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Abstract 
 
The detection of adulterations in food powder product represents a high interest especially 

when it concerns the health of the consumers. The food industry is concerned by peanut 

adulteration since it is a major food allergen and it is often used in transformed food 

products. Near-infrared hyperspectral imaging is an emerging technology for food 

inspection. It was used in this work to detect peanut flour adulteration in wheat flour. The 

detection of peanut particles was challenging for two main reasons: the particle size is 

smaller than the pixel size leading to impure spectral profiles; peanut and wheat flour exhibit 

similar spectral signature and variability. A Matched Subspace Detector (MSD) was designed 

to take into account those difficulties and detect peanut adulteration at the pixel scale using 
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the associated spectrum. Defatted peanut flour and wheat flour were mixed in eight 

different proportions (from 0.02% to 20%) to test the performances of the hyperspectral 

measurement technique with the detection algorithm. Additionally, a set of simulated data 

was generated to overcome the lack of reference value at the pixel scale. The application of 

MSD on simulated data showed to be relevant with experimental observations and helped 

to design the detector. The most performant designs for the detector were compared using 

the simulation by estimating the sensitivity as well as the experimental data by comparing 

the detection maps. Finally, the number and the position of detections on experimental data 

were investigated to show the relevancy of the results. This proved that the use of 

hyperspectral imaging and a fine-tuned MSD enables to detect a global adulteration of 0.2% 

of peanut in wheat flour using a single hyperspectral image acquisition.  

 
Keywords 
Hyperspectral imaging, near-infrared spectroscopy, detection algorithm, spectral simulation, 
matched subspace detector. 
 
Abbreviations 
HSI: Hyperspectral Imaging 
NIR: Near-Infrared 
LMM: Linear Mixing Model 
MSD: Matched Subspace Detector 
PCA: Principal Component Analysis 
 

 
 

1. Introduction 
 
 
Hyperspectral Imaging (HSI) is a technique combining spectroscopy with spatial imaging to 

obtain both spatial and spectral information from a sample. When associated with the near-

infrared (NIR) spectral range, HSI is a powerful technique to provide a fast, non-destructive 



 

 3 

and cost-effective control method. Since many samples may be chemically heterogeneous, 

the spatial information provides a high added value for many application fields. Indeed, HSI 

has been investigated for several decades in remote sensing for earth observation [1], food 

industry [2], agriculture [3] or medical uses [4]. Particularly, HSI is an emerging technology 

for food inspection since it provides non-destructive analysis of heterogeneous samples [5] 

and hyperspectral images allow the visualization of chemical maps of the samples. As an 

example, Elmasry et al. use this technology to provide water, fat and protein distributions on 

beef samples [6]. The study of the estimation of food nutrients in samples lead to the 

assessment of the quality of such products [7].  

Hyperspectral imaging technique enables to obtain a spectral measurement for each 

individual detector of the sensor. As a consequence, each spectrum is representative of a 

small surface of the sample.  Spatial imaging makes the technology more sensitive to minor 

components since they have more influence on the field of view of one pixel than on the 

entire sample. This offers the opportunity to detect adulterants in food by characterizing 

each pixel of the image [8], [9], [10]. In practice, it consists of classifying each pixel spectrum 

of the hyperspectral image as a target or a background spectral signature. As NIR 

spectroscopy has shown to be a powerful technique for characterizing organic matter [11], 

[12], HSI appears to be a promising tool for adulteration detection in the food industry. The 

literature shows plenty of such applications: Vermeulen et al. studied the detection of ergot 

bodies in cereal flour [13], Fernández Pierna et al. investigated the detection of melamine in 

milk powder [14] [15], Verdú et al. proposed to study the adulteration of wheat products 

[16]. 
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Some adulteration cases are linked to serious public health problems like allergic reactions. 

The case of peanut allergy is interesting as a typical example. Whereas this allergy is a major 

issue worldwide [17] [18], peanuts are still widely used in the food industry [19] and maybe 

also linked to adulteration cases. HSI seems to be a relevant technology to tackle the 

problem of adulteration in the food industry as a detection tool. Such detection has already 

been made using crushed peanut in wheat flour [20] [21]. Defatted peanut flour contains 

smaller peanut particles without fatty acid components. Detecting such a product in wheat 

flour may be of high interest since powder samples are more frequently used in the food 

industry. 

 

However, the use of HSI for detection may be a challenge for several reasons. Indeed, the 

purpose is to identify different materials based on their spectral signature to label each pixel 

as a target or background pixel. However, there is not a unique spectral signature for each 

material for two main reasons [22]: the reflectance value at each wavelength of a given 

material is not deterministic but is a random variable. Its variability is linked to the lighting 

conditions, the material surface, the sample heterogeneity, and many other factors. 

Moreover, two different materials may have very similar spectra. Especially for food industry 

products, the shape of NIR spectra is often similar since they are the result of the mix of the 

main nutrients. This is particularly the case for wheat and peanut as they are similar 

products once transformed into flour. More specifically, as peanuts are defatted, the fatty 

acid NIR fingerprint does not appear in the spectrum. Thus, the ambiguity of spectral 

information and the spectral variability issue are two main challenges for detection purposes 

in the food industry. 
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Another difficulty arises when dealing with powder samples. Indeed, the particle size may be 

smaller than the pixel size. For a hyperspectral camera, a pixel integrates the radiance signal 

from all materials in its field of view. Thus, if this field of view contains particles with 

different spectral signatures, the pixel is considered as mixed and the resulting spectrum 

does not correspond to any pure chemical defined as target or background. This problem is 

known as the subpixel detection [22]. 

 

The detection problem can be seen as a binary hypothesis test for which each pixel is 

assigned to the target or the background class. In this condition, no spatial pattern is taken 

into account and each pixel is considered as an independent situation. For the null 

hypothesis, the pixel is assumed to contain only background particles whereas, for the 

alternative hypothesis, the pixel contains some target particles. Detection algorithms have 

been designed to take into account both variability and subpixel issues using spectral 

modeling [22]. 

The mixed pixel issue is tackled using the Linear Mixing Model (LMM) [23] which assumes 

the radiance measured by a pixel is the sum of the chemical radiances weighted by their 

surface contribution in the pixel field of view. The spectral variability issue can be addressed 

using subspace modeling that is integrated into the LMM formulation. Finally, a detector can 

be designed using the likelihood ratio and by comparing its value to a threshold. Particularly, 

the Matched Subspace Detector (MSD) [22] [24] is derived using the assumption that both 

target and background variabilities are modeled. 

 

Such a detector requires to be fine-designed to give high performances. In the case of MSD, 

the way the subspaces are designed as well as their dimensions highly influence its 
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performances. Such detectors are often evaluated on reference hyperspectral images that 

are already labeled at the pixel scale (example of Hydice data set for remote sensing 

applications [22]). Thus, detector performances can be calculated on reference images so 

that the design can be optimized. For the inspection of food samples, the field of view of a 

pixel is much smaller (1 mm × 1 mm) [25] than for remote sensing applications. In this 

situation, having chemical reference information for each pixel would require performing 

reference analysis for each pixel field of view surface. This process is not realistic when 

dealing with food samples. As a consequence, no reference data can be used at the pixel 

scale for designing the detector.  

 

Spectral data simulation consists of generating new spectral data from a known statistical 

distribution. This technique can be used to compare different modeling techniques [26]. 

Such a simulation can take the spectral variability of a pure sample into account by using 

Principal Component Analysis (PCA) [20]. Additionally, the LMM may be used to perform 

mixed spectra resulting from an interaction between several materials. 

 

The  use of a near-infrared hyperspectral imaging system for the detection of adulterant in 

food has been studied in plenty of applications. However, the issues regarding the variability 

of the samples, the spectral ambiguity between species, the mixed pixels and the lack of 

reference data for the detector design make the detection difficult. To our knowledge, no 

study has been proposed to tackle detection for such samples with particle size smaller than 

the pixel. The purpose of this study is to evaluate how the MSD approach using the LMM 

and the modeling of spectral variability can provide performant detection for such a 

detection problem. As no reference values for the detector design are available, a spectral 
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simulation method is proposed. After studying the performances of the detector on 

simulated data, we propose to study the detection using real hyperspectral measurements 

of flour mix at graduated concentrations of peanut. 

 

2. Materials and methods 
 

2.1 Samples 
 
White wheat flour (Grands Moulins de Paris, Francine batch number ER510 – FTU104, 

France) was used as the background sample. Samples were taken from two different packs. 

Defatted peanut flour (KoRo Handels GmbH, batch number C170151, Germany) was used for 

the target sample. Flour samples were mixed together to obtain 8 different mass 

concentrations of peanut flour: 20 %, 10 %, 5 %, 2 %, 1 %, 0.5 %, 0.2 % and 0.02 % for a total 

mass of 13.75 g. Mass measurements were performed using a precision balance (Sartorius 

Entris, 0.01 g precision). Additionally, pure peanut flour and pure wheat flour were 

prepared. Each sample was prepared in triplicate. Mixed samples were put in a container to 

be shaken and mixed with a spatula. Samples were put in a rectangular sample holder (30 

mm width x 70 mm length) made of a 7 mm depth cavity. The top of the sample holder was 

skimmed to remove excess powder without affecting the packing density. 

 
 

2.2 Hyperspectral imaging system 
 

A line-scan pushbroom Specim SWIR camera (SPECIM, Oulu, Finland) was used for the image 

acquisition. The hyperspectral camera acquired 288 spectral bands from 900 nm to 2500 nm 

with a 5.6 nm step. The camera acquired 392 pixels per line and the pixel size was 250 µm × 

250 µm. Six halogen lamps were used for the measurement and heated up for 30 minutes 
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before the acquisition. A white reference measurement was performed before each 

acquisition using a white diffuse reflectance standard (Spectralon®, SRS-99-010, Labsphere). 

Additionally, the dark reference image was acquired after closing the shutter of the camera. 

Each sample was measured independently leading to 30 data cubes. 

 

2.3 Data processing 
 
Each image was cropped to focus on the sample in the central cavity of the sample holder 

leading to data cubes of size 200 × 320 × 188. The white reference image was averaged 

along the perpendicular direction of the sensor array to obtain one spectrum for every pixel 

of the sensor line (  ).The reflectance image is calculated using (Eq. 1): 

 

    
     

     
   (Eq. 1) 

where    corresponds to the black measurement for each pixel and   is the raw intensity 

measurement of the sample. First (under 1200 nm) and last (over 2200 nm) wavelengths 

were removed as spectra were too noisy. Spectra were processed using a Savitsky-Golay 

filter to reduce the noise for the remaining wavelengths (2nd order polynomial, 7-points 

window, and no derivative). A Standard Normal Variate (SNV) transformation was applied to 

compensate for scattering effects. 

 

2.4 Spectral simulation using Principal 
Component Analysis 

 
 
A spectrum can be considered as a vector lying in a  -dimensional space. Each dimension is 

defined by one variable, namely a wavelength of the spectral range. The variability of 
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spectral data is the variance of the reflectance for each wavelength in this  -dimensional 

space. NIR spectral data exhibits a high correlation between the variables. As a consequence, 

defining the spectral variability independently for each variable is not efficient. 

PCA is a method for dimensionality reduction that decomposes the data matrix        

according to orthogonal sources of the highest possible variance. The data matrix can be 

decomposed as follow: 

 

         (Eq. 2) 

 

where         is the score matrix,          is the loading matrix,          is the 

matrix of residuals, and the upper script symbol T refers to the transposed matrix. 

Under this representation, the distribution of scores for each component can be considered 

as Gaussian with mean    - which is, in practice, null - and variance   . Each component of 

the matrix   provides a unit vector spanning the subspaces of the sample variability. As a 

consequence, a new spectrum can be simulated by generating its coordinates in the 

principal components space. In this representation, the   coordinates are generated using 

Gaussian distributions.  

 

The Linear Mixing Model (LMM) describes the linear interaction between spectral signatures 

of pure materials in a mixture context [23]. In this model, a spectrum   is described by (Eq. 

3). 

 

          
     (Eq. 3) 
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where    is the pure spectrum of the i-th material,           is the associated 

concentration,     is the residual vector and      is the number of species in the model. 

 

The PCA and LMM are combined considering that    may represent a source of variability as 

well as a pure spectral signature. The process of data simulation used in this study is 

described by the following procedure (Figure 1): 

 

1) PCA is performed on the data matrix of pure wheat data     and pure peanut data 

   distinctly. The average spectra of both matrices     and     are calculated and 

considered as the pure spectral signatures of the materials. 

 

2) For every dimension         , the distribution of scores    is assumed to be 

Gaussian of mean    (which is equal to 0) and standard deviation   . These 

parameters are estimated on the pure sample image for wheat and peanut distinctly. 

 

3) For a given peanut percentage  , the average spectrum is simulated using the LMM: 

                  (Eq. 4) 

  being a scalar varying between 0 and 1. 

4) The simulation is completed by adding the random variability to the average 

simulated spectrum    . The variability is obtained by multiplying the simulated 

scores with the principal component loadings. The simulated scores     are generated 

from Gaussian distributions with the parameters calculated in step 2) for peanut and 

wheat separately. The total variability attributed to    is a balance between peanut 

and wheat controlled by the proportion  . 
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  (Eq. 5) 

where the tilde symbol designates the simulated matrices. 

 

 
 
 

[Insert Figure 1] 
Figure 1: Procedure for spectral simulation. For the first two steps (1-2), the procedure is only described for the wheat flour 

sample. The same procedure is applied on the peanut flour sample. 

 
The simulation procedure is applied to obtain 100 spectra for each peanut concentration 5%, 

10%, 15% and 20%. 

 

2.5 Matched subspace detector design 
 
 
According to the LMM, a given pixel has a spectrum   described by: 

        
 
       (Eq. 6) 

where the vectors    define the variability space of   . These vectors can be obtained from 

statistical techniques like PCA or Non-Negative Matrix Factorization as shown in the section 

2.5. The coefficients    are the abundance coefficients associated to the   .    is the noise 

vector coming from the sensor or the measurement conditions. Despite the fact Eq. 6 is 

mathematically equivalent to Eq. 3, it does not hold the same physical sense in the context 

of this work. Eq. 3 is the model used for representing the interaction between peanut and 

wheat flour in a simulation context. Eq. 6 is the model used to represent the mixture context 

of a pixel for a detection purpose. 

In the context of a subpixel detection problem, two competing hypotheses are tested. For 

the null hypothesis associated with the background class, the pixel is assumed to contain 

only the background sample. Consequently, the LMM decomposes the pixel spectrum 
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according to the sources of variability associated to the background sample   
 . For the 

alternative hypothesis associated with the target class, the pixel contains background 

particles as well as target particles. Thus,   is modeled using the LMM with the sources of 

variability associated with the background and the target   
 

. The MSD is thus based on the 

following statistical test: 

    :         
   

    

  :    
   

   
        

 
  
   

    

where    and    define the dimensionality associated to the variability for the background 

and the target respectively. Two matrices are defined corresponding to these hypotheses:   

contains the vectors   
  in columns, and S contains the vectors   

  and   
 

 in columns as 

shown below.  

      
     

       
    and       

    
       

    
 
   

 
      

 
  

The generalized likelihood ratio approach gives the detection statistic for the MSD [22]: 

         
     

    
   

    
  

 (Eq. 7) 

where   
  and   

  are the projection matrices on the orthogonal subspace of   and    

respectively. These projectors are obtained from the   and    matrices by the following 

formula: 

  
               (Eq. 8) 

 

After calculating the detection statistic for each pixel spectrum of a sample using (Eq. 7), a 

threshold must be applied to classify between both classes: target (the pixel contains target 

and background) and background. This threshold is chosen using the Neyman-Pearson 

approach that consists of maximizing the detection rate by keeping the false alarm rate 
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under a given limit. For this purpose, the threshold is fixed as the maximum value of the 

detection statistic obtained on one replicate of the pure wheat sample:  

             (Eq. 9) 

with                   . 

The two other pure wheat replicates were used in order to assess the robustness of the 

thresholding method.  

For both data matrix    and   , a PCA on non-centered data was performed and the first 

loadings were extracted to obtained vectors   
  on wheat flour and   

 
 on peanut flour.    

and    correspond to the number of extracted loadings for wheat and peanut flours 

respectively.  

As Eq. 7 and 8 show, the design of the MSD highly depends on the design of   and  . The 

way of constructing these matrices depends on the choice of the spectral profiles   
  and   

 
. 

In the method presented in this work, those spectral profiles are obtained by selecting 

consecutive components from PCA performed on the pure samples. However, the number 

of components to choose to obtain   and   :    and    are tunable parameters that change 

the calculation of     . The design of the MSD consists of finding optimal values for   and 

  . In the following, the performance of the detector is qualified using its sensitivity. In this 

paper, the sensitivity refers to the minimum local concentration (at the pixel scale) for which 

the detection rate is over 99%. 

 

2.6 Software 
 

The data processing is performed using Python 3.7. For data simulation, the PCA is 

performed using the Scikit-Learn 0.18.1 implementation consisting of a Singular Value 
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Decomposition (SVD). For the design of MSD, the PCA on non-centered data is performed 

using the eigenvalue decomposition of      performed with Numpy 1.16.4. 

 
 
 
 
 
 
 
 
 

3. Results and discussions 
 

3.1 Data simulation for the detector design 
 
 

Figure 2 shows the factorial plan of PCA performed on pure wheat and pure peanut 

samples. Two different sets of scores are plotted: empty-square markers are from pure 

peanut and wheat samples used for the PCA calculation; filled markers are the simulated 

data obtained by projecting the spectra onto the two first PCA loadings. This factorial plan 

shows that simulated data are ordered according to the first principal component: lower 

peanut concentrations are closer to pure wheat flour on the left and higher concentrations 

are on the right side. The focus shows the variability of simulated data is similar to the one 

of real measurements of wheat flour. Peanut flour shows a greater variance on the second 

principal component because the surface of the sample exhibits more heterogeneity. The 

Figure 2 shows that the simulated data exhibit less variability on PC 2 compared to pure 

peanut and, even less so, to pure wheat. As Eq. 5 shows, the amount of variability added to 

the model depends on the parameter   which represents the simulated target 

concentration. Consequently, when the simulated concentration is low, the amount of 

variability is more similar to the one of wheat flour. Moreover, the difference observed on 
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the variability level of pure wheat flour and simulated data is explained by the Gaussian 

simplification of the real distribution of the data. Indeed, the real distribution of data points 

in the PCA may not fit a Gaussian perfectly. More particularly, extreme points on PC 2 seem 

to be more present on real data. These results show that simulated data can be relevantly 

used for the estimation of the sensibility of detectors. 

[Insert Figure 2] 
Figure 2: Simulated data are projected on the score plot of the PCA performed on real measurements of pure samples. Real 

measurements are shown with empty square markers. Projected simulated data are shown for low concentrations between 5% 

and 20% of peanut. Only 400 representative data points among 130 000 are plotted for peanut and wheat flour. 

 

Table 1: Design parameters of three detectors of interest. shows the details of the design 
(the values for    and   ) for three detectors. These detector designs are selected because 
they show the best and most interesting results among all those which have been tested. 
The next section shows the results for other design and focuses on the choice of the 
parameters.  
 
 
 
 
Table 1: Design parameters of three detectors of interest. 

Name of the detector Detector 1 Detector 2 Detector 3 

   1 2 2 

   1 1 2 

 
 

The design of the detector requires to evaluate its sensitivity to optimize the choice 

of the parameter values (   and   ). Figure 3 shows the detection rate of the three different 

detector designs described in Table 1: Design parameters of three detectors of interest.. The 

detection rate indicates the fraction of detected targets for a given peanut concentration of 

the simulated data. For zero peanut concentration, spectra from real wheat flour images 

were used. The graph shows that all detectors do not have any false alarm on real wheat 

measurements. This means that the thresholding method is robust for all three detector 

designs. Detectors 2 and 3 reach a detection rate of 100% for a simulated peanut 

concentration of 20% and they both have similar detection rates for smaller peanut 
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concentrations. Detector 1 exhibits a smaller detection rate for every concentration, and it 

does not reach a 100% detection rate for 20% of peanut adulteration. This shows that, 

according to the simulated data, the detectors 2 and 3 have a similar sensitivity which is 

higher than the one of the detector 1. 

 
[Insert Figure 3] 

 
Figure 3: The detection rate according to the peanut concentration in simulated data for three detector design. For zero peanut 

concentration, real wheat flour measurement data are used to calculate the detection rate. 

 
Figure 4 shows the comparison of a detection map for the three detectors presented 

in Figure 3. For this purpose, a focus is made on the hyperspectral image measured on a 

sample containing 2% of peanut flour. The map represents an area of 104 × 62 pixels (2.6 × 

1.5 cm) and each color corresponds to an output of the comparison of 2 detectors: detectors 

1 and 2 for the top map and detectors 2 and 3 for the bottom map. The top map shows 

several groups of blue pixels (top left-hand corner) meaning that many pixels are only 

detected by detector 2 and not by detector 1. Since real measurements do not contain any 

reference value at the pixel scale, the real position of the targets is unknown. However, the 

fact that neighbor pixels are simultaneously detected strengthens the probability that there 

is effectively peanut in these pixels. In other words, the detection of a neighborhood of 

pixels is more credible than the detection of an isolated pixel. This argument is developed in 

the section Detection position. On the other hand, detector 1 only detects one pixel 

exclusively. The comparison of the detection maps tends to show that detector 1 is less 

sensitive than detector 2. 

The maps in Figure 4 show only a few colored pixels which means that detectors have 

approximately the same performances. The detector 3 detects 13 more pixels than detector 

2 and only one (in the middle of the map) can be considered suspicious since it is isolated. 
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On the other hand, the detector 2 shows only one exclusive detection (in the middle of the 

map) which is isolated. 

These observations made on real data are relevant to the results obtained with the 

simulation method (Figure 3): the detectors 2 and 3 have similar performance and are more 

sensitive than detector 1. This shows that simulated data can be relevantly used for 

designing and analyzing matched subspace detectors. Additionally, detection map 

comparison shows that detector 3 seems to be more sensitive than detector 2 despite the 

fact that they exhibit almost equal performances on the simulated data. 

 
[Insert Figure 4] 

 
Figure 4: Detection map comparison on real data (focus on a sample with 2% of peanut – replicate A). The map above shows 

the comparison between the detectors 1 and 2, below is the comparison between the detectors 2 and 3. Each pixel is colored 

according to the output of both detectors (see the legend). 

 

3.2 Matched subspace detector 
 

3.2.1 Design of the detector 
 

Figure 5 shows the sensitivity of several detectors calculated on the simulated data. 

The first graph on the left shows the effect of varying    with     . This means the 

background dimensionality is varying whereas the dimensionality of the target model is 

fixed.      gives poor performances since no spectra are detected even for a peanut 

concentration of 20%. The best performances are obtained for     . Then, increasing    

leads to lower detection rates. The graph on the right shows the evolution of the sensitivity 

when fixing     . In this condition, the performances of the detectors are identical for 

     and     . Then, choosing a higher value for    decreases the detection rate. We 

also show the design with      and      (see Figure 3) provides a lower sensitivity than 
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the detector 3. Consequently, the results show that there is an optimal design      , 

      for the MSD regarding the performances on the simulated data. 

 

 

[Insert Figure 5] 
 

Figure 5 : Detector sensitivity for varying    and   . On the left,    is fixed and    goes from 1 to 4. On the right,    goes 

from 1 to 4 and    is fixed. Detection rate are calculated on simulated data for concentration from 5% to 20% and on real 

wheat measurement data for 0%. 

 
Figure 6 depicts the geometrical interpretation of the matched subspace detector. 

For simplicity, we assume the spectrum vector   belongs to a 3-dimensional subspace 

defined by three virtual wavelength bands   ,    and   . The target and the background 

subspaces are assumed to be 1-dimensional and are represented by vectors    and   . The 

common subspace is a 2-dimensional subspace represented by the plane  . The MSD 

compares the residuals of the decomposition of   under hypothesis    and   . 

Geometrically, the squared residuals under     corresponds to     which is the norm of 

the projection of   onto the orthogonal subspace of    . Similarly, under the alternative 

hypothesis   , the residuals     are calculated as the norm of the projection of   onto the 

orthogonal subspace of  . As a consequence, the quantities involved in the matched 

subspace detector formulation can be translated in terms of vector norms on the graph of 

the Figure 6:     
       and     

      . Then, the matched subspace detector metric 

can be rewritten as follow: 

 

         
     

    
   

    
  

  
       

   
 

   

   
 (Eq. 10) 
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The last equality of (Eq. 10) can be deduced from the fact that    is the orthogonal projection 

of   on the subspace   leading to the relationship:            . 

 
[Insert Figure 6] 

 
Figure 6: Geometrical interpretation of the matched subspace detector. A spectrum is represented by a vector x in a 3-

dimensional subspace (        ). The target and background subspaces are represented as 1-dimensional and the common 

subspace is the red plane defined by the union. For more clarity, the triangle OWA is rectangle in W and the triangle OAP is 

rectangle in P.  

The geometrical interpretation is useful to visualize that the matched subspace detector 

compares two models with two different dimensionalities. If the pixel spectrum only 

contains wheat, the modeling of   on    is sufficient. Consequently,     is small because 

adding vectors from the target subspace    should not significantly improve the model 

fitting. However, if the pixel spectrum contains some peanut, adding vectors from the target 

variability to the model should significantly improve it. The role of the detector threshold is 

to define the limit for which the distance between both models is large enough to consider 

that a peanut particle is present or not. 

 

From this interpretation, the results from different detector designs can be explained. When 

     , the models for    and    become highly unbalanced. For instance, for the design 

where      , and     ,   is modeled using a 2-dimensional subspace under    

compared to a 5-dimensional subspace under   . This unbalanced situation always holds 

whatever the design of the MSD. For this reason, the matched subspace detector metric 

does not compare directly the residuals under both hypotheses but a ratio. The role of the 

thresholding phase is to take into account this unbalanced problem. One method consists of 

tuning the threshold on the detector statistic obtained on a pure background sample. This 

method works when the histograms of the detector statistic between the pure wheat flour 

and the adulterated pixels can be separated. However, when the design is too highly 
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unbalanced, the model fitting for    and    becomes very competitive because additional 

vectors from the peanut subspace can be used to improve the fitting on   even if it only 

contains wheat. This is a consequence of the fact the spectral signatures of peanut and 

wheat flours are similar. In these conditions, it becomes difficult to find a threshold value 

that meets the needs for a high detection rate. 

When    and    are too high, each model takes into account a large variability. However, 

this is not a good strategy since peanut and wheat spectral signatures are similar and their 

variabilities are high. Thus, increasing the parameters    and    leads to more ambiguity for 

the detector and a high-dimensional model will be preferred. Finally, when    and    are too 

small (     and     ), the model cannot consider the background variability which is 

detrimental for this application. 

Finally, the interpretation of the MSD metric is useful to understand why the set of 

appropriate values for the parameter    and    is relatively small. The results on the 

simulated data are relevant with this interpretation and enable to find the best parameters 

for the design of the detector.   

 

3.2.2 Number of detections 
 

Figure 8 shows the detection rate of three selected detectors for all the measured 

samples. The scatter plot shows the detection rate increases when the sample concentration 

increases so the application of the MSD detector on real measurement is relevant. The 

results also show a high variance in the detection rates for the same detector applied to the 

three replicates of the same concentration. This can be explained by the experimental 

conditions. Indeed, hyperspectral measurements are representative of the material through 

a depth of some millimeters. However, the peanut concentration is a global characteristic of 
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the sample volume. As it is not possible to make sure that the sample is homogenous, the 

global concentration and the apparent concentration at the surface may not be equal. 

Consequently, sample replicates may exhibit real concentration variance at the surface. 

Additionally, the results show a nonlinear behavior in the evolution of the detection rate 

according to the peanut concentration. This is visible on the left-graph of Figure 8. There are 

three phenomena to take into account to explain this behavior. 

 

1) Let us assume a sample is perfectly homogeneous at the pixel-scale with a 

concentration of 20% and a detector with a sensitivity of 10% is applied on a 

hyperspectral data cube. Then, each pixel has a contribution of 20% of peanut and is 

detectable. As a consequence, every pixel is detected and the detection rate is 1. 

Conversely, if the concentration is 5%, no pixel is detected and the detection rate is 

0. Figure 7 shows the explained behavior and the resulting detection rate curve. This 

phenomenon may explain part of the nonlinearity of the results. This highly depends 

on the scale of scrutiny for which the sample is declared to be homogeneous: that is 

to say, the sampling size for which the homogeneity is guaranteed. 

[Insert Figure 7] 
Figure 7 : A virtual Matched Subspace Detector is considered to have a pixel-wise sensitivity of 10%. The sample is assumed 

to be perfectly homogeneous so that the situation of every pixel is identical: there is one target particle in the pixel field  of 

view for the sample with 5 % of peanut, and there is four target particles in the pixel field of view for the sample with 20% of 

peanut. 

2) More realistically, the fact a sample has a global concentration of 20% does not mean 

each pixel surface has the same concentration. In other words, it is reasonable to 

assume the sample is heterogeneous at the pixel-scale. Assuming there is no spatial 

relationship between pixels, an image of 100 000 pixels can be statistically 

considered as 100 000 independent experiments. Each one can be seen as a series of 

Bernoulli processes for which there are as many trials as the number of particles in 
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the pixel. The probability of selecting a peanut particle corresponds to the global 

concentration of peanut. The pixel-wise concentration is thus given by a binomial 

distribution. Such a simulation provides a detection rate curve shown on the left 

graph of Figure 8. The result is obtained by simulating a sensitivity of 25%. This is 

relevant to the estimated sensitivity using the simulated data. 

 

3) In practice, pixels are not independent, so several neighbor pixels are likely detected 

as targets. This phenomenon may happen for two main reasons. Firstly, because 

flour samples do contain several particle sizes. Some may be higher than 150 µm. 

With such a size, some particles may overlap several pixels and make all of them 

detectable. Secondly, because the particle size study of flours shows that particles 

tend to agglomerate with each other. Despite the fact the median particle size is 

approximately 50 µm in wheat and peanut flours, some agglomerations may have a 

size of several millimeters which leads to the coverage of several pixels. The 

agglomeration occurs particularly often for peanut flour because of the remaining 

fatty acids.  

 
[Insert Figure 8] 

 
Figure 8: The detection rate for the three selected detectors for all samples (from 0.02% to 20% of peanut concentration). The 

graph on the right shows a focus in the concentration range from 0.02% to 2.5%. The dot line is the result of the statistical 

simulation performed with a virtual detector of sensitivity 25%.   

 

These arguments show all detector designs provide relevant results regarding the real 

samples with different concentrations. However, the relationship between the number of 

detections and the peanut concentration of samples is complex. This is related to the scale 

for which the sample homogeneity is assumed as well as the sensitivity of the detector and 

the particle size. 
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3.2.3 Detection positions 
 

Previous results show that detector 3 seems to provide the most sensitive results. 

Figure 9 shows the detection maps of three different concentrations and three replicates. 

These maps show that the number of detections is repeatable among the replicates as 

Figure 8 showed. They also show the detection locations are credible: most of them are 

made on neighbor pixels so that peanut agglomeration can be seen. Furthermore, the 

location of these agglomerations is randomly distributed across the sample. These results 

show the MSD can be used to detect difficult targets as peanut flour in wheat and give their 

position efficiently. 

 

[Insert Figure 9] 
 

Figure 9: Detection maps obtained after applying Detector 3 on real samples for three concentration: 20%, 5% and 0.2%. A 

black pixel means no detection, a white pixel means target is detected. 

 
 

CONCLUSIONS 
 
The purpose of this study was to tackle a difficult detection problem dealing with similar 

materials with high spectral variability and particle size involving subpixel detections. The 

development of a Matched Subspace Detector was proposed to overcome these difficulties. 

The spectral variability was tackled using subspace modeling through PCA whereas the 

Linear Mixing Model was used to consider the subpixel detection issue. Moreover, data 

simulation of different peanut concentrations was proposed to provide an estimation of the 

performances of the detectors. This technique was used to choose the most appropriate 

design. 
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As a result, the data simulation method provides realistic data regarding the measurement 

variability. Detector designs giving a high detector rate for the low concentrated samples 

were conserved and applied on real measurements. Results show that the MSD and the data 

simulation were relevant to overcome the detection issue. Despite the lack of local 

reference values, the number and the position of the detections show that MSD provides 

reliable results. 

 

Additional work could be provided for further improvements for this kind of detection 

situation. Firstly, the data simulation process could be improved by selecting a subset of 

loadings to simulate the data. This may provide more reliability on the simulation. Indeed, 

the expected sensitivity obtained on simulated data (20%) does not seems to be reached in 

practice. Then, even if no spatial a priori hypothesis can be done regarding the particle size, 

the detection results on real data show that most of the detections are made on neighbor 

pixels. This is because of particle agglomeration which is a phenomenon that applies on very 

small flour particles. Such an effect could be taken into account to improve the detection by 

adding some spatial dependence in the detector algorithm. Finally, the statistical simulation 

for the number of detected pixels according to the peanut concentration may be improved. 

For example, the hypothesis that each pixel is independent of the other could be changed to 

get a more accurate approach. 
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