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Abstract

Anticipating the genetic and phenotypic changes induced by natural or artificial selection re-

quires reliable estimates of trait evolvabilities (genetic variances and covariances). However,

whether or not multivariate quantitative genetics models are able to predict precisely the

evolution of traits of interest, especially fitness-related, life-history traits, remains an open20

empirical question. Here, we assessed to what extent the response to bivariate artificial selec-

tion on both body size and maturity in the medaka Oryzias latipes, a model fish species, fits

the theoretical predictions. Three lines (Large, Small, and Control lines) were differentially

selected for body length at 75 days of age, conditional on maturity. As maturity and body

size were phenotypically correlated, this selection procedure generated a bi-dimensional selec-25

tion pattern on two life history traits. After removal of non-heritable trends and noise with a

random effect (’animal’) model, the observed selection response did not match the expected

bidirectional response. For body size, Large and Control lines responded along selection gra-

dients (larger body size and stasis, respectively), but, surprisingly, the Small did not evolve a

smaller body length, and remained identical to the Control line throughout the experiment.30

The magnitude of the empirical response was smaller than the theoretical prediction in both

selected directions. For maturity, the response was opposite to the expectation (the Large

line evolved late maturity compared to the Control line, while the Small line evolved early

maturity, while the opposite pattern was predicted due to the strong positive genetic cor-

relation between both traits). The mismatch between predicted and observed response was35

substantial and could not be explained by usual sources of uncertainties (including sampling

effects, genetic drift, and error in G matrix estimates).

Keywords Animal model, Artificial selection, Asymmetric response, Bayesian mixed mod-

els, Bivariate selection, Evolvability, G-matrix.
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1 Introduction40

Quantitative genetics offer simple and practical models to understand the evolution of com-

plex traits in populations (Falconer & MacKay, 1996; Lynch & Walsh, 1998). In practice,

these models are used both to analyze past selection response (identifying the factors involved

in phenotypic change), and to predict the potential response to selection in a population. The

rate of phenotypic change per generation is estimated by multiplying a measurement of the45

standing genetic (heritable) variation by a measurement of the strength of selection. In the

simplest univariate model (the ”breeder’s equation”, Lush, 1937), the genetic variation can

be quantified by the heritability h2 (proportion of the phenotypic variance that is heritable

between parents and offspring). This setting is convenient when a unique trait is under se-

lection, such as in some selective breeding programs, but becomes rapidly limited when the50

selection pressure is more complex and targets multiple traits at once. Multivariate models

propose a different setting, and quantify evolvability through the ”G” matrix of additive

genetic (co)variances across traits, and selection through a vector of selection gradients β

(Lande, 1979; Lande & Arnold, 1983; Blows, 2007; McGuigan, 2006). This approach offers

efficient tools to explore theoretically and estimate empirically the properties of multivariate55

evolution and genetic constraints in complex and integrated biological systems (Cheverud,

1984; Hansen & Houle, 2008; Houle et al., 2017).

Although the data are heterogeneous (various organisms and different kinds of traits)

and experimental results lack consistency, the general pattern that seems to emerge from

artificial selection experiments is that quantitative genetics may predict short-term direct60

responses (phenotypic change of a single selected trait) convincingly (Sheridan, 1988; Walsh

& Lynch, 2018, p. 606), correlated responses (genetic change in a trait that is genetically

correlated to a selected trait, without being the target of selection) at least qualitatively

(Gromko, 1995), while the response to multivariate selection (in which the selection gradient

affects several traits) may be complex and inconsistent in some cases (Roff, 1997, p. 188, Roff,65

2007 for review). In uncontrolled environments, such as in wild populations, even univariate
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predictions may fail (Merilä et al., 2001). Whether such unconvincing predictions are due

to experimental issues, unrealistic assumptions, or flaws in the multivariate quantitative

genetics theory, largely remains to be determined. There are indeed many reasons why an

experimental selection response could deviate from the theoretical prediction. Some of these70

mechanisms, such as genetic drift, are compatible with the mainstream theoretical framework,

although rarely quantified and accounted for in the analysis of selection responses (Lynch,

1988; Hadfield et al., 2010). Other mechanisms, including environmental trends, genetic ×

environment interactions, directional epistasis, or scaling effects, are absent from the basic

textbook models; including them in specific models is, however, generally possible (Martinez75

et al., 2000; Le Rouzic et al., 2011; Walsh & Lynch, 2018). More problematic for the standard

theory are criticisms concentrating on additive genetic correlations being too crude to capture

the complexity of trait associations. This includes claims that understanding the evolution

of high-level quantitative traits (such as developmental or morphological traits) cannot be

achieved without considering proximal physiological mechanisms (Davidowitz et al., 2016),80

that the linear assumptions may not hold on complex genotype-phenotype maps (Milocco &

Salazar-Ciudad, 2020), or that predictions rely on a poor understanding of the nature and

stability of genetic correlations, which could be extremely labile (Gutteling et al., 2007).

We investigated the phenotypic consequences of artificial selection on the medaka fish

(Oryzias latipes) for a broad set of morphological, physiological, and life history traits, among85

which two were under direct selection. Wild-caught fish were submitted to 6 generations of

truncation selection on fish length at 75 days. The experimental procedure generated three

populations; a Large line, in which only large fish were bred, a Small line, in which only small

fish were bred, mimicking harvest-like selection regime, and a Control line, in which fish were

bred independently from their size. As the experimental design discarded de facto immature90

fish from the breeding pool, all three lines were thus also affected by a selection pressure

for early maturity, a trait that was phenotypically correlated with size. Selection was thus

essentially bivariate, in divergent directions across lines for body size and in the same direction
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Figure 1: Illustration of the selection response on body size in the medaka Oryzias latipes

after five episodes of artificial selection. This photomontage displays on the same scale
individuals from the F6 generation that are very close to the average length of the Large line
(20.95 mm, top), Control line (19.80 mm, middle), and Small line (19.63 mm, bottom).

(but with different intensities) for maturity. After 6 generations of artificial selection, all

lines evolved, but phenotypic response did not follow the selection differentials. Fish body95

size evolved only in the Large line, but not in the Small line, which remained statistically

indistinguishable from the Control line (Figure 1). Conversely, the frequency of mature fish

did not increase in spite of a positive selection differential in all three lines. These results

confirm that anticipating qualitatively and quantitatively the consequences of multivariate

selection on fish morphology and physiology cannot be based on the fitness function, but also100

needs to account for a deeper understanding of the functional and evolutionary relationships

between selected traits. The physiological and life history trait changes associated with the

selection response are detailed in a companion paper Renneville et al., Under Review. Here,

we will investigate to what extent multivariate quantitative genetic models, which include

explicit genetic covariance components, could explain and predict such a counter-intuitive105

selection response.
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2 Materials and Methods

2.1 Biological material and experimental procedure

The initial population was derived from 100 wild adult medaka (Oryzias latipes) sampled

in June 2011 in Kiyosu (Aichi Prefecture), Japan. Wild-caught fish were stored in outdoor110

tanks for a year, and about 60 of them were brought to the lab and mated in groups of 3 to

6 individuals to produce a F
−1 generation. From this point, fish were kept as 15-individual

full-sib ”families” in 3L aquariums under controlled lab conditions (27oC, 14:10 day light

cycles, ad libitum feeding). This setting made it possible to record the pedigree in the full

experiment. After two generations of random mating (54 and 56 pairs, respectively), the F1115

mature individuals were split into three breeding groups of 15 males and 15 females (one pair

per aquarium) (Large, Small, and Control), and artificial selection was further performed for

6 generations, up to generation F7 (Figure 2). The selection procedure involved two steps:

an among-family selection step at day 60, and a within-family selection step at day 75. Body

size was first measured at 60 days from the pictures of individual fish (length from snout to120

the base of the caudal fin), and 10 out of ≃15 families were pre-selected in each line based on

their average length, after having eliminated low density or high mortality tanks. At about

75 days (in practice 76.7 ± 4.4), pairs were formed by selecting the two largest (respectively,

smallest and random) males and females in each family. Immature fish were discarded from

the breeding pool. Selection on maturity was necessary to (i) ensure the synchronization125

of all three lines, (ii) avoid selecting individuals that would never reach the reproductive

stage, and (iii) limit sex identification mistakes when making pairs, as sex determination

in immature fish requires molecular techniques. More detailed experimental procedures are

provided in Renneville et al. (Under Review).

The unavoidable increase in the inbreeding coefficient across generations was limited by130

a specific procedure. Every generation in all three lines, twenty theoretical pairs of fish (two

males and two females from each of the 10 families pre-selected at 60 days) were determined
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Day 60

Day 75

among-family
selection

within-family
selection

15
families

10 
selected
families

15 
pairs

Figure 2: Illustration of the selection protocol. From generation F1, three selected lines
(Large, Control, and Small lines) were kept independently, with 15 full-sib families per line
(in practice: mean ± std. dev. = 15.4 ± 2.7 families per selected line). The density was
normalized at 15 fish per tank (in practice: 13.9 ± 5.8). Fish were pictured, measured, and
sex-determined at 60 and 75 days. Selection happened in two stages, among families at 60
days, and within families at 75 days. At 60 days, 10 families out of 15 were pre-selected
based on two criteria: density (tanks with low fish counts were discarded), and average size.
Families discarded from the breeding pool were kept and measured at 75 days, and were thus
considered when computing the population mean. At 75 days, breeders were picked within
pre-selected families based on two criteria: maturity (immature fish, which sex could not be
determined, were never selected) and size (large fish in the Large line, small fish in the Small
line, and random fish in the Control line). Fifteen pairs of fish were formed in each line, in
a pattern that minimizes inbreeding. The offspring of each pair then constitutes the next
generation.

7



by a computer resampling procedure (selection of the pairing pattern minimizing the median

inbreeding coefficient), and this theoretical pairing pattern was followed as close as possible

when fish were selected after 75 days. By generation F7, assuming no inbreeding in the F1135

population, the mean inbreeding coefficients were F = 0.11 in the Large line, F = 0.091 in

the Control line, and F = 0.085 in the Small line. As the inbreeding coefficient is expected

to increase by a factor 1−1/2Ne every generation, inbreeding population size estimates were

about Ne ≃ 27, Ne ≃ 33, and Ne ≃ 35 in Large, Control, and Small lines, respectively. This

procedure thus made it possible to maintain an inbreeding effective population size around140

30 in all three lines.

2.2 Data analysis

The dataset consists in the measurement of body size (Standard Length, further abbreviated

Sdl, in mm) at 75 days, the sex, and the maturity (Mat) status for each of the n = 5285 fish

of the experiment. The father and the mother of each fish was recorded, except for generation145

F0. All the data analysis was performed with R version 4.0 (R Core Team, 2020). Inbreeding

and coancestry coefficients were calculated with the package kinship2 (Therneau & Sinnwell,

2015). An archive containing datasets and scripts to reproduce tables and figures is provided

as a supplementary file.

Selection differentials and gradients Effective selection differentials were calculated as150

the difference between the average phenotype of the breeders (weighted by the actual number

of surviving offspring) and the average phenotype of the population (Walsh & Lynch, 2018,

p. 487). Since all individuals (breeders and non-breeders) were phenotyped, differentials were

not affected by sampling, and were considered to be known with certainty (i.e. measurement

error was neglected). As the selection procedure involved both among- and within-family se-155

lection, two selection differentials were calculated: the among-family differential Sa measures

how much the pre-selected families diverge from the population mean, and the within-family
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differential Sw measures the difference between selected individuals and the average of their

respective families. According to Walsh & Lynch (2018, p. 736), the expected response to

among (full-sib) family selection is Ra = h2Sa/2t, while the within-family selection response160

is Rw = h2Sw/2(1 − t), where h2 is the narrow-sense heritability, and t is the phenotypic

correlation between sibs (i.e. the proportion of the total phenotypic variance that can be at-

tributed to the family structure, computed as the correlation between all pairs of individuals

belonging to the same family). In our experiment, t = 0.23± 0.14 (mean ± std. dev. among

selected lines and generations). The strength of selection was summarized by a composite165

selection differential S = Sa/2t + Sw/2(1 − t), which is expected to predict the selection

response when multiplied by the heritability. Selection gradients, on which the multivariate

selection response theory is based, were obtained by multipling composite selection differen-

tials by the inverse of the phenotypic variance-covariance matrix (VPT
being the phenotypic

variance for trait T , and CPT1,T2
the phenotypic correlation between traits T1 and T2) :170







βSdl

βMat






=







VPSdl
CPSdl,Mat

CPSdl,Mat
VPMat







−1
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SMat






.

Phenotypic variances and covariances (VPSdl
, VPMat

, CPSdl,Mat
and t) were calculated for

each line at each generation.

Realized heritability Realized heritability for body size was roughly estimated by re-

gressing the cumulated response to selection (relative to the Control line) on the cumu-

lated selection differential. We implemented the iterated general least square (GLS) re-175

gression suggested in Walsh & Lynch (2018, p. 598) to account for the autocorrelation

structure in the cumulated selection response R. If S is the cumulated vector of selec-

tion differentials, the variance structure of the regression is a matrix V with elements

Vi,j = h2VP (1/N + i/Ne) + (i = j)VP/N , where N stands for the size of the population

and Ne is an estimate of the effective population size (considered to be Ne ≃ 30 from the180
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inbreeding population size estimate). The (i = j) term is present only on the diagonal of the

V matrix. The slope of the GLS regression being h2 = (S⊺V −1S)−1S⊺V −1R (⊺ stands for

matrix transposition), the procedure had to be repeated until convergence since V depends

on h2. The error variance in h2 was then calculated as Vh2 = (S⊺V −1S)−1.

Animal model Genetic and environmental variance components were estimated from the185

pedigree with a bivariate mixed-effect linear model framework (’animal’ model) (Lynch &

Walsh, 1998; Sorensen & Gianola, 2007; Thompson, 2008), which general setting was as

follows. As we were considering two traits, the phenotype of an individual i (1 ≤ i ≤ n)

is bivariate (y1i, y2i), each trait following the classical infinitesimal model in quantitative

genetics, e.g. y1i = µ1+α1i
+e1i , where µ1 is the grand mean of trait 1 at the first generation190

(model intercept), α1i
is the additive genetic (breeding) value of individual i for trait 1, and

e1i is an environmental (non-heritable residual) deviation. The variance-covariance matrix

of all 2n breeding values [α11 , . . . , α1n , α21 , . . . , α2n ]
T is the Kronecker product G⊗A, where

G is the 2 × 2 additive variance-covariance matrix between both traits (additive genetic

variances on the diagonal, additive genetic covariance off-diagonal), andA, a n×n square and195

symmetric matrix, is the genetic relationship matrix (which elements are twice the coefficient

of coancestry of each pair of individuals, calculated from the pedigree). In a similar way, the

variance-covariance matrix of the 2n residuals is E⊗ In, where E is the 2× 2 environmental

variance-covariance matrix between both traits, and In is the identity matrix of size n.

This theoretical setting had to be slightly modified to fit our dataset. The second trait200

(maturity) is the stochastic realization of an underlying probability pm of maturing before

75 days. Phenotypic values were thus considered to be on the probit scale (which fits with

the assumption that maturity is a threshold character). In such a model, the mean and

the variance are not independent, and the residual variance cannot be estimated. We also

considered additional random effects: an aquarium effect (351 levels) to account for the fact205

that fish in the same aquarium shared a common environment (in addition of sharing the same

parents), and a generation effect (8 levels) to account for inter-generational environmental
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variation. Both additional random effects were defined by 2×2 variance-covariance matrices

with three independent parameters (variance for Sdl, variance for Mat, and covariance).

Finally, the model considered the inbreeding coefficient as a covariate for both body size and210

maturity.

The model was fitted in a Bayesian framework with the package MCMCglmm (Hadfield,

2010). Markov chains were run for 106 iterations, with a burn-in of 103, and the state of

the chain was stored every 100 iteration. In practice, 20 chains were run in parallel and

analyzed together with the tools from the package coda (Plummer et al., 2006). Defining215

good priors for covariance matrices is notoriously difficult (Gelman et al., 2006; Alvarez et al.,

2014). We used inverse-Wishart priors with two degrees of freedom (ν = 2) for all variance

components, except that the residual variance of the binomial trait VE(Mat) was fixed to 1.

Such priors can be considered as informative compared to the improper ν = 0.002 suggestion

(de Villemereuil, 2012), but using informative priors was necessary to limit convergence and220

stationarity issues while remaining denser around zero compared to the ν = 3 possibility

(uniform marginal distribution for correlations).

In practice, we ran the model twice with a slightly different setting. The ”full” model

(including all effects and all data) was expected to describe the genetic architecture of both

traits during the selection response across all three lines, while a ”predictive” model was run to225

compare theoretical and realized selection response. In order to make prediction independent

from observation, the predictive model was run only on data from generations F0 and F1

(before the divergence among the three lines), and on the Control line from generation F2 to

F7. In addition, inbreeding effects were removed from the predictive model, as the prediction

algorithm was not compatible with fixed effects that are not evenly distributed through time.230

Evolution of breeding values When partitioning the different variance components, the

GLMM procedure makes it possible to estimate the posterior distribution for individual

breeding values. In order to avoid potential issues when estimating population genetic pa-

rameters from the mean breeding values (Hadfield et al., 2010), we computed the evolution
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of breeding values for each iteration of the chain, and reported the median (as well as the235

95% support interval) genetic trend by averaging breeding values per line and per genera-

tion. This trend estimates the evolution of the genetic composition of the population with

the influence of confounding factors (generation, aquarium, and inbreeding effects) removed.

We also assessed whether the reported genetic trends could be explained by genetic drift by

applying the simulation procedure described in Walsh & Lynch (2018, p. 707) and Hadfield240

et al. (2010). We ran a simulation for each iteration of the MCMC chain; genetic values

of the founders of the pedigree (individuals without identified parents) were drawn in a

bivariate normal distribution which variance-covariance was a G matrix from the posterior

distribution, and the full pedigree was then filled recursively by sampling breeding values

in a bivariate normal distribution centered on the mean parental breeding values, and of245

variance-covariance G/2.

Since all fish from the same tank share both parents, we used Aquarium effects to catch

non-additive (but possible heritable) parental contributions to the offspring phenotype. We

computed the heritable maternal effect m (Kirkpatrick & Lande, 1989) by regressing the

aquarium effect on the mother’s breeding value each iteration of the chain for both traits,250

and analyzed the distribution of m values as a posterior from the model.

Evolutionary predictions The multivariate prediction of the selection response was ob-

tained by applying the Lande & Arnold equation ∆µ = Gβ (Lande & Arnold, 1983) on the

scale at which the assumptions of the infinitesimal model were the most reasonable (trait

scale for body size, and latent probit scale for maturity). In practice, we used the framework255

proposed by De Villemereuil et al. (2016) implemented in the package QGglmm for R. G ma-

trix estimates were derived from the ”predictive” model described above. Selection response

was predicted by applying the QGmvpred function recursively over generations, assuming a

linear fitness function on the data scale (with gradients βSdl and βMat). Every generation,

a random bivariate normal deviation of variance G/Ne was added to the population mean260

to simulate genetic drift (with Ne = 25, as approximately estimated from the drift variance
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in the simulated pedigrees). The predicted response on the latent scale was translated on

the data scale for direct comparison with the phenotypic trends by applying the QGmvmean

function.

3 Results265

3.1 Selection gradients

Selection gradients were constant and repeatable throughout the experiment (Figure 3 A).

The mean realized gradient on Sdl in the Large line was βSdl = 0.56 mm−1± s.d. 0.06 (i.e. in

average, being 1 mm larger increased relative fitness by 56%), βSdl = −0.33 mm−1±0.19 in the

Small line, and βSdl = −0.03 mm−1 ± 0.14 in the Control line. Although the experimental270

procedure was identical in all three lines regarding maturity (only mature fish were kept

for breeding), the fact that both traits were phenotypically correlated generated different

selection gradients. Selection gradient on maturity was positive in the Small line (βMat =

2.35 ± 1.26 expressed in inverse maturity probability, i.e. an increase in 10% in maturity

probability raises the relative fitness by 23%), more moderate in Control (βMat = 1.12±0.93)275

and negative in the Large (βMat = −1.71±1.49) lines. The negative gradient in the Large line

in spite of the selection of mature individuals is a consequence of the phenotypic correlation

between size and maturity probability (large fish are enriched with individuals that should not

have been mature if average sized). When normalized by the phenotypic standard deviation

to make them unitless (and thus comparable across traits), gradients were β(σ)Sdl = 1.39280

and β(σ)Mat = −0.55 in the Large, indicating that selection on body size was dominating. In

contrast, in the Small line, normalized gradients were of the same magnitude (β(σ)Sdl = −0.83

vs. β(σ)Mat = 0.76). In sum, selection was bivariate and not completely symmetric among

selected lines lines; there was no gradient on body size in the Control line but a slight positive

gradient on maturity.285
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Figure 3: A: Bi-dimensional cumulative selection gradients in all three lines. Gradients were
calculated from selection differentials that take into account both within- and among-family
selection. B: Cumulative selection differentials vs. cumulative selection response for Body size
in Large and Small lines, centered on the Control line. The regression coefficient (calculated
by GLS procedure independently for both lines) is an estimate of heritability h2(± std. err.).

3.2 Phenotypic response to selection

The phenotypic response to selection for fish length and maturity is presented in Figure 4. For

both traits, time series were characterized by substantial generation-specific effects. Artificial

selection has generated a ≃ 1mm difference in body size between the Large and the Control

lines (about a 6% increase in length, equivalent to a ≃ 18% increase in mass, illustrated in290

Figure 1). Virtually all the phenotypic difference was built in two generations of selection,

and there was no more phenotypic progress from generations F3 to F6. The difference between

Large and Control lines dropped to less than 1mm in the last generation, but indirect evidence

suggest that this was not a stable genetic effect (e.g. the phenotypic difference between

Large and Small lines was maintained in fish from later generations, Diaz-Pauli et al., 2019).295

Surprisingly, there was no significant difference between the Control and the Small line, i.e.

the Small line did not respond to selection on size. Realized heritabilities on body size were

positive in the Large line (h2 = 0.059± s.e. 0.023), and virtually zero in the Small line

(h2 = −0.027± 0.014) (Figure 3 B).
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Error bars stand for standard errors of the means.

The evolution in maturity was characterized by an irregular decrease, especially in the300

Control and Large lines. As for fish length, maturity was largely affected by generation-

specific effects, especially in F3, when maturity dropped from 95% to 75% in all three lines

before increasing again to 90% in F4. Overall, the general pattern for the bivariate selection

response was featured by (i) for body size, a modest selection response in the Large line, but

not in the Small line, and (ii) for maturity, a modest divergence from the Control line in two305

opposite directions (earlier maturation in the Small line, later maturation in the Large line).

3.3 Genetic response to selection

A mixed-effect ”animal” model was fit to the data, including three (co)variance components:

genetic (additive) G, aquarium/family (A), which is a batch effect that may include herita-
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Figure 5: Graphical representation of the posterior distribution of the (co)variance matrix for
genetic, aquarium, and residual effects (full model). Thin lines represent individual iterations
of the MCMC chain, while the thick line is the mean posterior. The binomial nature of the
maturity trait fixes the residual variance to 1.

ble maternal effects, and macro-environmental (generation) (F ), in addition to the residual310

variance E. Variance components were not independent; for instance, aquarium effects and

genetic effects were partly confounded, as fish sharing the same aquarium were full sibs.

Table 1 reports the variance components as the median and 95% support interval of

the posterior distribution from the MCMC Bayesian analysis. The table also displays her-

itabilities (h2 = G/(G + A + E)) for both traits as well as correlations (r) for all variance315

components. Model stationarity was unproblematic, but posteriors displayed a substantial

amount of autocorrelation (Appendix 1), making it necessary to run long MCMC chains to

compensate the poor mixing. The additive genetic variance for body size was VG(Sdl) = 0.79

mm2, and heritability was h2=0.14, which is more than the realized heritability (although not

statistically different). The residual covariance between both traits was substantial, corre-320

sponding to a correlation rE = 0.94 between residual body size and residual probit maturity

probability. The genetic correlation was positive, but lower than for the residuals (rG = 0.62).

The posterior distribution of the variance components is illustrated in Figure 5. The effect of

inbreeding was negative for both traits (with some statistical support for maturity). Heritable

maternal effects were small, slightly negative, and not statistically different from zero.325
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Full Predictive
2.5% median 97.5% 2.5% median 97.5%

VG(Sdl) 0.41 0.86 1.44 1.00 1.82 2.71
h2(Sdl) 0.07 0.15 0.25 0.17 0.30 0.43
VG(Mat) 0.21 0.51 1.14 0.56 1.48 3.97
h2(Mat) 0.12 0.25 0.43 0.25 0.46 0.67

CG(Sdl,Mat) 0.10 0.43 0.94 0.60 1.42 2.78
rG(Sdl,Mat) 0.31 0.65 0.81 0.72 0.87 0.94
VE(Sdl) 3.01 3.34 3.63 2.45 2.99 3.53

CE(Sdl,Mat) 1.61 1.72 1.81 1.36 1.57 1.75
rE(Sdl,Mat) 0.92 0.94 0.96 0.84 0.91 0.94
VA(Sdl) 1.14 1.40 1.70 0.88 1.22 1.67
VA(Mat) 0.34 0.50 0.73 0.35 0.72 1.43

CA(Sdl,Mat) 0.37 0.54 0.75 -0.06 0.25 0.62
rA(Sdl,Mat) 0.50 0.65 0.77 -0.07 0.27 0.54
VF (Sdl) 0.41 1.05 3.64 0.57 1.62 6.05
VF (Mat) 0.60 1.53 5.46 1.08 3.26 12.88

CF (Sdl,Mat) -0.39 0.50 2.69 0.15 1.53 6.90
rF (Sdl,Mat) -0.29 0.45 0.85 0.09 0.72 0.94

fSdl -15.74 -6.78 2.31
fMat -18.07 -10.21 -2.73
mSdl -0.19 -0.04 0.11 -0.19 0.00 0.18
mMat -0.16 -0.04 0.09 -0.18 -0.02 0.14

Table 1: Posterior median and 95% support interval from the MCMCglmm model fit, for
the full model (left) and the predictive model (right). V and C stand for variance and
covariances, respectively, and subscripts indicate different random effects: additive genetic
effectsG, aquarium effects A, residual effects E, and generation effects F . f andm correspond
to inbreeding and maternal effects, respectively. Sdl is assumed to be Gaussian, and Mat
is binomial, on a probit scale (its residual variance VE(Mat) is fixed to 1 instead of being
estimated). Bold-faced variables were the direct output of the model, other variables were
estimated by a combination of those (see Methods).
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Figure 6: Estimated dynamics of genetic (left and center) and generation (right) effects
from the full model. The figure represents the median and 95% support interval over MCMC
replicates.

The generation effect variance was relatively high, especially for Maturity. This generation

effect not only captures inter-generational fluctuations, but it also corrects for a general trend

in the time series for both traits. Figure 6 displays the genetic (average of breeding values

posterior distributions) and non-genetic (from the generation effects) trends from the best

model.330

The strength of genetic drift during the selection response was quantified by simulating

breeding values based on the estimated G matrix in the real pedigree. Figure 7 shows that

the 95% support interval of the distribution of average breeding values under genetic drift

encompasses the median trend of breeding values in all lines and traits except for the body

size of the Large line, which exceeds the drift interval for the last 3 generations. As the335

variance across replicates is expected to increase by a factor VA/Ne each generation, this

procedure made it possible to estimate a drift effective population size in each line, which

was Ne = 23, Ne = 20, and Ne = 25 in Control, Large, and Small lines (averaged over both

traits), respectively.

3.4 Selection response prediction340

In addition to providing the theoretical framework to design statistical models for the esti-

mation of variance components, quantitative genetics also aims at predicting the selection

response from the genetic architecture of phenotypic traits. In practice, testing the predictive

18



−
1

.0
−

0
.5

0
.0

0
.5

1
.0

B
o

d
y
 s

iz
e

 (
m

m
),

 a
v
g

 b
re

e
d

in
g

 v
a

lu
e

F0 F1 F2 F3 F4 F5 F6 F7

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

M
a

tu
ri

ty
 (

p
ro

b
it
),

 a
v
g

 b
re

e
d

in
g

 v
a

lu
e

F0 F1 F2 F3 F4 F5 F6 F7

Figure 7: Estimation of the genetic space that is reachable by genetic drift along the selection
response (95% support interval: hyphenated lines) (simulated pedigrees with G matrices
sampled from the posterior distribution) vs. estimated genetic trends (plain lines).

power of such models requires a specific protocol, as genetic variance components need to be

estimated from the starting population (from e.g. an experimental cross design) and compared345

to the realized selection response. Although we do not have access to a direct measurement

of additive variance components in the starting population here, we estimated the G matrix

by fitting the animal model on the Control line individuals (including F0 and F1 generations),

and compared the predicted selection response to the observed response from the selected

lines (no overlap between both datasets). Even when considering uncertainties due to the350

estimation procedure as well as genetic drift, there was no overlap between predicted and

observed evolution for body size (insufficient realized selection response, Figure 8A), while

the prediction was even not in the correct direction for maturity (Figure 8B). For both traits,

the mismatch was largely supported statistically for the Large line, and on the edge of the

95% support interval for the Small line. The bivariate representation of the predicted vs.355

observed selection response (Figure 8C) shows that the gradient were oriented close to the

line of most evolutionary resistance of the G matrix, the predicted response was close to the

line of least evolutionary resistance (main axis of the G matrix), while the observed response

was tiny and inconsistent.

19



1
8

1
9

2
0

2
1

2
2

2
3

2
4

B
o
d
y
 s

iz
e
 (

m
m

)

F 1 F 2 F 3 F 4 F 5 F 6 F 7

A

0
.6

0
.7

0
.8

0
.9

1
.0

M
a
tu

ri
ty

F 1 F 2 F 3 F 4 F 5 F 6 F 7

B

−0.5 0.0 0.5

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

Body size (mm)

M
a
tu

ri
ty

 (
p
ro

b
it
)

G matrix (x 0.5)
Gradients (x 0.1)
Prediction
Response

C

Figure 8: Predicted vs. realized selection responses. The expected selection response was
simulated by applying the Lande – Arnold equation ∆z = Gβ recursively over six genera-
tions, using the selection gradients β estimated in Figure 3 andG matrices from the posterior
distribution of the animal model applied on data from the Control line (so that the realized
selection response was not part of the G matrix estimate). Genetic drift was simulated by
applying a random deviation of variance G/Ne with Ne = 25 every generation. A and B: pre-
dicted time series for body size and maturity, respectively. Plain lines: predicted responses
(Large line in red, Small line in blue); open symbols: actual phenotypic response; hyphen-
ated lines and filled symbols: median genetic response estimated from Figure 6. Shaded
areas represent the 95% support interval. C: bivariate average gradients (dotted lines), aver-
age predicted responses (plain lines) and average genetic responses (hyphenated lines).

4 Discussion360

Artificial selection has long been proven to be an efficient way to simulate evolutionary

processes in controlled conditions (Hill & Caballero, 1992; Conner, 2003). Here, we applied

a classical truncation selection scheme, with substantial improvements compared to classical

mass breeding experiments: (i) we kept track of the pedigree during the whole experiment,

(ii) crosses were optimized to limit inbreeding, which kept the effective inbreeding population365

size above Ne = 27 in all three lines, (iii) we recorded fecundity and mortality rates in all

families, making it possible to evaluate the potential strength of natural selection, (iv) we

raised a control line in the same conditions as selected lines, which helps distinguishing non-

genetic and genetic trends, and (v) we selected explicitly on both body size and maturity,

and considered both life history traits simultaneously in our analysis. The main drawback370

of this approach is an increased cost and human power involved, which necessarily limits the
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size of the experiment in terms of replicates (three lines in total) and duration (almost

3 years, for 8 generations and 6 episodes of selection, which may not be conclusive for

low-evolvability traits). Nevertheless, in spite of such logistic limitations, our > 5000 fish

pedigree displayed sufficient statistical power to (i) evidence a mismatch between predicted375

and observed selection response, and (ii) discard genetic drift as the driver of this mismatch.

In sum, the size of the experiment might be too limited to fully understand and generalize

how life-history traits respond to complex multivariate selection, but is sufficient to conclude

that the observed response does not follow quantitative genetics predictions.

4.1 Departure from theoretical predictions380

Non-genetic effects In spite of the tight control over environmental conditions (constant

food, lighting, water quality and temperature), the data analysis highlighted a substantial

amount of generation-specific effects that obscured the genetic selection response. Gener-

ations F0, F1, and F4 appeared to be substantially ”better” (larger body size and higher

maturity frequency) than e.g. F3 and F7. The fact that ”good” generations were closer to385

the beginning of the experiment tends to generate an overall decreasing trend, which was

difficult to interpret.

A candidate explanation relies on an increase in inbreeding, which is unavoidable in such

an experiment. Inbreeding coefficients were included as covariates in the model, and caught

part of the trend for both traits (the negative effect of inbreeding on maturity — but not390

on body size — being statistically supported, Appendix 2). However, a causal link between

inbreeding and measured traits remains dubious. The optimized pairing protocol limited the

increase in inbreeding below 10% from generations F0 to F7 , which is unlikely to generate

inbreeding depression. Furthermore, we found no correlation between phenotypic traits and

inbreeding coefficient within generations. Finally, the residual environmental trend on body395

size and maturity remained negative even after accounting for the effect of inbreeding in the

model, suggesting an inbreeding-independent phenomenon.
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Evolutionary trends One of the most unexpected result of this experiment was the lack

of response to selection on body size in the Small line, in spite of a substantial and consistent

selection gradient. This lack of phenotypic response was confirmed by the breeding value400

predictions from the animal model.

The inaccurate predictions could be due, to some extent, to inconsistent variance com-

ponents in the experiment. This possibility was addressed by fitting the model on different

generations or different selected lines (Appendix 3), which should provide compatible poste-

rior distributions of the assumptions of the infinitesimal model were holding. Excluding the405

Control line decreases substantially the estimated additive variance for both traits, which

is consistent with the mismatch between the observed selection responses and the evolution

predicted from the Control line. Walsh & Lynch (2018, p. 611) proposed a list of 13 possible

explanations for asymmetric selection responses, which we tried to address as thoroughly as

possible (Table 2).410

None of these explanations, taken individually, was particularly convincing. The poten-

tial for genetic drift to generate unexpected evolutionary patterns is substantial, and ruling

out the influence of drift in laboratory experiments in notoriously difficult (Lynch, 1988),

especially with unreplicated selection lines. Nevertheless, we were able to exclude genetic

drift as a major explanatory factor of the observed response: effective population sizes were415

rather large for such an experiment (Ne ≃ 25), and the support intervals predicted for ge-

netic drift from simulated pedigrees (Figure 7) were smaller than the the predicted response

mismatch(Figure 8).

The fact that Large and Small lines were set in different competitive environments appears

as an appealing explanation for the asymmetric response. Indeed, in order to keep track of420

the pedigree, fish were raised in the same tank as their full-sibs. If small or large body

size was partly correlated to any competitive behavioral trait, the environment was varying

during the experiment, as fish from the Large line were competing with better competitors

every generation. This mechanism could have biased the selection response estimates, and
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Design artefacts

Drift Simulated pedigrees showed that drift could not explain the mis-
match (further discussed in the text).

Scale effects Could not explain absent or reversed selection response.

Different effective differentials The selection procedure normalized the number of offspring irre-
spective to fertility differences. Effective selection gradients were
calculated. No difference in hatching nor mortality rates across
treatments. Natural selection against extreme phenotypes was de-
tected (Renneville et al., Under Review), but both selected lines
were affected symmetrically.

Undetected environmental trends Less likely in controlled laboratory environments. An overall trend
was detected, but no reason to expect different abiotic environmen-
tal conditions among lines. The competitive environment evolved
(fish were raised with sibs), this possibility is further discussed in
the text.

Effects of previous selection Two generations of random mating were performed before the first
generation of selection, which is expected to limit linkage disequi-
librium in F1.

Selection on correlated characters The analysis accounts for the two traits that were artificially se-
lected.

Nonlinear parent-offspring regression

Major genes with dominance Parent-offspring regression is rather linear (Appendix 4).

Genotype × Envir. interactions The abiotic environment was identical across lines (randomized
aquariums). Differences in competitive environments are expected
to build up progressively, not to stop selection response from the
first generation.

Departure from normality Could not explain absent or reversed selection response.

Other sources

Genetic asymmetries Could not explain absent or reversed selection response.

Inbreeding depression Limited increase in inbreeding coefficient, and no within-
generation correlation with selected traits (Appendix 2).

Maternal effects Father-offspring and Mother-offspring regressions were very simi-
lar (Appendix 4), maternal effects were tiny for both traits.

Associative effects Unlikely in controlled laboratory conditions.

Table 2: Why do quantitative genetics predictions fail? Thirteen possible explanations for
asymmetric responses, as proposed by Walsh & Lynch (2018).

23



explain the lower-than-expected body-size response to selection. However, this possibility is425

dismissed by indirect evidence from an independent phenotyping experiment in which fish

from the present selection experiment at later generations were raised in individual tanks

(Diaz-Pauli et al., 2019). In absence of competition, the genetic difference between the Large

and Small lines was not larger than we found here, indicating that removing competition did

not magnify the phenotypic effects of selection on medaka body size.430

Finally, natural selection against a small body size appears unlikely due to several consis-

tent observations: (i) the Control line was affected by a general phenotypic (but not genetic)

trend towards smaller body size, not larger; (ii) differences in fertility and mortality rates

were limited by the experimental procedures, as the number of progeny per fish pair was nor-

malized whenever possible; (iii) the difference between non-weighted selection differentials435

and effective differentials was reasonably small, (iv) natural selection on body length could

be indirectly estimated (Renneville et al., Under Review), and appeared to be stabilizing

(decrease in the number of offspring for both small and large fish).

Selection response on maturity followed an even more unexpected pattern. In the Large line,

selection on body size was dominating, leading to an expected increase in maturity due to440

the strong genetic correlation in spite of a weak negative selection gradient on maturity. In

the Small line, selection on both traits was of the same magnitude, and the expected trend

for maturity was slightly decreasing. Yet, both phenotypic and genetic trends were opposite

to the prediction. Here again, the mismatch was large enough to discard genetic drift as the

only mechanism.445

4.2 Consistency with previous results

Due to their close relationship with fitness, life history traits are often suspected to behave

differently from other (morphological, physiological, behavioral) characters. Their heritabil-

ity tends to be lower (Price & Schluter, 1991; Roff, 1997) (probably due to a larger residual

variance rather than a low genetic variance, Houle (1992)), and the correlation pattern among450
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fitness-related traits have long been a matter of debate (Lande, 1982; Reznick, 1985; Houle,

1991), with few strong theoretical predictions about the sign of genetic covariances among

life history traits. Meta-analyses support the idea that correlations between life history traits

range between −1 and 1 depending on traits and organisms, being slightly positive on aver-

age, but lower than between other kinds of traits (Roff, 1996). The fact that phenotypic and455

genetic correlations generally match is well-established empirically (Cheverud, 1988; Kruuk

et al., 2008), although the underlying reasons are unclear. Our results featuring a substantial

positive genetic correlation between growth and maturity, associated with a strong residual

correlation, are thus not unexpected.

Less expected was the lack of response to directional selection in the Small line. Fish460

artificially-selected for large or small size generally respond to selection in both directions

(Diaz Pauli & Heino, 2014), symmetrically (as in the Atlantic silverside, Conover & Munch,

2002, or in zebrafish, Amaral & Johnston, 2012) or slightly asymmetrically with a slower

response in the Small line (in guppy, van Wijk et al., 2013). In the only experiment in which

maturity was probably selected together with size (zebra fish, Uusi-Heikkilä et al., 2015), the465

response was complex and asymmetric (no size change and later age maturation in the Large

line, smaller adult size and maturation at a smaller size — but not age — in the Small line).

4.3 Consequences on the response of life history traits to selection

pressure

One of the most appealing applications of quantitative genetics outside of their original470

plant and animal breeding field is related to the prediction of the evolutionary consequences

of human activity and/or environmental change on natural populations (Shaw, 2019). For

instance, size-selective harvesting induces direct selection pressures on body size, and reduces

life expectancy, which generates complex selection pressures on correlated life history traits

(including growth rate, fertility, survival, and age at maturity) (Heino et al., 2015). Long-475

term evolutionary trends towards smaller body size, earlier maturity, and as a consequence,
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lower fecundity are frequent in highly-harvested species (Trippel, 1995; Law, 2000). It is

therefore increasingly recognized that fisheries management programs should account for

evolutionary change in life history traits (Kuparinen & Merilä, 2007; Fenberg & Roy, 2008;

Laugen et al., 2014).480

Generalizing results obtained from model species in laboratory to wild species of interest is

not straightforward, as differences in environment may condition trait means, trait variances,

and genetic correlations (Gutteling et al., 2007; Postma, Visser, et al., 2007). The develop-

ment of the ’animal’ statistical model makes it possible to evaluate genetic components from

observations in unmanipulated wild populations (Kruuk, 2004; Wilson et al., 2010). How-485

ever, this approach remains particularly sensitive to e.g. gene-by-environment interactions,

and the causal factors of observed trends may be difficult to identify formally (Postma &

Charmantier, 2007; Walsh & Lynch, 2018). In contrast, controlled experiments (typically,

complex breeding schemes) can only be carried out in laboratory conditions, and experimen-

tal approaches are often the only way to study key questions in population management,490

even when studying complex marine ecosystems (Suquet et al., 2005).

Accounting for evolutionary response management strategies in wild populations generally

relies on standard models in ecology and quantitative genetics, which assume that evolution

can be reliably predicted when genetic trait variances and covariances are known (Diaz Pauli

& Heino, 2014), which is generally not the case. Here, we show that such standard expec-495

tations may not be fulfilled, which questions the possibility to apply general recipes. Our

results support the idea that bivariate selection response is hardly predictable even in a con-

trolled environment, which questions the robustness of fishery management genetic models.

Although we lack a clear explanation about why some heritable characters may not evolve

when selected together, this phenomenon may decrease our confidence in the estimates of500

phenotypic trajectories for populations under anthropic pressure.
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Appendix 1

Model convergence

Autocorrelation and effective size675

Lag 1 Lag 5 Lag 10 Lag 50 Lag 100 Lag 500 Eff. Size

V[G](Sdl) 0.99 0.96 0.93 0.72 0.52 -0.08 1312.64
V[G](Mat) 0.99 0.97 0.94 0.79 0.64 0.10 466.69

C[G](Sdl, Mat) 0.99 0.97 0.94 0.75 0.59 0.02 679.69
V[E](Sdl) 0.95 0.85 0.79 0.55 0.40 -0.06 1461.35

C[E](Sdl, Mat) 0.96 0.88 0.82 0.57 0.42 -0.02 1526.90

Autocorrelation for the random effect parameters was assessed with the autocorr.diag()
function from package coda. The effective size (sample size adjusted for autocorrelation) was
evaluated with the function effectiveSize() from the same package.
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The vast majority of MCMC chains passed the Heidelberg stationarity test implemented in
the heidel.diag() function from the coda package (null hypothesis H0: the chain is stationary
at least over its last half, the dashed line illustrates the 5% threshold).685
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Appendix 2

Inbreeding
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Top: Distribution of the inbreeding coefficients (calculated from the full pedigree) across
families in the course of the experiment (assuming no inbreeding in F0). Middle: relationship
between the inbreeding coefficient of families (normalized by the average of the line each690

generation) to phenotypic traits (centered on the line and generation mean). None of these
regressions were statistically significant. Bottom: posterior distribution of the inbreeding
effects on Sdl and maturity (vertical lines indicate 2.5%, 50%, and 97.5% quantiles).
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Appendix 3

Model fitting on partial datasets695
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The animal model estimates variance components in the starting population (F0) accounting
for drift and selection in subsequent generations. As a consequence, if the assumptions of the
infinitesimal model hold, fitting the model on partial datasets should not affect the estimates
(while the posterior distribution is expected to be wider due to the decrease in information).700

We split the dataset according to (i) generations (fitting the model on generations F0 to F3,
and from F4 to F7), and (ii) to the selected line (Large, Small, and Control lines), fitting
the model excluding sequentially each line. In the figure, ”Ref” stands for the posterior
when including all the data, and boxplots represent the full range of the posterior distribu-
tions and their quartiles. The estimates for genetic variances and covariances increased for705

most sub-datasets, and residual variances and covariances decrease accordingly. The most
straightforward explanation is that the parameters estimated from the full dataset result from
a compromise between early/late generations and selection lines, and that the goodness of
fit of the model increased when fitted on partial data. Note that most posterior distributions
largely overlap (no posterior distributions differ significantly from the reference), suggesting710

that the estimated parameters remain meaningful.
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Appendix 4

Parent-offspring regression for body size
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The mid-parent-offspring regression coefficient estimates trait heritability. In addition, the
shape of the parent-offspring relationship is indicative of potential deviations from the in-715

finitesimal model assumptions. Non-linear parent-offspring relationships may indicate dom-
inance, epistasis, or genetic asymmetries.

A. Taking all selected lines into account, normalizing by generation phenotypic averages
to cancel out generation effects, the parent-offspring relationship appeared to be slightly
non-linear (significant quadratic component: y = c+ h2x+ k2x, with h2 = 0.083± s.e.0.021720

being an estimate of heritability (Pr(h2 = 0) = 6.57 · 10−5), the quadratic term being also
significant (Pr(k2 = 0) = 5.81 · 10−5).

B. However, considering each line separately, the pattern rather reflected different linear
relationships in all three lines. The Large line response to selection shifted the offspring
phenotype upwards, while the Small line lack of response set the average offspring at the725
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same level as the Control. Non-linearity in this case was the consequence, rather than the
cause, of the asymmetric response.

C. When considering the Control line alone, which had the most statistical power because
of the large variance in parental phenotypes, the quadratic term disappeared, supporting the
fact that the parent-offspring regression was linear (h2 ≃ 0.14,Pr(h2 = 0) = 0.00698,Pr(k2 =730

0) = 0.62)
D. Running mother-offspring and father-offspring regressions independently provided very

similar results. Focusing on the control line sub-dataset, the mother-offspring regression lead
to h2 = 0.089±0.031 (s.e.), while the father-offspring regression resulted in h2 = 0.081±0.032.
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