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Abstract

New clustering algorithms are expected to manage complex data, meaning var-

ious shapes and densities while being user friendly. This work addresses this

challenge. A new clustering algorithm KdMutual1 driven by the number of clus-

ters is proposed. The idea behind the algorithm is based on the assumption that

working with cluster cores rather than considering frontiers makes the clustering

process easier. KdMutual is based on three steps: The �rst one aims at identi-

fying the potential core clusters. It relies on mutual neighborhood and includes

speci�c mechanisms to identify and preserve potential core clusters. The second

step is based on a constrained hierarchical process that deals with noise. In

the last step the potential clusters are selected using a speci�c ranking criterion

and the �nal partition is built. KdMutual combines the best characteristics of

density peaks and connectivity-based approaches. It is capable of detecting the

non-presence of natural clusters. Tests were carried out to compare the proposal

with 14 other clustering algorithms. Using 2-dimensional benchmark datasets

of various shapes and densities they showed that KdMutual was highly e�ective
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in matching a ground truth target. It also proved e�cient in high dimensions

when clusters are well separated. Moreover, it is able to identify clusters of

various densities, partially overlapping and including a large amount of noise

within spaces of moderate dimension.

Keywords: clustering, mutual neighbors, agglomerative, dissimilarity, density

1. Introduction

There are two kinds of clustering algorithms that are used in two di�erent

situations. When the purpose is knowledge discovery or data structure identi-

�cation, the number of clusters is unknown and the algorithm is expected to

propose acceptable partitions. In this case, the number of clusters cannot be5

a parameter of the algorithm. In contrast, there are also situations where the

number of clusters is a priori de�ned. In image processing, the number of dif-

ferent objects may be known, e.g. roads, forests, crop �elds, buildings in remote

sensing. Similarly, when de�ning business strategies or market segmentation,

the number of groups is given by the user. The present proposal deals with the10

second case: the number of groups is the main parameter of the algorithm.

Three basic notions of what a cluster is lead to three main types of al-

gorithms. If a cluster is de�ned by its center and a basin of attraction then

distance is the central concept. It is also possible to de�ne a cluster as a dense

area separated from another cluster by a sparsely populated zone; in this case,15

density is the key idea. Finally, a third de�nition is based on a set of connected

points, in which case neighborhood is of prime concern.

When the data are easy to cluster, meaning that the groups are well sepa-

rated, most of the existing algorithms are likely to yield a good result. Their

limitations are well-known in presence of complex data, groups with di�erent20

sizes, shapes or densities, or the presence of noise. Recent developments have

focused on more and more complex structures using new criteria and heuris-

tics: non-linear distances with the kernel k-means, neural-networks, Bregman

distances or graph-based algorithms, hierarchical representation with agglomer-
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ative algorithms, based on density with DBSCAN [1], Recon-DBSCAN [2] and25

Optics [3], Chameleon [4], DENCLUE [5], the mean shift algorithm, SCDOT

[6] or Munec [7].

Among recent algorithms the density peaks clustering algorithm, DP, was

proposed in 2014 [8] and has become popular. It is based on the idea that

cluster centers are characterized by a higher density than their neighbors and30

by a large distance from items with a higher density. The local density, ρ, is

estimated by the sum of distances of neighbors included in the r-hypersphere

and the distance, δ, is the minimum distance to any higher density point. The

2D-plot ρ-δ allows for the identi�cation of centers and outliers. The former

have high values on the two axes, while the latter are characterized by a low35

density and a high distance. DP is well known for its ability to identify clusters

even in complex situations (partial overlapping, non spherical shape, presence

of noise). The pioneering algorithm however su�ered from some drawbacks due

to its simplistic partition strategy: once a high density point was mishandled,

its lower-density neighbors were more likely to be misclassi�ed. Improvements40

were recently proposed [9, 10, 11, 12, 13].

Globally, recent algorithms have proven to be more e�cient but as they in-

clude additional heuristics, they produce more complex algorithms that are not

really user-friendly. In addition, these heuristics are usually extensively tested

using low dimensional data (2 or 3-D) and may exhibit an unstable behavior45

with increasing, even moderate, dimension spaces.

Practitioners prefer to use e�cient clustering algorithms, based on simple

ideas, and that are easy to tune even with complex data. Unfortunately, the

most popular algorithms are still the classical ones, often in their pioneering

version despite available improvements. This work addresses this challenge.50

The proposal assumes that a cluster is characterized by the distribution of

its neighboring patterns. This distribution is likely to be quite homogeneous

in the core of the cluster, with a decreasing level of homogeneity when moving

away from the core. This internal structure is expected to be di�erent for

distinct clusters: the di�erence between two clusters stems from their inner55

3



spatial arrangement and their proximity.

The goal for the algorithm is to yield representative clusters that include a

signi�cant number of items. Classical algorithms such as k-means or hierarchical

clustering cannot guarantee this result. The practitioner also expects robustness

to noise and variability in shape or density, and the ability to handle spaces60

of moderate dimension (≈10). As the algorithm is driven by the number of

clusters, the remaining parameters should be limited in their number as well as

in their impact, and easy to understand. Recent studies show that the available

algorithms fail in at least one of these requirements [7].

The main ideas the proposed algorithm is based upon are the following65

ones. First, clusters are easier to distinguish using cores rather than frontiers:

the spatial arrangement of patterns is likely to change when moving away from

the core. Searching for density peaks is part of the answer as it does not work

with frontiers. Unfortunately, there exist con�gurations where the density peak

is not well marked or, in the opposite case, where the cluster includes several70

peaks. The second idea the proposal is based upon is that connectivity tech-

niques are good at identifying complex-shaped clusters. But it is not easy to

�nd a universal metric able to deal with the di�erent kinds of frontiers. The

proposal aims to combine the best of these techniques in an innovative scheme.

Mutual neighborhood is useful as no threshold is needed, whether for distance75

or neighborhood de�nition. This enables varying density to be managed in the

same input space.

The algorithm comprises three steps. The �rst one is the identi�cation

of potential core clusters based on mutual neighborhood in order to protect

this structure by forbidding the merging of two cores. In the second step,80

the potential cores are allowed to grow under constraints to manage noise and

scarcely populated area. This is done using a single linkage, which generalizes

the mutual neighborhood concept to groups, �ltered with noise. In the last step,

the potential cores are ranked according to a new selection criterion to de�ne

the k �nal clusters. The criterion is based on three components: the cluster size85

(cardinality), its compactness assessed by the mean distance between mutual

4



neighbors and the partition separability, measured by the distance to the nearest

cluster of higher size. To build the �nal partition, noise can be assigned a speci�c

label. The proposal is called KdMutual where k indicates that it is driven by

the number of clusters, d indicates the role of density in the cluster de�nition90

and Mutual as this is the central concept for merging.

The rest of the work is organized as follows. Section 2 reviews the most

closely related work to KdMutual and section 3 is dedicated to the presentation

of the algorithm itself. The main idea is illustrated using a simple example illus-

trating the global behavior and the di�erent steps. The novel ranking criterion95

is presented in Section 3.4, the numerical experiments carried out are reported

in Section 4 while the �nal remarks and open perspectives are stated in Section

5.

2. Related work

As the proposal includes two distinct contributions, this section deals with100

the two issues: clustering algorithms and merging criteria.

2.1. Neighborhood-based clustering algorithms

Several reviews of clustering algorithms are available [14, 15, 7]. This section

is restricted to the approaches that are close to the proposal. Neighborhood is

a transversal notion that can be used either in distance (volume) or density105

(number of points) based algorithms, or as the basis of the algorithm. A recent

neighborhood-based clustering literature review can be found in [7]. The neigh-

borhood de�nition usually involves a highly sensitive parameter. To eliminate

this parameter, the mutual nearest neighbors can be used. With the restriction

to the �rst mutual nearest neighbor no threshold, whether on distance or on the110

number of neighbors, is required.

The concept of mutual nearest neighbors was introduced in 1978 [16] in the

same period as the pioneering method of Shared Nearest Neighbors [17]. The

authors' motivation came "from real life observations. Two persons A and B
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group together as close friends if they mutually feel that the other is his closest115

friend. If A feels that B is not such a close friend to him, then even though

B may feel that A is his closest friend, the bond of friendship between them

is comparatively weak. If each feels that the other is not his friend, then the

two do not group together as friends. In other words, the strength of the bond

of friendship between two persons is a function of mutual feelings rather than120

one-way feeling. Similarly two samples form a cluster if they are mutually near

neighbors rather than simply near neighbors" [16].

The mutual neighbor concept is useful for describing the inner structure as

well as for characterizing the between group proximity. It can be extended to

clusters.125

Two clusters, cl and cm, are mutual nearest neighbor clusters, cl Mnnc cm,

if there exist x ∈ cl and y ∈ cm where x and y are mutual nearest neighbors

when the neighbors in their respective groups are not considered.

The distance between the two mutual neighbors is the single-link distance

between the mutual nearest neighbor clusters:130

dl,m = min
x∈cl,y∈cm

d(x, y) (1)

A cluster, l, is characterized by [7]:

• nl: the number of distances between two mutual neighbors. The total

number of points is nl + 1;

• dl: the mean distance between two mutual neighbors.

When two clusters, l and m, are merged, the internal descriptors, n and d,135

become:

n = nl + nm + 1, d =
1

n
(nldl + nmdm + dl,m) (2)

A similarity index was proposed in [7]. It is based on three distances, without
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accounting for the cluster cardinalities. It is computed as:

s =
√
sl,m sm,l (3)

where sl,m =
min(dl, dl,m)

max(dl, dl,m)
, and sm,l is de�ned in the same way with respect

to dm.140

The closer the distances dl, dm, dl,m, the higher the index and the more

suitable the merging of the considered sub-clusters. Neighboring clusters are

merged when the similarity index is higher than a threshold, e.g. sth = 0.2, in

order to avoid noise.

The properties of single linkage, which generalizes the concept of mutual145

neighborhood to clusters, were studied in [18]. This work also proposed two

complementary improvements. First, the hierarchical algorithm forbids the

merging of representative clusters, higher than a minimum size, once they have

been identi�ed. Second, the single linkage criterion takes into account the local

density to make sure the distance involves core points of each group. In this150

work, the distance between the groups was a weighted average of all the dis-

tances between two core points. These two ideas are used in this work, with a

simpli�ed distance between groups as detailed in the next section.

2.2. Review of the main criteria

The goal of the criterion is to select the �nal core of clusters that will not155

be merged in the last step father algorithm and that are likely to form a good

partition, i.e., with compact clusters well separated from each other. Two kinds

of measures may be of interest: merging criteria and cluster validity indices.

Many operators were proposed and studied in the scienti�c literature. In

this section, some of them are reviewed according to the kind of information160

they are based on.

Distance-based agglomerative criteria. This family includes single, complete or

average linkage, centroid, median or ward criteria. They are all based solely on
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proximity and a recent study [18] showed that the single linkage is powerful and

able to handle various kinds of shape even if sensitive to noise.165

Combining distance and neighborhood. The Chameleon approach [4] was the pi-

oneer and is still the basis of, or a source of inspiration for, recent developments.

The algorithm uses a neighborhood sparse-graph for item representation. Two

vertices, p and q, are connected by an edge if:

p Cham q ⇐⇒ p ∈ Nk(q) OR q ∈ Nk(p) (4)

where Nk(p) is the set of the k nearest neighbors of p, de�ned as:

Nk(p) = {x(1), x(2), . . . , xk)}, with ||x(1) − p|| ≤ ||x(2) − p|| ≤ . . . ||x(n−1) − p||.

The edges are valued by the similarity between the considered items. In this

way a connected sub-graph corresponds to a cluster. The algorithm includes

two steps. First the graph is partitioned into many sub-clusters according to a170

min-cut criterion [21]. In the second step, sub-clusters are iteratively merged

based on their similarity, de�ned as a combination of relative interconnectivity

(RI) and relative closeness (RC). Using relative values instead of absolute ones

enables an adaptive modeling. The similarity between sub-clusters ci and cj is

de�ned as:175

Sim(ci, cj) = RI(ci, cj) ·RC(ci, cj)α (5)

α > 0 is used to weight the relative closeness with respect to the relative

interconnectivity.

The relative interconnectivity is the absolute interconnectivity, the sum of

the weights of the edges in the two clusters, normalized by their internal connec-

tivity. The relative closeness is de�ned in a similar way with the average weight.180

The relative closeness discourages the merging of small sparse clusters into large

dense ones, and the resulting cluster has a uniform degree of closeness among its

items. The two parameters of the algorithm are α (in the original paper α = 2)

and the number of neighbors (10). No clue is given about how to choose this

in�uential parameter. There is no clear insight into noise management.185
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Combining distance and density. A recent study [8] was based on the idea that

cluster centers are characterized by a higher density than their neighbors and

by a large distance from items with a higher density. The local density, ρ, is

estimated by the sum of distances of neighbors included in a r-hypersphere and

the distance, δ, is the minimum distance to any higher density point.190

The 2D-plot ρ-δ allows for the identi�cation of centers and outliers. The

former have high values on the two axes, while the latter are characterized by a

low density and a high distance. Then the groups are ranked according to the

ρδ product in decreasing order.

The main parameter is the radius that de�nes the neighborhood. It is di�-195

cult to de�ne. As a rule of thumb, this paper proposes to choose the value that

yields an average number of neighbors between 1 and 2 % of the data.

Combining distance and shared neighborhood. In [22, 23] the index used pe-

nalizes the connectivity, assessed by the number of shared neighbors, by the

distance as follows:200

cd(ci, cj) =

∑
i∈ci

∑
j∈cj

bij + bji
d(i, j)

|ci| |cj |
, bij =

 1 if j ∈ Nk(i)

0 otherwise
(6)

The cardinality is only used to compute the mean of the distribution. The

result is very sensitive to the number of neighbors which is di�cult to set in the

general case. Moreover, the computation of the neighbors is quite slow even for

moderately sized datasets.

Silhouette. The Silhouette index [24] for a cluster, ci, is computed as the average205

of a value, s, that characterizes each data point, p, of the cluster, c. The latter

involves two components:

a(p) =
1

|c| − 1

∑
q 6=p∈ci

d(p, q) (7)

b(p) = min
j 6=i

1

|cj |
∑
q∈cj

d(p, q) (8)
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a(p) represents the mean distance between p and all the other points in the

cluster while b(p) is the smallest mean distance between p and all the points of

another cluster. The s value is de�ned as follows:210

s(p) =
b(p)− a(p)

max
(
a(p), b(p)

) if |c| > 1, 0 otherwise (9)

According to Eq. (9), −1 ≤ s(p) ≤ 1. This is also the range of the Silhouette

index. The higher the value, the better.

Averaged over all the clusters it is used as a cluster validity measure to

characterize the whole partition.

Eq. (7) assesses the compactness of the cluster and Eq. (8) its distance215

from the nearest one. It is worth pointing out that a(p) involves all the internal

distances, thus the value is likely to be shape dependent: it is smaller for a

disk than for a line. In the next section, a cluster is characterized by the mean

distance but between neighbors only. This makes a big di�erence.

3. The KdMutual algorithm220

The clustering algorithm is driven by the number of desired clusters. It

aims to yield representative clusters even with complex data, groups of varying

shape and density, with a high level of noise that makes the clusters overlap.

The whole approach includes three steps as shown in Algorithm 1.
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Algorithm 1 Overview of the clustering algorithm

1: Input: X (n items), k, sth, noise

2: Output: S a partition of X with an optional noise label.

3: distinguish = TRUE

4: α = 0.2, prop = 0.7, λ = min

(
5,

100

k

)
{Internal parameters}

5: S = CoreClust(X, k, sth, λ, distinguish)

{Core cluster building using mutual neighbors - Algorithm 2}

6: if (distinguish==FALSE) then

7: S = CoreClust(X, k, sth, λ, distinguish)

{Run again the algorithm with distinguish = FALSE}

8: else

9: S = HierClust(S, k, prop, λ, α)

{Decrease number of cores using hierarchical merging - Algorithm 3}

10: end if

11: S = FinalPartition(S, k, noise) {Algorithm 5}

12: return S

The core cluster identi�cation may fail when the groups are di�cult to dis-225

tinguish. First the algorithm is run with the corresponding �ag set at TRUE

(Algorithm 1, line 3). If it is turned to FALSE, when the most populated

cluster includes half of the items (Algorithm 2, line 34), then the algorithm is

run again with this information and the merging process ends when one cluster

reaches a size of n
λk (Algorithm 2, lines 3 and 7), and the hierarchical algorithm230

is skipped (Algorithm 1, line 9).

The �rst two stages deal only with core clusters ignoring frontiers. The

speci�c goal of the �rst one is core identi�cation. The number of potential cores

is greater than the number of clusters. This step is based on mutual neighbor

merging. This concept does not require any distance threshold and thus is able235

to manage di�erent densities. Potential cores are identi�ed in a parallel way.

Once the groups have been designed, it is possible to characterize each of them,

the mean of the distance between mutual neighbors is used in this work. Based
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Figure 1: Illustration of the whole process. From left to right and from top to bottom: after

20 iterations, after the �rst stage of step 1 (Algorithm 2, line 16), at the end of step 1, at the

end of step 2, (Algorithm 3), the �nal partition.

on the local density distribution, items can be labeled as noise and not be taken

into account at step 2. The connectivity technique used in the hierarchical240

process in this step allows for the cores to grow while forbidding between-core

merging. This is a sequential process: only one merging is done at each iteration.

To achieve the last mergings in step 3, a new criterion is introduced to select the

�nal cores and build the resulting partition. The whole process is illustrated in

Figure 1: it can be seen that despite the presence of noise and partial overlapping245

several sub-clusters are quickly formed and grow without interfering with one

another, which makes the identi�cation and building of the �nal partition easier.

The three steps are now detailed while the criterion is described in Section

3.4.250
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3.1. Merging of mutual neighbors

The �rst step is summarized in Algorithm 2. Instead of absolute distance,

proximity is based on mutual neighborhood. This makes it possible to manage

various densities thanks to local distances between mutual neighbors.
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Algorithm 2 CoreClust

1: Input: X, k, sth, λ, distinguish.

2: Output: S, a partition of X, MinSize

3: S = X, |S| = n, size = 0, MaxSize = n
λk

4: if (distinguish == TRUE) then

5: Condition=(size ≤ n

2
AND |S| ≥ λk)

6: else

7: Condition= |ci
∀ci⊂S

| ≤MaxSize

8: end if

9: while (Condition) do

10: Compute sth {median of all the mutual neighbor similarities}

11: for all (ci, cj ∈ S × S) do

12: if (ci Mnnc cj AND sci,cj > sth ) then

13: Merge(ci, cj), |S| = |S| − 1

14: end if

15: end for

16: Sort zi ⊂ S, i ∈ [1, λk], such as |z(1)| ≥ |z(2)| ≥ . . . |z(λk)|

17: size = 0

18: for (i ∈ [1, λk]) do

19: size = size+ |zi| {number of items in the λk most populated clusters}

20: end for

21: end while

22: Tag the λk representative clusters that include at least n/2 items.

23: MinSize = |zk| {input of algo 3}

24: while (|S| ≥ λk) do {Keep merging to get λk clusters}

25: for all (ci, cj ∈ S × S) do

26: if
(
not(tag(ci) AND tag(cj)

)
then

27: if (ci Mnnc cj AND sci,cj > sth) then

28: Merge(ci, cj), |S| = |S| − 1

29: end if

30: end if

31: end for

32: end while

33: if (max(|ci|)
ci⊂S

≥ n/2) then

34: distinguish = FALSE

35: end if

36: return S, MinSize

14



The �rst while loop of Algorithm 2, lines 9-21, aims to identify the potential255

cores of the clusters. The number of cores is set at a multiple of the desired

number of clusters, λk, de�ned as an internal parameter in line 4 of Algorithm

1. The assumption is that the k clusters can be identi�ed from the λk potential

cores de�ned using mutual neighborhood. The stopping condition depends on

the distinguish parameter (lines 5 and 7). When the groups are distinguishable,260

the loop ends when at least λk clusters that represent half of the data size have

been identi�ed. The loop usually ends when the size condition is ful�lled. At

this stage, the λk potential cores are tagged, line 22, and the size of the kth

biggest group is stored to be used in the next step, line 23. Otherwise, when the

groups are not distinguishable, the process stops as soon as one group reaches265

the maximum authorized size de�ned as n
λk (line 3) to avoid a large coalescence.

To strengthen the robustness of the mutual neighbor concept, not all the

mutual neighbors are merged. A threshold is de�ned on the similarity index,

de�ned in Eq. (3), that involves the mean of the distances between neighbors in

each group as well as the between group distance, line 10. It is computed at each270

iteration, as the median of all the similarity values between mutual neighbors.

This way, only half of the pairs, the most similar ones, are merged, avoiding

potential outliers.

Illustration 1. This part of the process is illustrated in Figure 2 with synthetic

data inspired from [8]. The set is made up of 5000 2D-points organized in 5275

clusters with di�erent shapes, sizes, partial overlapping and a signi�cant amount

of noise. This kind of data cannot be managed by classical algorithms such as

k-means or hierarchical ones. Even more recent algorithms, such as DBSCAN,

would be di�cult to tune in this case. The proposal is run with k = 5 and yields

the same partition with λ ∈ [3, 7]. The plot corresponds to λ = 3, meaning that280

the process ends when the 15 potential cores include half of the data. The

total number of groups is 502 and the cardinality of the 5th biggest cluster is

MinSize = 184.

Then, in a second while loop, lines 24-32, the algorithm continues to merge
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Figure 2: Data (left) and the result of the �rst while loop of Algorithm 2. The axis labels are

the x and y coordinates.

until the number of clusters is λk with an important restriction: the merging285

between the identi�ed cluster cores is forbidden. Thus tagged clusters may be

merged with untagged ones and the groups that were not identi�ed as potential

cores can also grow. The merging is controlled by a threshold on the similarity

index, e.g. sth ∈ [0.2, 0.5]. The threshold value has a limited impact on the

result. The higher its value the less numerous the mergings, meaning that more290

work is left to the next step.

Illustration 2. Figure 3 shows the impact of three threshold values on the data

previously used. At the end of Algorithm 2 the number of groups is respectively

20, 163 and 478 for sth values of 0.2, 0.5 and 0.8. Whatever the threshold, the

structure is preserved.295

3.2. Hierarchical merging

This step starts with λk cores representing more than 50% of the whole

population and ends with a number of clusters nClust, such as k ≤ nClust ≤

λk, that represents a higher percentage of the population, e.g. prop = 70%. It

carries the same meaning as the previous one but there are two main di�erences300

with the mutual merging stage. First, the number of groups is controlled as

there is only one merging at each iteration. Second, noise is explicitly taken
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Figure 3: Clusters given by Algorithm 2 using three sth values: 0.2, 0.5 and 0.8. The axis

labels are the x and y coordinates.

into account. Mutual neighbor merging is based on the single linkage, whereas

the hierarchical process uses a �ltered single linkage (fsl): it computes the single

linkage criterion but after trimming the density distributions.305

fsl(ci, cj) = sl(c∗i , c
∗
j ), c

∗ = c \ {∪xi|xi is noise} (10)

where sl is the single linkage criterion de�ned as: sl(ci, cj) = min
x∈ci,y∈cj

d(x, y).

Thus fsl yields the distance between core clusters while the single linkage

with noise, sln, proposed in a previous study [18], was a weighted average of

the closest core items and the noise between the two groups. This precision was

not required for the clustering algorithm and the proposed fsl is appreciably310

faster. The hierarchical process is described in Algorithm 3.
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Algorithm 3 HierClust

1: Input: S, λ, prop, dist, MinSize

2: Output: S

3: End = FALSE

4: for (ci ∈ S) do

5: NoiseLabeling(ci) {Label noise points in cluster ci, Algorithm 4}

6: end for

7: while (|S| ≥ k AND End == FALSE) do

8: min =∞

9: for (ci, cj ∈ S × S) do

10: if (fsl(ci, cj) < min) then

11: cw1 = ci, cw2 = cj ,min = fsl(ci, cj) {Eq. (10)}

12: end if

13: end for

14: Merge(cw1, cw2), |S| = |S| − 1

15: dw =
(|cw1| − 1)dw1 + (|cw2| − 1)dw2 + fsl(cw1, cw2)

|cw1|+ |cw2| − 1
{Eq. (2)}

16: NoiseLabeling(cw) {Label noise points in the new cluster}

17: size = 0, MinSize = max(MinSize, n/50)

18: for (ci ∈ S) do

19: if (|ci| > MinSize) then

20: size = size+ |ci|

21: end if

22: if (size ≥ prop n) then

23: End = TRUE

24: end if

25: end for

26: end while

27: return S

The �rst step of the algorithm, line 5, is noise labeling which is detailed in

Algorithm 4.
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The local density for a given point in a cluster, x ∈ c, is thus the number of

items of the cluster that fall within the hyper-volume centered on x having as315

radius r = 2dc, dc being the average between neighbors that characterizes the

cluster and that is used to compute the similarity index, line 4.

Algorithm 4 NoiseLabeling

1: Input: c (a cluster), α

2: Output: noisec, binary vector identifying noise points.

3: for all (i ∈ c) do

4: densc[i] =
∑

j( 6=i)∈[1,|c|]
H(2dc − d(i, j))

dc
max(dc, d(i, j))

{Only the points inside the hypersphere centered in i with radius 2dc are

considered. H is the Heaviside function, d the euclidean distance.}

5: end for

6: Q = Quartiles(densc)

7: for all (i ∈ c) do

8: noisec[i] = FALSE

9: if (densc[i] ≤ Q1 − α(Q3 −Q1)) then

10: noisec[i] = TRUE

11: end if

12: end for

The whole distribution is taken into account to identify noise items. The

noise detection is based upon the interquartile range. A data item, x, is labeled

as noise when dens(x) < Q1 − α(Q3 − Q1), line 9. It has to be highlighted320

that this density is relative to each group and not to the whole dataset. This is

essential to manage clusters with distinct densities. α is de�ned as an internal

parameter of Algorithm 1 in line 3. To display the outliers in the boxplot, the

value of α = 1.5 was proposed by [19]. The objective in this work is not outlier

identi�cation, but to ensure that the points that are not labeled as noise are325

part of the cluster. A typical value of α = 0.2 was used in this paper.

Once noise points have been labeled, mergings are carried out in the main

loop of Algorithm 3, lines 7-26. The for loop, lines 9-13, identi�es the two
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clusters to be merged: the ones for which the single link distance, computed

without taking noise points into account, is minimum. The characteristics of330

the new cluster are easily updated according to Eq. (2), line 15, and the noise

labeling is done for the new cluster, line 16.

The stopping criterion of Algorithm 3 is size: proportion of the population

in the representative clusters, line 22. To account for the data structure, the

cardinality of the kth largest core identi�ed in the previous step serves as a335

threshold to de�ne a representative cluster, line 19. However to avoid including

small cores due to high variation in the local spatial arrangements, the whole

size is also taken into account. The �nal value, Minsize = max(|sk|, n/50),

line 17, ensures that the representativeness is computed from only well formed

groups.340

Illustration 3. Figure 4 shows that the result of Algorithm 3 is barely visible

on the left part, sth = 0.2, but highly noticeable on the right part, sth = 0.8:

the number of groups decreases from 478 to 174, while only two more mergings

were done in the case of sth = 0.2, and four with the intermediate value of 0.5.

Figure 4: Clusters given by Algorithm 3 for the three values of sth, 0.2, 0.5 and 0.8 from left

to right, and prop = 0.7. The axis labels are the x and y coordinates.

The proportion parameter is a key feature of the algorithm. If too low,345

e.g. prop < 0.6, there is the risk of confusion in the presence of local peaks

in the same cluster: they could be identi�ed as two cores and the decision
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in the following steps could be more di�cult to make. This risk must not be

overestimated as the previous step, Algorithm 2, yielded a well de�ned structure

with λk potential core clusters representing at least half of the data. If too high,350

when the amount of noise is signi�cant, partially overlapping clusters are likely

to be merged.

Illustration 4. With prop = 0.8, on the left part of Figure 5, two clusters that

partially overlap are merged (black) and, as a result, some noise points are

included in a cluster (green). With prop = 0.9 the phenomenon is ampli�ed.355

The four main clusters are merged. The algorithm fails when prop is too high.

Figure 5: Final partitions with two di�erent values, 0.8 (left) and 0.9 for the prop parameter

in Algorithm 3 and slimw=0.8. The axis labels are the x and y coordinates.

A value of prop = 0.7 is a good trade-o� as it allows a large amount of noise

(30%) to be handled.

3.3. The last merging steps

This is the most di�cult part of the whole process. At the beginning of this360

step the number of core clusters is likely to be higher than k.

The goal in this stage is twofold: select the k �nal core clusters and carry out

the last mergings to yield the �nal partition. A new criterion is proposed, and

is detailed in Section 3.4, to select the �nal core clusters, line 7 of Algorithm 5.
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Algorithm 5 FinalPartition

1: Input: S, k, noise

2: Output: S

3: cardmin = min( n
100 , 3)

4: for all (ci ∈ S) do

5: Crit[i] = 0

6: if (|ci| ≥ cardmin) then

7: Crit[i] = |ci| dNear+[i]/dci
8: end if

9: end for

10: Sort zi, zi ⊂ S such as Crit[z(1)] ≥ Crit[z(2)] ≥ . . . Crit[z(λk)]

11: Tag the �rst k clusters

12: Merging = TRUE

13: while (|S| ≥ k AND Merging == TRUE) do

14: Merging = FALSE

15: for all (ci, cj ∈ S × S) do

16: if
(
not(tag(ci) AND tag(cj)) AND ci Mnnc cj

)
then

17: if
(
not(noise) OR (noise AND sci,cj > sth)

)
then

18: Merge(ci, cj), |S| = |S| − 1, Merging = TRUE

19: end if

20: end if

21: end for

22: end while

23: return S
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The criterion involves the mean distance between neighbors and it can only365

be computed for clusters with a minimum cardinality, line 3.

The clusters are sorted in decreasing order according to the criterion. The

�nal core clusters are the �rst k ones, and they are tagged, line 11. Then the

mergings are carried out, but they cannot involve two tagged clusters, line 16.

Depending on the �ag noise all items are clustered or the ones for which the370

similarity index is lower than the limit, sth = 0.2, are assigned a noise label,

line 17.

Figure 6: Selected �nal core clusters given by Algorithm 5 for the three values of sth: 0.2, 0.5

and 0.8 from left to right. The axis labels are the x and y coordinates.

Illustration 5. For the three values of sth the �nal core clusters are correctly

identi�ed as shown in Figure 6. Using sth = 0.2, more items are already assigned

a cluster while using higher values they are still isolated. The �nal partitions375

plotted in Figure 7 are similar. No signi�cant di�erence can be highlighted. This

is a strong asset of the whole algorithm: the progressive structure identi�cation,

with stronger control mechanisms, depends only slightly on this parameter.

Complexity analysis. The hierarchical algorithm (Algorithm 3) complexity is

O(n3). The �rst step (Algorithm 2) is likely to speed up the process by achiev-380

ing several mutual mergings at each iteration. However, as the number of merg-

ings is data dependent, the whole complexity remains that of the hierarchical

algorithm. In our implementation, the distance matrix is stored yielding a space
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Figure 7: Final partitions given by Algorithm 5 for the three values of sth: 0.2, 0.5 and 0.8

from left to right. The axis labels are the x and y coordinates.

complexity of O(n2). The algorithm can however be run without the storage

of the distance matrix. This would allow for managing larger datasets but385

with an increase in the running time. For large datasets, it is recommended to

preprocess the data with sampling techniques to improve tractability. Smart

algorithms such as ProTraS [20] are available.

3.4. The proposed criterion

The new criterion combines density and distance. Density is computed as390

the ratio of the cardinality, |c|, to the mean distance between neighbors, dc.

The latter better characterizes a group than the average internal distances as it

re�ects the tightness of the connection between neighbors whatever the cluster

shape.

Distance is considered, but only distance from larger groups:

dnear+(c) = min
|ci|>|c|

fsl(c, ci) (11)

The main idea is that a potential core, built in the previous steps, is likely395

to be a core cluster if it is dense and far from another dense group.

First the most populated group is chosen, then the remaining ones are ranked

according to decreasing values of the criterion given in Eq. (12).

Crit(c) =
|c| dnear+(c)

dc
(12)
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The criterion is computed only among representative groups, |c| > n/100.

The three components of the criterion account for the cardinality of the clus-400

ter as representative groups have a signi�cant size, for its compactness assessed

using the mean distance between neighbors and the separability of the groups

in the partition quanti�ed by the minimum distance to a bigger group.

In order to assess the behavior of the proposed criterion, a comparison was

carried out, using the data already used in the previous section, with known405

alternatives.

The �rst criterion is based on the single linkage. It selects the clusters for

which the minimum �ltered distance to the nearest cluster is maximum as shown

in Eq. (13).

Critsl(ci) = max
cj 6=ci∈SR

(
min(sl(ci, cj)

)
(13)

Only the set of representative clusters, SR, is considered.410

The second one is based on Eq. (6). The maximum value is used as a

merging criterion. To select the cores the criterion is computed following Eq.

(14).

CritLee(ci) = max
cj 6=ci∈SR

min


∑
i∈ci

∑
j∈cj

bij + bji + 1

d(i, j)

|ci| |cj |

 (14)

There is a di�erence with Eq. (6): a �xed value, 1, has been added to the

number of shared neighbors to account for the pairs of groups that do not share415

any neighbors. These groups are not likely to be merged, hence the sum of

shared neighbors in Eq. (6), but may be interesting to select, especially if the

between-group distance is high.

Finally, the Silhouette index, Eq. (9), can also be used to rank the cores.

Illustration 6. Figure 8 shows that the three criteria fail to identify the suitable420

core clusters. The left plot shows that a single distance, even �ltered with

noise, is not appropriate. The criterion used in the center plot is more complex
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Figure 8: The selected clusters are plotted in color (not black). They are selected according

to the single link based criterion, Eq. (13), (left), the combination of neighborhood (k = 3)

and distance, Eq. (14), (center) and the Silhouette index, Eq. (9), (right). The axis labels

are the x and y coordinates.

as it combines distance, shared neighborhood and cardinality. Various values

of k were tested but none gave the expected result. The cores selected by the

Silhouette index are the more spherical ones because the index accounts for all425

the pairwise distances and cardinality is not taken into account.

In contrast, the combination proposed with the new criterion works as ex-

pected as shown in Figure 6.

4. Numerical experiments

The KdMutual was then compared to rival algorithms using two types of430

data: 2D-benchmark datasets known in the literature and data generated using

the genRandomClust R package2. All the methods were evaluated until d = 10

and only the best ones for d = 50 and d = 100.

The clusters have di�erent sizes, densities and separation levels. The data

were standardized and when the data size was higher than 5000 a sampling435

using the ProTraS algorithm [20] was carried out in order to limit the runtime.

The objective of the quantitative comparison was to check whether each of

2https://www.r-project.org/
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the competitive algorithms was able to reach the ground truth target. This

choice of external validation was motivated by the lack of a generally accepted

internal index validation. Three popular indices were used for partition compar-440

ison: the Rand Index [25], the Mutual Information Index [26] and the F-measure

[27]. When noise is identi�ed using a speci�c label in the ground truth, noisy

points are not taken into account for index computation.

4.1. Competitive algorithms

The proposal was compared to fourteen selected algorithms, described in445

Table 1 with their user parameters. In this table, k stands for the number of

clusters. This is the unique parameter for the proposal; the internal ones were

set at their default values for all the experiments: α = 0.2, prop = 0.7 and

λ = min(5, 100/k).

The �rst competitors are classical algorithms whose limitations are also well450

known: k-means generates spherical clusters, Single-linkage hierarchical clus-

tering is sensitive to noise, the Ward-linkage one tends to �nd compact clusters

with equal diameters and DBSCAN does not cope with varying density clus-

ters. This drawback is likely to be overcome by a recent improvement called

Recon-DBSCAN [2]. While DBSCAN de�nes reachable points using two pa-455

rameters, the radius ε and the minimum number of points in the corresponding

volume, Minpts, Recon-DBSCAN considers two radii, ε and θ with θ ≥ ε. The

reachability is based on the density ratio Npts(ε)/Npts(θ) compared to the τ

threshold.

The Shared Nearest Neighbor algorithm, SNN [17], as well as its variants460

[28], is a density based clustering algorithm working similarly to DBSCAN. The

main di�erence is that the volume is not de�ned by the radius but is induced

by the nearest neighbors. The volume can be optionally limited by a radius.

The algorithm is thus driven by two main parameters: the number of nearest

neighbors to be considered and the minimum number of points that de�ne the465

reachability. A less important parameter allows for noise management. When

the sum of shared nearest neighbors for a given item, i, with all the remaining
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Table 1: The competitive algorithms

Algorithm Parameters Range Reference

kmeans++ k [14]

Single-linkage k [14]

Ward-linkage k [14]

DBSCAN ε,Minpts [0.05, 0.25],
√
n · [0.05, 0.25] [1]

Recon-DBSCAN ε,θ,τ
√
n · [0.05, 0.25], ε · [1, 5] [2]

SNN nn, Minpts
√
n · [0.05, 0.5], nn · [0.2, 0.8] [17, 28]

SNN-Radius nn, Minpts, Radius
√
n · [0.05, 0.5], nn · [0.2, 0.8],[0.05, 0.5] [17, 28]

MutualClust k [16]

DensityPeaks k [8]

DP-DataField k [29]

Compar-DP k [11]

SCDOT k [6]

Munec u [0.01, 0.10] [7]

HierOpt k [18]

KdMutual k

others, j, is less than a threshold value, i is labeled as noise. Tests on the sixteen

datasets showed that the best con�guration always involved the same smallest

value: 1.470

TheMutualClust algorithm [16] is based on the mutual neighborhood strength

which is quanti�ed by the mutual neighborhood value:

mnv(x, y) =

 e+ f if x Mnn y

∞ otherwise
(15)

where x is the eth nearest neighbor of y, and y is the f th nearest neighbor

of x, 1 ≤ e (f) ≤ k.

The mutual neighboring relationship, Mnn, between two items, x and y, is

de�ned as:

x Mnn y ⇐⇒ x ∈ Nk(y) AND y ∈ Nk(x) (16)

where Nk(x) is the set of the k nearest neighbors of x.475

The merging is done according to increasing values of mnv and, in the event

of equality, increasing values of the distance between neighbors, until a desired

number of clusters is reached. No speci�c procedure is proposed for noise or

outlier management and their presence is a potential source of failure.
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Two improved versions of the Density Peaks algorithm [29, 11], DP intro-480

duced in Section 1, were considered. In [29], the threshold distance dc is now

automatically set using the potential entropy of the data �eld from the original

dataset. Moreover, the local density is now estimated using a Gaussian function

instead of the classical nearest neighbor count. This important change was also

implemented in the pioneering version of the algorithm for this study. In the485

comparative density peaks algorithm [11], the idea is to consider the parameter

θi = δi − τi instead of δi, τi being the distance between the point i and its

nearest neighbor of lower density. θ embodies the relative magnitude of δ by

comparing with τ and thus helps to identify the potential cluster centers. As

in the pioneering version, the automatic selection keeps points with the largest490

product distance by density.

In the(SCDOT ) [6] method cluster centers are also assumed to be density

peaks that have a relatively large distance from higher density peaks. Local

density and distance are estimated in the same way as in DP. A neighboring

graph is constructed, as in Chameleon clustering [4], but with an additional495

constraint to yield a tree. A node is connected to only one other node, i.e. its

nearest neighbor of higher density. The edge valuation is the same as in [8].

Cluster centers are recognized as points for which the edge value is larger than

the typical nearest neighbor distance. They are detected in the distribution

using the box-plot parameters.500

The Munec algorithm [7] is based on a iterative process that merges mutual

nearest neighbors. The �rst merging steps are only controlled by the number

of sub-clusters, to yield a skeleton of the data structure. Then, two distinct

stages are proposed. The �rst one involves the similarity of distances between

neighbors, in each group and between groups. In a second phase, three heuristic505

conditions are introduced in order to discriminate between more nuanced situ-

ations. They are based on a combination of several notions such as distances

between mutual neighbors, nearest neighbor group of higher size and local neigh-

borhood density. The algorithm is not driven by the number of clusters, but by

a single user parameter, u ∈ [0.02, 0.1], that de�nes the partition granularity by510
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controlling the level of density di�erentiation: the higher its value the stronger

the constraints on the merging and the higher the number of clusters. Whatever

its value, no unexpected merging is done.

The HierOpt algorithm was detailed in [18]. Its basis is a hierarchical clus-

tering algorithm using the single linkage criterion. Two improvements were515

proposed to deal with noise. First, the single linkage criterion takes into ac-

count the local density to make sure that the distance involves core points of

each group. Second, the hierarchical algorithm forbids the merging of repre-

sentative clusters, higher than a minimum size, once identi�ed. These ideas are

still used in the proposal. The unique parameter of this algorithm is the number520

of clusters. The internal ones are set at their default values.

For each parameter, �ve values were tested in the range and the best result

is stored. For the algorithms that are not driven by the number of clusters, e.g.

DBSCAN, the result with the closest number of clusters to the required number

is kept.525

4.2. Comparison of criteria using twelve benchmark datasets

Twelve 2−dimensional datasets, representative of the diversity of situations

a clustering algorithm has to cope with, were selected. They are plotted in

Figure 9.
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Figure 9: The twelve datasets. The axis labels are the x and y coordinates.

Some are from the data clustering repository of the computing school of530

Eastern Finland University3, while others come from a benchmark data for clus-

tering repository 4 or were proposed in the published literature. These datasets,

detailed in Table 2, are usually considered for testing new clustering algorithms

but they do not represent the diversity of cases a clustering algorithm has to

tackle. One homemade dataset, with well separated clusters but of di�erent535

sizes, was added to complete this diversity.

The selected data include some variability in cluster shape, size, density,

amount of noise and degree of separation. The datasets plotted in the �rst row

of Figure 9, from D1 to D4, show a diversity of shapes. In the second row,

from D5 to D8, the shapes are quite simple, with di�erent elongation and some540

3https://cs.joensuu.�/sipu/datasets/
4https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/
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Table 2: The twelve datasets

Name Size k Origin

D1 2Sp2glob 2000 4 [30]

D2 BANANA 4811 2 Footnote 4

D3 FLAME 240 2 [31]

D4 TARGET 770 2 Footnote 4

D5 DS850 850 4 Footnote 4

D6 S3 5000 15 Footnote 3

D7 D31 3100 31 [32]

D8 S2 5000 15 Footnote 3

D9 Chameleon 8000 6 [4]

D10 cluto-t7.10k 10000 9 Footnote 4

D11 Zelnik4 622 4 Footnote 4

D12 Home 588 16 Homemade

overlap between groups. In the last row, the datasets include some noise with

a diversity of shapes, D9 and D10, or well separated clusters, D11 and D12.

The Mutual Information index for the 12 datasets and the 15 algorithms is

reported in Table 3.
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Table 3: Mutual Information Index for the 12 datasets and the 15 algorithms

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

kmeans++ 0.756 0.325 0.398 0.298 0.805 0.924 0.844 0.932 0.670 0.612 0.869 0.961

Single-linkage 0.856 1.000 0.024 0.063 0.690 0.016 0.607 0.791 0.000 0.000 0.000 0.302

Ward-linkage 0.761 0.605 0.374 0.204 0.826 0.919 0.952 0.961 0.684 0.648 1.000 0.984

DBSCAN 1.000 1.000 1.000 1.000 1.000 0.952 0.939 0.994 1.000 0.998 1.000 1.000

Recon-DBSCAN 0.856 1.000 0.000 1.000 1.000 0.554 0.682 0.942 0.000 0.000 1.000 1.000

SNN 0.713 0.961 0.016 0.939 0.712 0.519 0.843 0.916 0.351 0.379 0.624 0.949

SNN-Radius 1.000 1.000 0.406 0.384 0.643 0.362 0.661 0.791 0.000 0.525 0.364 0.970

MutualClust 1.000 1.000 0.000 1.000 0.690 0.000 0.611 0.720 0.000 0.000 1.000 0.758

DensityPeaks 1.000 0.032 0.413 0.197 1.000 0.961 0.957 0.992 0.778 0.669 1.000 1.00

DP-DataField 1.000 0.033 1.000 0.264 1.000 0.959 0.959 0.992 0.728 0.681 1.000 1.000

Compar-DP 1.000 0.032 0.413 0.197 1.000 0.961 0.957 0.992 0.778 0.669 1.000 1.000

SCDOT 1.000 1.000 0.000 1.000 0.924 0.768 0.858 0.865 0.571 0.821 0.996 0.958

Munec 0.971 1.000 1.000 1.000 0.906 0.932 0.953 0.960 0.894 0.936 1.000 1.000

HierOpt 1.000 1.000 1.000 0.939 1.000 0.945 0.958 0.988 1.000 0.996 1.000 1.000

KdMutual 1.000 1.000 1.000 0.939 1.000 0.945 0.958 0.988 1.000 0.996 1.000 1.000

The diversity of shape, density and size is discriminating. For each dataset,545

the minimum values are plotted is bold font. The methods mainly based on

distance are unable to manage non spherical shapes, and the peak density family

also has some trouble when the clusters are of various shapes and close to each

other, as illustrated with D9.

The means and standard deviations of three indices for this experiment are550

reported in Table 4.
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Table 4: Summary of three indices for the 12 datasets and the 15 algorithms.

Rand Index Mutual Inf. F-measure

Mean Std Mean Std Mean Std

kmeans++ 0.856 0.124 0.699 0.241 0.770 0.136

Single-linkage 0.526 0.313 0.362 0.396 0.511 0.266

Ward-linkage 0.871 0.150 0.743 0.254 0.844 0.145

DBSCAN 0.996 0.010 0.990 0.021 0.973 0.050

Recon-DBSCAN 0.718 0.380 0.669 0.428 0.673 0.365

SNN 0.866 0.133 0.660 0.296 0.585 0.371

SNN-Radius 0.727 0.248 0.592 0.311 0.547 0.308

MutualClust 0.674 0.348 0.565 0.438 0.625 0.318

DensityPeaks 0.869 0.188 0.750 0.349 0.857 0.176

DP-DataField 0.900 0.173 0.801 0.328 0.872 0.181

Compar-DP 0.869 0.188 0.750 0.349 0.857 0.176

SCDOT 0.903 0.146 0.813 0.286 0.816 0.177

Munec 0.976 0.036 0.963 0.039 0.949 0.054

HierOpt 0.997 0.005 0.986 0.024 0.992 0.014

KdMutual 0.997 0.005 0.986 0.024 0.992 0.014

The mean for the Mutual Information Index ranges from 0.362 for Single-

linkage to 0.990 for DBSCAN. Three other algorithms have a mean higher than

0.95: Munec, HierOpt and KdMutual. The three indices yield similar results:

Single-linkage obtains the poorest value whatever the index while the best ones555

are achieved by the identi�ed group, DBSCAN,Munec, HierOpt and KdMutual.

The proposal is part of the group of the most accurate algorithms able to deal

with such a diversity of situations.

These results show that KdMutual is highly e�ective when dealing with 2D-

data bases containing clusters of various sizes, shapes, densities and in presence560

of noise.
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4.3. High dimension data with di�erent group separation levels

The genRandomClust R package5 was used for partition generation. This

is an implementation of the method proposed in [35]. The degree of separation

between any cluster and its nearest neighboring cluster can be set at a speci�ed565

value regarding the separation index proposed in [36]. The cluster covariance

matrices can be arbitrary positive de�nite matrices. The eigen method is used

in the experiment. It �rst randomly generates eigenvalues (λ1, . . . , λp) for the

covariance matrix then uses columns of a randomly generated orthogonal matrix,

Q = (α1, ..., αp), as eigenvectors. The covariance matrix is then built as Q ·570

diag(λ1, ..., λp) ·QT .

The package uses the basic parameters for cluster generation such as the

number of clusters, the space dimension and their respective sizes but also allows

for variability management. A ratio between the upper and the lower bound

of the eigenvalues can be speci�ed. The default value is 10, but 30 was used575

in all the experiments to produce more variation in the elongated shapes. The

range of variances in the covariance matrix was set at rangeV ar = [1, 30]. This

value is chosen greater than the default one, [1, 10], in order to yield a higher

variation in the cluster densities. The only parameter used in this experiment is

the value of the separation index between two neighboring clusters, SepV al. It580

ranges from −1 to 1. The closer to 1 the value, the more separated the clusters.

Nine sets were generated from dimension 2 to 10 with 4 values of SepV al.

The number of groups is 5. The size of each group is randomly generated by

the R package. The RangeSize increases with the space dimension as follows:

[50, 300] from dimension 2 to 5, [300, 600] from dimension 6 to 8, [300, 800] from585

dimension 9 to 10. To each dataset 20% of noise is added. The generated groups

are spherical based, more or less elongated. The di�culty stems from density,

level of separation and the large amount of noise. An example in dimension 2

is plotted in Figure 10.

5https://www.r-project.org/
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Figure 10: A 2-dimensional dataset generated using the genRandomClust R package.

For each con�guration, the result is averaged over 10 runs. With dim = 2590

and SepV al = 0.1, some algorithms have a Rand Index lower than 0.5 as shown

in Table 5.

Table 5: Algorithms that fail with dim = 2 and SepV al = 0.1: mean and standard deviation

for the Rand Index.

Name Mean Std

Single-linkage 0.220 0.02

Recon-DBSCAN 0.311 0.20

SNN-Radius 0.437 0.28

MutualClust 0.223 0.02

SCDOT 0.394 0.19

Some failures come from the intrinsic weakness of the algorithm. This is

manifested by a low standard deviation for Single-linkage andMutualClust. This

is also the case for SCDOT as the SCDOT algorithm based on neighboring is595

very sensitive to noise. The poor performances given by Recon-DBSCAN and

SNN-Radius result from the di�culty of tuning the algorithm: 5 values for each
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of the three parameters were tested, meaning 125 combinations. More trials

would have been necessary to get a better performance. This drawback limits

the practical use of these algorithms.600

The remaining algorithms were tested with higher dimensions and yielded

comparable results until dim = 4. Further di�erences appear for dim = 5 with

SepV al = 0.2: two algorithms, based upon neighboring techniques, DBSCAN

and SNN, become less e�cient.

When the space dimension increases with a low level of separation SepV al =605

0.1 or SepV al = 0.2 there is a loss of e�ciency for all the algorithms. kmeans++,

Ward-linkage, the density peak family, Munec and KdMutual are however the

most resistant. The results with dim = 8 and SepV al = 0.2 are summarized in

Table 6.

Table 6: Results with dim = 8 and SepV al = 0.2 for the remaining competitive algorithms.

Rand Index Mutual Inf. F-measure

Mean Std Mean Std Mean Std

kmeans++ 0.953 0.054 0.897 0.081 0.911 0.1

Ward-linkage 0.927 0.06 0.876 0.073 0.878 0.084

DensityPeaks 0.875 0.059 0.794 0.093 0.815 0.093

DP-DataField 0.875 0.061 0.799 0.098 0.814 0.099

Compar-DP 0.878 0.071 0.839 0.102 0.864 0.110

Munec 0.932 0.028 0.904 0.03 0.917 0.04

HierOpt 0.837 0.118 0.752 0.131 0.789 0.091

KdMutual 0.966 0.043 0.925 0.053 0.944 0.069

From dim = 9 and sepval = 0.1, only two competitors (kmeans++ and610

Ward-linkage) yield acceptable results: their means for dim = 9 and dim = 10

are respectively 0.898 and 0.864. KdMutual reaches a mean of 0.901. The scores

of the remaining methods are seriously degraded: Munec drops below 0.3 as well

as HierOpt, DensityPeaks to 0.65.

For these three methods, the experiment was extended to dim = 50 and615

37



dim = 100. In order to obtain representative results, 100 data sets were gener-

ated for each space dimension. The results are summarized in Table 7.

Table 7: Mutual Information Index averaged over 100 runs for SepV al = 0.1.

d = 50 d = 100

Mean Std Mean Std

kmeans++ 0.676 0.120 0.577 0.142

Ward-linkage 0.652 0.132 0.541 0.151

KdMutual 0.691 0.129 0.549 0.151

With increasing dimensions and the same separation level (sepval = 0.1) the

mean decreases for all the methods and the standard deviation increases. The

clusters are still identi�ed in such con�gurations with a high dimension and low620

separation level but they cannot be fully distinguished.

In high dimension spaces the distance measure becomes less meaningful, this

is known as the �curse of dimensionality� and was analyzed in various contexts

[37]. The high dimensional space issue can be addressed using either subspace

selection or space transformation techniques.625

4.4. Statistical results: synthesis

To assess how signi�cant the di�erences between KdMutual and the other

studied algorithms are, a Wilcoxon signed-rank test was performed on the mean

Mutual Information index values. The data sets for which results are not dis-

criminant are not considered. This is the case with the R-data with d > 8 and630

low separation level: only three methods reach acceptable scores. The data sets

generated from the R-package are split in two categories. In the �rst category,

all the results using sepval = 0.1 and sepval = 0.2 from d = 2 to d = 8 were

combined. To assess the degradation of the results for most methods for d ≥ 8

the second category focused only on sepval = 0.1 from d = 9 to d = 10. The635

test was based upon the sign of the di�erence of the observed values, and the R
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Project6 implementation was used. The results are given in Table 8.

Table 8: statistical results: pvalue with the alternative hypothesis KdMutual is "greater" than

its competitors based on the paired option. Values higher than 0.05 are printed in bold font.

2D data (2) R data(2-8) R data(9-10)

sepval={0.1; 0.2} sepval=0.1

kmeans++ 4.88 10−4 0.99 0.09

Single-linkage 3.83 10−3 4.54 10−14 4.78 10−7

Ward-linkage 3.85 10−3 1.00 0.04

DBSCAN 0.42 1.07 10−9 4.11 10−7

Recon-DBSCAN 0.03 1.6 10−12 4.09 10−7

SNN 3.85 10−3 2.69 10−14 2.32 10−10

SNN-Radius 5.92 10−3 2.8 10−14 2.52 10−10

MutualClust 0.01 2.69 10−14 4.08 10−7

DensityPeaks 0.08 0.96 4.06 10−7

DP-DataField 0.20 0.97 4.18 10−7

Compar-DP 0.08 0.99 4.21 10−7

SCDOT 0.01 3.42 10−14 2.03 10−8

Munec 0.10 0.04 4.78 10−7

HierOpt 1.00 0.07 4.08 10−7

These results show that Kdmutual is extremely competitive as it is better

(at a con�dence level α = 0.05) than its competitors in many cases. The con�g-

urations for which the alternative hypothesis is rejected are in bold font in Table640

8. For 2D-data, the Kdmutual performances are not statistically di�erent from

those ofDBSCAN, DP-DataField, Munec and HierOpt. Using the R-data, only

Ward-linkage, and the density peak algorithms when d ≤ 8, do not give signi�-

cantly di�erent results. The test does not show signi�cant di�erences between

the remaining algorithms for d = 50 and d = 100.645

6https://r-project.org, wilcox.test function with the parameters paired=TRUE and alter-

native="greater"
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4.5. Running time

The running time is an important characteristic of this kind of algorithm.

The average time, in seconds, is reported in Table 9 for datasets of 2500 items

with 5 input variables.

Table 9: Running time (s) for a dim = 5 dataset and the 15 algorithms.

kmeans++ 0.017

++DensityPeaks 0.54

DP-DataField 0.55

Munec 3.2

+

DBSCAN 7.2

Recon-DBSCAN 7.2

SNN 7.5

SNN-Radius 7.5

KdMutual 7.7

Compar-DP 8.1

MutualClust 12

Single-linkage 42

−SCDOT 43

HierOpt 69

Ward-linkage 139 −−

For three algorithms this time is lower than one second, kmeans++,DensityPeaks650

and DP-DataField, while others are quite slow, e.g. Single-linkage, SCDOT, Hi-

erOpt, the slowest algorithm, 139 s, being Ward-linkage. The proposal is quite

fast with a running time of less than 8 s.

5. Conclusion

A new clustering algorithm, driven by the number of clusters, was proposed.655

It includes several steps. The �rst mergings are based on mutual neighborhood

in order to identify potential core clusters. In this way many cores are allowed
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to grow at the same time whatever their local density as no distance parameter

is required. The second step is a hierarchical merging using a �ltered distance

to deal with noise. The last step selects the core clusters and builds the �nal660

partition.

The potential clusters are ranked according to a new selection criterion based

on three types of information: cluster size (cardinality), its compactness assessed

by the mean of the between neighbors distances and its distance from the nearest

larger neighbor. It proved more powerful than competitors.665

The transition between steps is based on either the number of cores or the

proportion of the whole population they include. These parameters are said to

be internal or auxiliary. They were set at a default value in all the reported

experiments. The number of initial cores was de�ned as 5 times the number of

clusters, the proportion of the population was set at 50% and 70% for the two670

steps. The algorithms are quite simple: no speci�c heuristics is needed.

When the �rst step yields a unique cluster that includes 50% of the whole

set that means that the clustering process failed due to a large overlapping. In

this case, the algorithm is run again until one cluster reaches a signi�cant size.

Then the hierarchical step is skipped to rank and select the cores before building675

the �nal partition.

The proposal was compared to 14 alternative methods. The ones based on

the detection of density peaks are unable to deal with complex shapes but are

highly e�cient, even in high dimensions, when clusters are de�ned by their

density. Methods based on item connectivity, such as DBSCAN , can handle680

complex shapes but they are limited by their global setting: it may be di�cult

to �nd the set of parameters that can deal with the local density variations. The

proposal combines the best characteristics of these two kinds of algorithms. Kd-

Mutual can manage complex shapes while still being robust in higher dimension

spaces. From the user point of view, it is easy to tune as the unique parameter685

is the number of clusters and it is among the fastest algorithms studied in these

experiments.

One of the perspectives is to be able to use this kind of algorithm in large
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dimension spaces. The standard procedure would require a preprocessing step

to make an unsupervised feature selection [38]. In this case, KdMutual would be690

applied in di�erent small spaces. An alternative interesting way would consist in

investigating strategies of subspace clustering [39]. These new techniques seem

to be promising for identifying clusters in di�erent subsets of dimensions.

Another perspective would be to adapt the algorithm to design a version

that does not require the number of clusters. The basis would be a high number695

of cores, for instance 100, and the criterion to rank them. The number of

clusters would result from the distribution of the criterion values based on an

Elbow method or it could be given by an evolutionary algorithm with a �tness

function that combines the criterion values and the number of clusters.
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