect independent of tillage method, climatic zone or plant type (leguminous vs non-267 

leguminous). The impact of cover crops on SOC will depend on their duration and the frequency with which 268 
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they are included in a crop rotation, and this information is sometimes unclear in published reports of field 269 

trials83. The main driver of SOC storage seems to be the extra C input, as suggested by the high correlation 270 

between rates of SOC stock change and the amounts of C returned to the soil by cover crop biomass84. However, 271 

there are limitations to the use of cover crops depending on cropping systems and climate conditions. For 272 

example, in temperate regions they can be readily utilised during the winter period prior to sowing a spring-sown 273 

crop, when the soil would otherwise be bare. But if only autumn-sown crops are grown, there is very limited 274 

time between harvesting and the sowing of the subsequent crop. 275 

The effects of cover crops on N2O emissions are more variable and contrasted than those on SOC 276 

changes (Table 1). Many factors influence the magnitude of N2O emissions, such as the C:N ratio of cover crop 277 

residues, their rate of decomposition, the extra inputs of fertilizer N sometimes applied to cover crops, whether 278 

the residues are ploughed or left to decay on the soil surface. Current evidence points to a negative relationship 279 

between N2O emissions and the C:N ratio of residues50. A low C:N ratio will increase the availability of soil N 280 

for microbial transformations (e.g. nitrification and denitrification) whereas larger ratios will result in N 281 

immobilization and deplete the soil inorganic N pool 85. Additional C inputs from cover crops may stimulate the 282 

activity of denitrifier bacteria, which use these organic compounds as a source of energy86. A meta-analysis87 283 

reported a significant increase in N2O emission when leguminous cover crops were introduced. However, 284 

another review88 found out that the incorporation of either legume and non-legume cover crops tended to 285 

increase N2O emissions but the magnitude of the effect was not significant due to the high variability of data. 286 

The effect of cover crops on N2O emissions is therefore not yet fully understood and may well be highly site-287 

specific.  288 

One of the key points controlling cover crop effect on N2O emissions is how often leguminous crops are 289 

integrated within the crop rotation. Leguminous cover crops generally have a lower C:N ratio than non-290 

leguminous crops, and can fix substantial amounts of atmospheric N, reaching up to 0.1-0.2 t N ha-1 yr-189 . These 291 

rates may lead to a N surplus if all the leguminous cover crop biomass is incorporated. A recent study, using a 292 

biogeochemistry model framework at European scale, estimated that systematic planting of N-fixing cover crops 293 

may lead to a N surplus of about 0.04 t N ha-1 yr-1, compared to the use of non-legumes as cover crop28. In this 294 

scenario, the cumulative climate change mitigation effect of SOC sequestration was, on average, totally offset 295 

after 50 years since the adoption of cover crops, due to enhanced N2O emissions. While cover crops may induce 296 

higher N2O emissions, in particular if leguminous crop are extensively used, they can also reduce nitrate 297 

leaching, by about 56% on average90. This is beneficial for water quality and would be expected to lead to 298 
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decreased indirect N2O emission through denitrification of nitrate entering surface water. Finally, another 299 

indirect effect of leguminous cover crops on N2O emissions will strongly depend on whether or not mineral N 300 

fertilisation rates are reduced to take account of N provided by biological fixation. The meta-analysis we 301 

compiled here indicate that additional  N2O emissions decrease the SOC storage benefit of cover crops, but do 302 

not fully offset it (Fig. 2). 303 

 304 

 3.5 Agroforestry  305 

Agroforestry systems include a diversity of practices ranging from complex associations found in 306 

homegardens, multistrata systems or agroforests to simpler systems such as alley crops, silvopastoral systems, 307 

riparian plantings, shelterbelts, windbreaks or hedgerows91. Despite this broad diversity, recent reviews and 308 

meta-analyses consistently suggest that the conversion of arable land to agroforestry systems increases SOC 309 

stocks92–94. In temperate regions, SOC accumulation rates are usually around 0.92 t CO2-eq. ha-1 yr-1 in the 310 

topsoil (0-30 cm)83. They are highly dependent on local pedoclimatic conditions and on the type and design of 311 

agroforestry systems (tree density, tree species, pruning management, etc), but rarely exceed 3.67 t CO2-eq. ha-1 312 

yr-1 22,26. However, the spatial distribution of SOC stocks in agroforestry systems is usually very heterogeneous, 313 

with higher stocks under the tree canopy or along tree rows95,97. Several mechanisms contribute to explain SOC 314 

sequestration in agroforestry systems. The main one is probably being linked to higher organic inputs to the soil 315 

compared to treeless agricultural land98, including litterfall, pruning residues, and root inputs99.  316 

A recent synthesis of N2O emissions under agroforestry compared to adjacent agricultural lands only found 317 

minor differences in net emissions, with no clear overall direction of change93. However, several authors found 318 

increased N2O emissions in agroforestry, related to a greater N supply through N2-fixing trees100–103 or to the 319 

incorporation of tree residues104,105. By contrast, N2O emissions are often reduced in silvo-arable systems and in 320 

riparian buffers93. Some authors suggest that concerns over N2O emissions from N2-fixing trees are unwarranted 321 

since fluxes from soils planted with N2-fixing trees are similar to those fertilized with mineral N106. Furthermore, 322 

the yield of crops in tropical agroforestry systems may be boosted as a result of higher N-inputs from trees. In 323 

temperate regions where agroforestry systems are generally planted with non-legume trees, N2O emissions are 324 

often reduced93, with several processes contributing to the trend. Increased nitrogen utilization at the plot scale 325 

may be due to the presence of deep-rooted trees107, which are capable of taking up nitrate-N that has leached 326 

below crop rooting depth 108–110. This process can potentially reduce the amount of N available for nitrification 327 

and denitrification, and thus reduce indirect N2O emissions. Soil water content is often lower in agroforestry than 328 



 12

in treeless plots111, due to a higher daily water consumption by trees and crops112. A drier soil profile in 329 

agroforestry systems could therefore lower N2O emissions. In temperate silvoarable systems, tree rows are 330 

usually uncropped and unfertilized. This reduction in the fertilized cropping area indirectly leads to lower N2O 331 

emissions per hectare. An obvious consequence of agroforestry, especially as tends to be practiced in temperate 332 

regions, is that a smaller area of land is devoted to the agricultural crop being grown. So the impact of decreased 333 

N2O emissions may be different if expressed on an area basis compared to per unit of production. 334 

 335 

3.6 Non-pyrogenic organic amendments  336 

A literature review113 reported increases in SOC (sometimes expressed as stocks and sometimes as 337 

concentration) after prolonged large applications of organic amendments under several different agro-climatic 338 

conditions. These increases ranged from 20 to 90% of the initial total SOC after few years (3-60 years), 339 

compared to unfertilized controls or treatments receiving only synthetic mineral N fertilisers, with most being in 340 

the range 20- 45%. A meta-analysis114 based on 130 observations worldwide quantified the response of SOC 341 

stocks to manure application over periods ranging from 3 to 82 years. The mean manure-C retention coefficient 342 

defined as the average proportion of manure-C remaining in the soil was estimated at 12% for an average study 343 

duration of 18 years. The authors finally estimated a relative SOC stock change factor of 26% which was also 344 

related to cumulative manure inputs. Concerning Mediterranean cropping systems, and shorter durations, a meta-345 

analysis115 reported that the application of organic amendments increased SOC stocks by 23.5% with an average 346 

SOC storage rate of 4.81 t CO2-eq. ha-1 yr-1 calculated for an average duration of 7.9 years. From these meta-347 

analyses, it seems that there is a consensus that organic amendments lead, on average, to a relative increase of 348 

SOC stocks in the top soils (roughly 20-30cm) of about 25% on a 20-year time frame (or 3 times the ‘4 per mil’ 349 

target). In one example17 where manure was applied annually at a high rate compared to what is usual in 350 

agrosystems, the annual rate of SOC accumulation averaged 18‰ per year in the first 20 years, then declined to 351 

6‰ per year after 40-60 years, and to only 2‰ per year after 80-100 years. However, from the perspective of 352 

mitigating climate change, it is arguable whether any increase in SOC stocks resulting from applications of 353 

manure or similar materials can be considered as C mitigation in the sense of either a transfer of C from 354 

atmosphere to land or an avoided emission. Manure is generated in agricultural systems and is almost always 355 

used in some way by application to soils, though often quite inefficiently. Thus, an increase in SOC stocks at a 356 

given location mainly represents a transfer of C from one site to another as opposed to a net removal of 357 

atmospheric carbon 17. Local additional SOC storage may not represent a CO2 sink, i.e. a net transfer of carbon 358 
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from the atmosphere to the soil at the landscape scale.  359 

 Because organic amendments such as manures contain readily-decomposable N-rich compounds, there 360 

is a significant risk that they may enhance N2O emissions116–118. Conversely, their use permits decreased use of 361 

mineral N fertilizers, thereby saving N2O emission from this source and fossil energy and the associated GHG 362 

emissions from fertilizer manufacture. A further complicating factor in assessing the overall impact of manure 363 

use is that indirect emissions due to storage or management are not negligible 119. There are few reports in the 364 

literature of  long-term monitoring of N2O emissions compared to data on SOC stock changes, primarily because 365 

the former are much more difficult to measure. However, the effects of multiple types of organic amendments on 366 

SOC storage and N2O emissions have been evaluated in short-term experiments for various soil types, climates, 367 

soil incorporation practices, and amendments types including  crop residues, manure, composts of various origin 368 

and maturation stages, and sewage sludge. A meta-analysis120 concluded that the N2O emission factors (EFs) 369 

related to N inputs were mainly controlled by the C:N ratios of the added material, but that many other factors 370 

influenced emission, such as soil properties (texture, drainage, SOC and N content), and climatic factors. For 371 

instance, the authors observed that the EFs were on average 2.8 times greater in fine-textured soils compared to 372 

coarse-textured, consistent with a previous meta-analysis 50. However, we should mention that the value of meta-373 

analyses is often limited due numerous controlling factors that are not always correctly reported in the papers 374 

reviewed, and the general paucity of organic amendments characterisation in the literature. For instance, the two 375 

meta-analyses mentioned in this paragraph only involved 28 to 38 individual journal articles.50,120. Another 376 

approach is to compare organically managed soils with those managed without organic amendments 121. Results 377 

from such a comparison  seem to indicate reduced N2O emissions compared to situations relying totally on 378 

mineral fertilizers,  as show in Fig. 2.  It should be noted that there is limited data from long-term studies on N2O 379 

emissions associated with additions of organic amendments; the data covers only a limited diversity of pedo-380 

climatic conditions, and especially the range of soil water filled pore space values explored.   381 

 3.7 Biochar amendments  382 

Biochar (pyrolyzed organic matter amended to the soil) technology is considered by some authors to be 383 

one of the methods with the highest potential to sequester carbon in soils compared to natural C cycle without 384 

biochar production step4. The aim of biochar production from biomass pyrolysis is to produce  recalcitrant 385 

organic matter (i.e., charcoal and biomass-derived black C) which is then added to the soil. For this reason, 386 

biochar can be considered as a negative emission technology different from other soil C sequestration methods5. 387 
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Biochar properties and effects on SOC stabilization strongly depend on the feedstock material and pyrolysis 388 

conditions (e.g., maximum temperature, heating rates)122–126, as well as biochar ageing and soil 389 

properties127,128.The efficiency of biochar for C sequestration is two-fold as compared to simply relying on soil 390 

stabilization processes. First, slow pyrolysis for biochar production results in a much higher proportion of the 391 

feedstock C bound in persistent molecular structures than through in situ stabilization by addition of unprocessed 392 

organic matter to soil 129. With a slow pyrolysis at about 500°C, approximately 50% of the carbon contained in a 393 

feedstock of Miscanthus or maize cobs ended up within the biochar and can therefore be assumed to be more 394 

stable than carbon in the raw biomass130. This compares with only 8-12% of straw residue returned to the field 395 

being transformed into longer-lived SOM forms27,131.Thus, pyrolysis is about four times more efficient than 396 

SOM-formation processes to produce persistent C in soils. Second, field studies show that biochar has a longer 397 

mean residence time in soils than SOM, i.e. >100 years132 vs. about 50 years for the latter133. Combining effects 398 

of the higher persistent-C yield with that of the longer mean residence time, biochar appears at least 8 times 399 

more efficient at storing SOC than the return of non-pyrolysed residues. In meta-analyses, biochar amendment 400 

tends to increase the soil organic carbon stocks by 40% but the studies used were generally short term (no more 401 

than 4 years)134. Nevertheless, this result must be considered with due care since it is not straightforward to 402 

measure the effect of biochar, which is mainly C, on native SOC but one published study suggests that biochar 403 

amendment increase total SOC including non-biochar C135. In addition to the direct inputs of pyrolyzed biomass 404 

to the soil, recent studies showed that biochar amendments could increase (positive priming), decrease (negative 405 

priming) or have no effect on the mineralisation of native SOM. The biochar effect on the magnitude and 406 

direction of priming is influenced by the incubation period and pyrolysis temperature122,123,136. Positive priming, 407 

which would cause destabilization of SOM, thus offseting part of the increased SOC storage, could result from 408 

the biochar affecting  microbial biomass activity and enzyme production137 through changes in availability of 409 

organic substrates and nutrients, and modification of microorganism habitat associated with the great porosity 410 

and large specific surface area of charcoal particles137. Conversely, some studies showed that biochar-induced 411 

negative priming, leading to further SOC storage in addition to direct biochar-C inputs, resulted from the 412 

enhancement of organo-mineral interactions and soil aggregation with biochar138,139, and a greater adsorption of 413 

dissolved organic carbon onto biochar particles140. In addition, biochar amendments have been shown to increase 414 

soil water holding capacity, the availability of some nutrients (Ca2+, Mg2+ in particular) and to increase soil pH. 415 

All of these mechanisms  could further enhance crop productivity and biomass inputs into soil141–144, with clearer 416 

effects on crop yields in highly weathered tropical soils145. Nevertheless, to process biomass into biochar, 417 
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transport it and incorporate it to the soil, some energy is needed (possibly produced by pyrolysis) and the related 418 

GHG emissions associated with this process must be accounted for to calculate a full GHG balance for biochar. 419 

Life cycle assessments (LCA) have shown that a positive balance can be obtained, illustrated by GHG reductions 420 

up to 2.74 t CO2 equivalent per ton of biochar amended on volcanic soils from Southern Chile146. The balance 421 

can also significantly increase when plant biomass production is accompanied by an efficient use of the 422 

bioenergy produced during the pyrolysis process in order to maximize climate benefits from biochar production 423 

followed by addition to soil, as shown by an LCA performed in Spain147 ;  implementation costs were also 424 

decreased. One simulation study suggests that  the maximum sustainable technical potential of biochar to 425 

mitigate climate change, involving the widespread use of biochars, without threatening food security and 426 

landscapes, could be a mitigation of 12% of current anthropogenic CO2 emissions (1.8 Pg CO2 -C equivalent per 427 

year)148. The C:N ratio of SOM approximates 14149 while that of biochar is generally higher than that of its 428 

feedstock, i.e. generally > 50 for straw biochar and > 100 for wood biochar . It takes therefore at least five times 429 

less N to stabilize organic C in the form of biochar than in the form of SOM. Beyond this critical observation, 430 

biochar has other important interactions with the N cycle, notably: 1) volatilization and immobilization of N 431 

during the pyrolysis process150, 2) reduction of N2O emissions after application to arable fields151, 3) reduction of 432 

NO3 and NH4 leaching152. Emissions of N2O from soils are in most cases substantially reduced by biochar 433 

addition: a recent meta-analysis reported an average decrease of 38% across studies151. However, most 434 

measurements are faily short-term, the majority in this meta-analysis being <30 days . This effect appears 435 

consistent when biochar is produced at over ~450C, so that the product is both high pH and high surface area 436 

while containing very little labile C 125. The contribution of N2O emissions attenuation with biochar was shown 437 

to be negligible in the LCA performed in Southern Chile, compared to the climate change mitigation associated 438 

to C storage146. Furthermore, reductions in N2O emission with biochar appears only significant for the first year 439 

after application, which suggests that frequent applications are necessary to maintain such an effect. In view of 440 

the large quantities of biochar usually applied in such studies, this may greatly limit the practical and/or 441 

economical potential for using biochar as a method for decreasing N2O emissions.  442 

A way to capitalize on the positive interactions between biochar properties and the N cycle is through 443 

the development of biochar-based fertilizers made by mixing biochar with mineral or organic sources of 444 

nutrients153. This method aims at reducing nitrate losses and N2O emissions, and at increasing N use efficiency. 445 

Moreover, biochar tends to adsorb mineral N and the mixing with a nutrient-rich material prevents potential N 446 

deficiency created by field application of large amounts of raw biochar. Some biochar structures have been 447 
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successfully loaded with nitrate ions through co-composting, which could greatly increases the fertilisation value 448 

of the product154. Producing biochar fertilizers requires the development of appropriate technologies. For 449 

example, mixing raw biochar - a high pH product- with manure and slurries can result in large amounts of NH3 450 

being volatilized. Therefore, biochar acidification is generally required when making biochar fertilizers from 451 

organic feedstocks. However, biochar is also a strong sorbent for NH3
155, which may be captured from the 452 

atmosphere during the pyrolysis process and made available to plants later. This is a promising technology to 453 

abate anthropogenic emissions of NH3
155 as well as directly reduce NH3 volatilization from soils150. In 454 

conclusion, pending proper technology, biochar may be intimately mixed with N sources and applied each year 455 

as a fertilizer to maximize reductions in both N2O emissions and nitrate leaching, while sequestering C in a 456 

structure requiring little N. However, further studies are needed to validate the scant results currently available. 457 

3.8 Overview of the current evidence 458 

Fig. 2 summarises published data on rates of change in SOC and rates of emission of N2O resulting from four 459 

prominent sets of practices designed to increase SOC, namely agroforestry, cover crops, no-tillage and organic 460 

amendment. All fluxes are expressed in CO2 equivalents, using a global warming potential value integrated over 461 

100 years and including global warming potential (GWP) of 298 for N2O as recommend by last IPCC report156. 462 

GWP is the time-integrated radiative forcing induced by a pulse emission of a given component (here N2O), 463 

relative to a pulse emission of an equal mass of CO2
156

. The data on Fig. 2 were taken from several meta-464 

analyses and review papers. Here, we did not re-analyse the data gathered by such meta-analysis, but rather 465 

presented the mean effect size from each study converted in CO2 equivalents. When results were given for the 466 

whole experiment duration, we divided by the duration of the experiment to obtain the mean annual SOC 467 

storage/ N2O emissions (see supplementary information for detailed methods). The data in Fig. 2 is based on 468 

over 700 measurements of SOC change and 200 measurements of N2O. Even allowing for some papers being 469 

cited in more than one meta-analysis, this is a large body of data and, to our knowledge, has not previously been 470 

assembled in this way. At first sight it appears that SOC increases produced by the four sets of treatments varied 471 

widely from -0.52 ±0.46 to -6.74±1.21 t CO2-eq. ha-1 yr-1, the negative sign representing accumulation of SOC, 472 

i.e. transfer of C from atmosphere to soil. However, this wide range is somewhat deceptive as the two largest 473 

values are from very specific situations. The value of -6.74±1.21 t CO2-eq. ha-1 yr-1 for agroforestry (Kim et al, 474 

2016) is from 34 sets of data for systems with a particularly high tree density (see legend to Fig. 2); the other two 475 

meta-analyses for agroforestry, based on >200 datasets, give values of less than half this at around -3 t CO2-eq. 476 

ha-1 yr-1. For cover crops the majority of data, based on 186 datasets, lead to mean rates of C accumulation in the 477 



 17

range of -1.2 to -2.0 t CO2-eq. ha-1 yr-1. The highest value observed for cover crop was 3.67 t CO2-eq. ha-1 yr-1 478 

but it specifically refers to cover crops included between the wide rows of Mediterranean woody crops (olive, 479 

almond and vineyards) where the soil would otherwise be bare157. This is clearly an important management 480 

change within this environment but represents a much greater input of plant material than, say, cover crops 481 

grown during winter within temperate arable cropping systems. For both agroforestry and cover crops, and even 482 

ignoring the two sets of data for SOC increases that are especially large, it appears from the summarized data in 483 

Fig. 2 that SOC increases resulting from these two changes in management considerably outweigh increased 484 

N2O emissions when both are expressed on a CO2-eq basis and these management changes can be expected to 485 

beneficial for climate change mitigation. For no-tillage the situation is different: the relatively small rates of SOC 486 

accumulation are approximately equal to the increases in N2O emission when both are expressed on a CO2-eq 487 

basis, so there appears to be no overall climate change benefit. For organic amendments the results indicate that 488 

N2O emissions are decreased and thus reinforce the SOC benefit, though this is based on a very limited amount 489 

of data and also, as discussed earlier, it is questionable whether SOC increases from addition of organic 490 

amendments can be fully regarded as climate change mitigation.  It should be noted that most of the studies are 491 

performed over a few years and assessment of GHG balance in the long term, especially for N2O, are still 492 

missing28. Some practices were too little documented or with not enough information to be compared with the 493 

others (e.g. , biochar or erosion control).  494 

 495 

4. DISCUSSION AND OUTLOOK 496 

Overall, the meta-analysis we gathered here (Fig. 2) suggest that, with the exception of reduced tillage 497 

practices, increased N2O emissions are not sufficient to invalidate the GHG abatement potential achieved by 498 

SOC sequestration strategies. Some sequestration strategies (e.g, biochar or non-pyrogenic organic amendment 499 

application) may even generate win-win situations through a decrease in N2O emissions, although the 500 

experimental evidences are still scant. In addition, the economic impacts and large-scale effects of the options 501 

examined here warrant further assessment. Some practices may affect crop yields or farmers’ income, depending 502 

on pedo-climatic conditions and the details and practicalities of the cropping systems. For instance, conservation 503 

practices, and especially no-till may slightly decrease crop yields under temperate climates but be beneficial in 504 

drier conditions158. Similarly, the yield of arable crops is usually reduced in agroforestry systems in temperate 505 

regions159 but in more arid climates, crops perform better160. Nevertheless, for agroforestry, trees produce timber, 506 
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firewood, honey, fruits, etc. that are also a source of incomes for the farmers and may lead to greater overall 507 

sustainability. Beyond yield impacts, some socio-cultural or economic factors come into play that may hinder the 508 

adoption of carbon sequestration practices. For example, in the United States, the cost of carbon capture through 509 

Natural Resources Conservation Service programs is estimated at US $ 32-442 per tonne of CO2, with an 510 

average of US $ 183161. A carbon price much higher than the present value (around US $ 10 as a global 511 

average162) would be necessary to promote carbon sequestration practices, as well as a regulation to direct the 512 

financial flow of industrial and energy emitters to the agricultural sector. 513 

To be deployed at large scale and to enter emission trading systems, the GHG fluxes of each change in 514 

agricultural practices should be estimated precisely. Various models may be used to account for scale or leakage 515 

effects such as indirect land-use changes 163. The methods currently available include data-driven approaches 516 

based on worldwide measurement networks164, statistical or empirical flux-upscaling models57,164, process-based 517 

models and, lastly, integrated assessment models (IAM)165. Process-based models include a representation of N 518 

cycling processes, which are an essential tool in assessing and predicting the terrestrial N cycle and N2O fluxes 519 

in response to multi-factor global changes. Such models have been used to estimate N2O emissions from natural 520 

and agricultural soils at various scales, from field to global level via the integration of a prognostic N cycle into 521 

different land surface models166. As an example, Fig. 3 shows the results of simulations by various models at 522 

global scale. Most of N2O emissions from cropland are due to the use of mineral fertilizers (Fig. 3a) and are 523 

mainly located in USA, Europe, India and China. They may be used to quantify carbon sequestration in soil 524 

minus the N2O emission trade-off at global scale, based on ensemble runs as was initiated in the global N2O 525 

Model Inter-Comparison Project167.  526 

IAMs focus on the interactions between the economic activities and earth system responses and are vital 527 

for estimating what socioeconomic changes would be needed to reduce GHG emissions across sectors and 528 

increase biospheric C sinks168. Until recently, most IAMs did not explicitly take into account SOC restoration 529 

practices169. A recent study that did include them found that soils could be a sink of 3.5 GtCO2-eq/yr by 2050 530 

under a carbon price of 190 USD/tCO2
13. This carbon mitigation option, if achievable in practice, would reduce 531 

the burden of climate stabilization for all sectors of the economy, including agriculture. In addition, SOC 532 

increases are often correlated with higher crop yields and contribute to a range of other environmental benefits 533 

and increased sustainability of agricultural systems. Practices designed to increase SOC can offer a win-win 534 

solution vis a vis food security, by mitigating food calorie losses resulting from the application of emission 535 

reduction targets (e.g. through decreased applications of mineral fertilizers) and reducing undernourishment.536 
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  537 

Finally, many of the practices reviewed (Table 1) here may be combined on a given field: for example, 538 

no-till can be combined with cover crops, organic amendments, or agroforestry. Such combinations have been 539 

little tested in practice and in particular synergetic effects between them have not been evaluated in depth170,171.  540 

Conversely, they may come with trade-off, antagonistic or synergistic effects regarding SOC storage rates, as 541 

well as N2O emissions or other impacts and these needs to be identified and quantified. Furthermore, proper 542 

assessment of carbon sequestration measures raises classical GHG accounting issues, such as double counting, 543 

improper setting of system boundaries and counterfactual scenarios169. Although further research is still needed 544 

to quantify the potential of SOC sequestration options on a local to regional basis, it appears that their potential 545 

to mitigate climate change, even when factoring in N2O emissions is still significant and that they deserve further 546 

consideration in climate stabilization scenarios. Including the state-of-the-art knowledge reviewed here on the 547 

effectiveness of such measures in land system or integrated assessment models could be a prime target to assess 548 

their impacts at global scale. 549 
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ITEMS: 562 

Table 1: Summary of the effects of management practices on soil organic carbon (SOC) storage and N2O 563 

emissions.  564 

Management Practice Effect on soil C stocks Effect on N2O emissions (a 

priori) 

Reduced tillage / zero tillage Reduced C loss/Increased C 

inputs to soils when 

associated with a reduced 

weed management 

Promote denitrification 

(anaerobiosis)  

Erosion control (contour 

plowing, terracing) 

Reduced C loss Unclear 

Addition of non pyrogenic 

organic amendments 

(compost, manure, crop 

residues) 

Increased C input but in 

some cases (e.g. manure) 

rather a transfer from one 

terrestrial location to 

another than a transfer of C 

from atmosphere to soil 

Enhanced denitrification rate (via 

anaerobiosis and the supply of 

electron donors), and soil N 

availability 

Use of cover crops Reduced C loss/increased C 

input 

Decreased denitrification because 

of N uptake by plants; may be 

compensated for by N inputs from 

BNF 

Biochar Increased C input Decreased nitrification due to 

adsorption of mineral N with 

biochar.  

Agroforestry Increased C input, reduced 

C loss, increased aggregate 

stability 

Decreased denitrification (lower 

soil moisture, increased soil 

porosity, increased nitrogen 

uptake), except for N2-fixing trees 

(increasing soil available N) 
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Figure legends 565 

Figure 1: A schematic representation of C-N interactions in the terrestrial ecosystem. Note that biological 566 

nitrogen fixation and denitrification are process performed by microorganisms that also need C as substrate. 567 

Figure 2: Estimation of the SOC storage and N2O emissions of land-based mitigation options expressed in CO2 568 

equivalents. Negative values indicate a net reduction in GHG emissions in terms of CO2 equivalents, while 569 

positive values show a net increase of CO2 equivalent emissions. All values refer to the difference between the 570 

land-based mitigation option in question and a “control” land (e.g. no-tillage vs conventional tillage). For 571 

agroforestry, the control land is cropland and different types of agroforestry systems were considered. NB: In 572 

Kim et al. (2016) the majority of soil C storage data comes from intercropping, improved fallows and rotational 573 

woodlots, which are systems with high tree density. This could partially explain the very high estimation of soil 574 

C storage found in Kim et al. (2016) compared to other papers. Organic amendments do not include biochar. The 575 

control used for comparison with organic amendments is an experiment managed with inorganic fertilizers. For 576 

cover crops meta-analysis, Vicente-Vicente et al. (2016) only consider Mediterranean woody crops (olive, 577 

almond and vineyards), which could also explain the large soil C rates estimated. Uncertainty is given as 578 

standard error (SE) for every paper. If it was provided as a confidence interval (CI) or standard deviation (SD) it 579 

has been adequately transformed to unify the units. (*Reviews; ** For these meta-analysis the values reported in 580 

the graph have been recalculated as the weighted mean across all experiments, from the database provided by the 581 

authors, because the values coming from the papers could not be used as they were reported as a percentage 582 

only).121,157,172,173 583 

Figure 3: Spatial and latitudinal patterns of contributions of fertilizer (a) and manure (b) on cropland soil N2O 584 

emissions obtained during the global N2O Model Intercomparison Project167. Average over the 2006-2015 585 

period. 586 

  587 
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[Box 1: Intertwined soil C and N cycles. Primary producers fix atmospheric CO2 through 588 

photosynthesis and produce biomass that subsequently enters the soil via rhizodeposition and litter production or 589 

via organic amendments or deposition due to erosion or dissolved organic carbon (DOC) leaching into the 590 

subsoil. Organic C entering soil is further processed by soil organisms into organic by-products and subsequent 591 

CO2 losses during mineralization. SOC can also be lost through fire, or displaced by erosion/deposition and 592 

lateral transfer of DOC. The net difference between C inputs and outputs determines how much organic C is 593 

stored in the soil. A part of this carbon is stabilized for decades to centuries through several mechanisms such as 594 

interactions with the soil mineral matrix, chemical recalcitrance or protection within aggregates. Nitrogen can 595 

enter the soil via atmospheric deposition or biological N2 fixation, or as mineral or organic fertilizers. Nitrogen 596 

can leave the soil through plant uptake, leaching or gaseous emissions. The critical N pool sustaining plant 597 

growth is mineral N (ammonium (NH4
+) and nitrate (NO3

-)), which either originates from the mineralization of 598 

soil organic matter and ammonification as well as from mineral fertilizers inputs. Specific chemotrophic 599 

microorganisms called nitrifiers can oxidize ammonium, first into nitrite (NO2
-) and then into nitrate. The reverse 600 

process called dissimilatory nitrate reduction can occur in anaerobic conditions174. Heterotrophic denitrifying 601 

communities can also use nitrate and reduce it to N2. In each of these processes, nitrous oxide (N2O) can be 602 

generated175. Net N2O emissions from the soil will usually be lower when the amount of soil mineral N is low 603 

and when soil pH is alkaline55,175 but also when C and oxygen availability are reduced56,175. N can also be lost as 604 

NH3, or as other gaseous forms of N oxides that can be deposited and contribute to indirect N2O formation.] 605 

 606 

  607 
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