R. Dalbies-tran, V. Cadoret, A. Desmarchais, S. Elis, V. Maillard et al., A Comparative Analysis of Oocyte Development in Mammals, Cells, vol.2020, p.1002
URL : https://hal.archives-ouvertes.fr/hal-02545852

J. M. Young, A. S. Mcneilly, and . Theca, The forgotten cell of the ovarian follicle, Reproduction, vol.140, pp.489-504, 2010.

H. F. Irving-rodgers, M. L. Harland, T. Sullivan, and R. J. Rodgers, Studies of granulosa cell maturation in dominant and subordinate bovine follicles: Novel extracellular matrix focimatrix is co-ordinately regulated with cholesterol side-chain cleavage CYP11A1. Reproduction, vol.137, pp.825-834, 2009.

E. C. Fernández, H. M. Picton, and R. Dumollard, Metabolism throughout follicle and oocyte development in mammals, Int. J. Dev. Biol, vol.56, pp.799-808, 2012.

K. R. Dunning, D. L. Russell, and R. L. Robker, Lipids and oocyte developmental competence: The role of fatty acids and ?-oxidation, Reproduction, vol.148, pp.15-27, 2014.

M. Paczkowski, E. Silva, W. B. Schoolcraft, and R. L. Krisher, Comparative Importance of Fatty Acid Beta-Oxidation to Nuclear Maturation, Gene Expression, and Glucose Metabolism in Mouse, Bovine, and Porcine Cumulus Oocyte Complexes1, Biol. Reprod, vol.88, 2013.

R. Sturmey, A. Reis, H. Leese, T. Mcevoy, and R. G. Sturmey, Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development, Reprod. Domest. Anim, vol.44, pp.50-58, 2009.

H. F. Hashemi and J. M. Goodman, The life cycle of lipid droplets, Curr. Opin. Cell Biol, vol.33, pp.119-124, 2015.

W. Wahli and L. Michalik, PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol. Metab, vol.23, pp.351-363, 2012.

N. C. Lucki and M. B. Sewer, Multiple Roles for Sphingolipids in Steroid Hormone Biosynthesis, Subcell. Biochem, vol.49, pp.387-412, 2008.

S. G. Hillier, P. F. Whitelaw, and D. Smyth, Follicular oestrogen synthesis: The 'two-cell, two-gonadotrophin' model revisited, Mol. Cell. Endocrinol, vol.100, pp.51-54, 1994.

B. Bao and H. A. Garverick, Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: A review, J. Anim. Sci, vol.76, 1903.

P. S. Bertevello, A. Teixeira-gomes, A. Seyer, A. V. Carvalho, V. Labas et al., Lipid Identification and Transcriptional Analysis of Controlling Enzymes in Bovine Ovarian Follicle, Int. J. Mol. Sci, vol.19, p.3261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628741

F. X. Donadeu, S. Fahiminiya, C. L. Esteves, J. Nadaf, K. Miedzinska et al., Transcriptome Profiling of Granulosa and Theca Cells During Dominant Follicle Development in the Horse1, Biol. Reprod, vol.91, p.111, 2014.

N. Hatzirodos, K. Hummitzsch, H. F. Irving-rodgers, and R. J. Rodgers, Transcriptome Comparisons Identify New Cell Markers for Theca Interna and Granulosa Cells from Small and Large Antral Ovarian Follicles, PLoS ONE, vol.10, 2015.

M. K. Skinner, M. Schmidt, M. I. Savenkova, I. Sadler-riggleman, and E. E. Nilsson, Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development, Mol. Reprod. Dev, vol.75, pp.1457-1472, 2008.

A. Girard, I. Dufort, G. Douville, and M. Sirard, Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle, Reprod. Biol. Endocrinol, vol.13, 2015.

M. Assidi, S. J. Dieleman, and M. Sirard, Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: Potential early markers of oocyte competence, Reproduction, vol.140, pp.835-852, 2010.

R. Labrecque, E. Fournier, and M. Sirard, Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis, Mol. Reprod. Dev, vol.83, pp.558-569, 2016.

H. Aardema, P. L. Vos, and B. M. Gadella, Cumulus cells protect the oocyte against saturated free fatty acids, Anim. Reprod, vol.15, pp.737-750, 2018.

, Int. J. Mol. Sci, vol.2020, pp.6661-6687

L. Sanchez-lazo, D. Brisard, S. Elis, V. Maillard, R. Uzbekov et al., Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine, Mol. Endocrinol, vol.28, pp.1502-1521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129856

M. Sutton-mcdowall, D. Feil, R. L. Robker, J. G. Thompson, and K. R. Dunning, Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos, Theriogenology, vol.77, pp.1632-1641, 2012.

P. Blondin, Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes, Mol. Reprod. Dev, vol.41, pp.54-62, 1995.

P. Lonergan, P. Monaghan, D. Rizos, M. P. Boland, and I. Gordon, Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro, Mol. Reprod. Dev, vol.37, pp.48-53, 1994.

W. Jeong, S. Cho, H. Lee, G. Deb, Y. Lee et al., Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos, Theriogenology, vol.72, pp.584-589, 2009.

M. Nagano, Acquisition of developmental competence and in vitro growth culture of bovine oocytes, J. Reprod. Dev, vol.65, pp.195-201, 2019.

M. Oseikria, S. Elis, V. Maillard, E. Corbin, and S. Uzbekova, N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle, Theriogenology, vol.85, pp.1625-1634, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409334

S. Elis, M. Oseikria, A. V. Carvalho, P. S. Bertevello, E. Corbin et al., Docosahexaenoic acid mechanisms of action on the bovine oocyte-cumulus complex, J. Ovarian Res, vol.10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620045

S. Freret, M. Oseikria, D. Le-bourhis, A. Desmarchais, E. Briant et al., Effects of a n-3 PUFA enriched diet on embryo production in dairy cows, Reproduction, vol.158, pp.71-83, 2019.

J. Leroy, T. Vanholder, J. Delanghe, G. Opsomer, A. Van-soom et al., Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows, Anim. Reprod. Sci, vol.80, pp.201-211, 2004.

N. Hatzirodos, R. J. Rodgers, K. Hummitzsch, M. L. Harland, S. E. Morris et al., Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes, BMC Genom, vol.15, 2014.

N. Hatzirodos, K. Hummitzsch, H. F. Irving-rodgers, and R. J. Rodgers, Transcriptome Profiling of the Theca Interna in Transition from Small to Large Antral Ovarian Follicles, PLoS ONE, vol.9, p.97489, 2014.

C. Théry, K. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J. Extracell, vol.7, p.1535750, 2018.

M. A. Fenwick and P. R. Hurst, Immunohistochemical localization of active caspase-3 in the mouse ovary: Growth and atresia of small follicles, Reproduction, vol.124, pp.659-665, 2002.

V. Glamo?lija, K. Vilovi?, M. Saraga-babi?, A. Baranovi?, and D. Sapunar, Apoptosis and active caspase-3 expression in human granulosa cells, Fertil. Steril, vol.83, pp.426-431, 2005.

S. Uzbekova, S. Elis, A. Teixeira-gomes, A. Desmarchais, V. Maillard et al., Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries, Biology, vol.4, pp.216-236, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02630020

F. B. Cordeiro, A. K. Jarmusch, M. León, C. R. Ferreira, V. Pirro et al., Mammalian ovarian lipid distributions by desorption electrospray ionization-mass spectrometry (DESI-MS) imaging, Anal. Bioanal. Chem, vol.412, pp.1251-1262, 2020.

D. I. Campbell, C. R. Ferreira, L. S. Eberlin, and R. G. Cooks, Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization, Anal. Bioanal. Chem, vol.404, pp.389-398, 2012.

T. Kruip and S. Dieleman, Steroid hormone concentrations in the fluid of bovine follicles relative to size, quality and stage of the oestrus cycle, Theriogenology, vol.24, pp.395-408, 1985.

S. Brantmeier, R. Grummer, and R. Ax, Concentrations of High Density Lipoproteins Vary Among Follicular Sizes in the Bovine, J. Dairy Sci, vol.70, pp.2145-2149, 1987.

, Int. J. Mol. Sci, vol.2020, pp.6661-6688

W. Hung, X. Hong, L. K. Christenson, and L. K. Mcginnis, Extracellular Vesicles from Bovine Follicular Fluid Support Cumulus Expansion1, Biol. Reprod, vol.93, 2015.

T. Skotland, K. Sandvig, and A. Llorente, Lipids in exosomes: Current knowledge and the way forward, Prog. Lipid Res, vol.66, pp.30-41, 2017.

R. Navakanitworakul, W. Hung, S. Gunewardena, J. S. Davis, W. Chotigeat et al., Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles, Sci. Rep, 2016.

X. Wen, Y. Kuang, L. Zhou, B. Yu, Q. Chen et al., Lipidomic Components Alterations of Human Follicular Fluid Reveal the Relevance of Improving Clinical Outcomes in Women Using Progestin-Primed Ovarian Stimulation Compared to Short-Term Protocol, Med. Sci. Monit, vol.24, pp.3357-3365, 2018.

T. Lapidot and J. M. Graff, Form(ul)ation of adipocytes by lipids, vol.6, pp.176-186, 2017.

N. V. Prokazova, N. D. Zvezdina, and A. A. Korotaeva, Effect of lysophosphatidylcholine on transmembrane signal transduction, Biochem. Mosc, vol.63, pp.31-37, 1998.

K. Lauber, E. Bohn, S. M. Kröber, Y. Xiao, S. G. Blumenthal et al., Apoptotic Cells Induce Migration of Phagocytes via Caspase-3-Mediated Release of a Lipid Attraction Signal, Cell, vol.113, pp.717-730, 2003.

K. Mcnatty, D. A. Heath, K. M. Henderson, S. Lun, P. R. Hurst et al., Some aspects of thecal and granulosa cell function during follicular development in the bovine ovary, Reproduction, vol.72, pp.39-53, 1984.

J. Serna, D. García-seisdedos, A. Alcázar, M. A. Lasunción, R. Busto et al., Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry, Chem. Phys. Lipids, vol.189, pp.7-18, 2015.

A. Drzazga, A. Sowi?ska, and M. Kozio?kiewicz, Lysophosphatidylcholine and lysophosphatidylinosiol-Novel promissing signaling molecules and their possible therapeutic activity, Acta Pol. Pharm, vol.71, pp.887-899, 2015.

B. Jaspard, N. Fournier, G. Vieitez, V. Atger, R. Barbaras et al., Structural and Functional Comparison of HDL From Homologous Human Plasma and Follicular Fluid, Arter. Thromb. Vasc. Biol, vol.17, pp.1605-1613, 1997.

D. Dadarwal, G. P. Adams, P. Maddox-hyttel, G. M. Brogliatti, S. Caldwell et al., Organelle reorganization in bovine oocytes during dominant follicle growth and regression, Reprod. Biol. Endocrinol, vol.13, 2015.

H. Imai, M. Matsuoka, T. Kumagai, T. Sakamoto, and T. Koumura, Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis, vol.403, pp.143-170, 2016.

R. Roy and A. Bélanger, Formation of lipoidal steroids in follicular fluid, J. Steroid Biochem, vol.33, pp.257-262, 1989.

A. Tokumura, M. Miyake, Y. Nishioka, S. Yamano, T. Aono et al., Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of In vitro fertilization patients, Biol. Reprod, vol.61, pp.195-199, 1999.

K. Kim, M. S. Bloom, V. Y. Fujimoto, and R. W. Browne, Associations between PON1 enzyme activities in human ovarian follicular fluid and serum specimens, PLoS ONE, vol.12, 2017.

L. Cigliano, M. S. Spagnuolo, B. Dale, M. Balestrieri, and P. Abrescia, Estradiol esterification in the human preovulatory follicle, Steroids, vol.66, pp.889-896, 2001.

J. Bausenwein, H. Serke, K. Eberle, J. Hirrlinger, P. Jogschies et al., Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women, Mol. Hum. Reprod, vol.16, pp.117-124, 2009.

C. M. Combelles, E. A. Holick, L. J. Paolella, D. C. Walker, and Q. Wu, Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles, Reproduction, vol.139, pp.871-881, 2010.

A. Schneider, V. Absalon-medina, G. Esposito, M. Corrêa, W. R. Butler et al., PON) 1, 2 and 3 Expression in Granulosa Cells and PON1 Activity in Follicular Fluid of Dairy Cows, Reprod. Domest. Anim, vol.48, pp.989-994, 2013.

D. Monniaux, Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models, Theriogenology, vol.86, pp.41-53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529484

, Int. J. Mol. Sci, vol.2020, pp.6661-6689

Q. Hao, Z. Zhu, D. Xu, W. Liu, L. Lyu et al., Proteomic characterization of bovine granulosa cells in dominant and subordinate follicles, Hereditas, vol.156, pp.1-9, 2019.

B. Falkenburger, J. B. Jensen, E. J. Dickson, B. Suh, and B. Hille, Phosphoinositides: Lipid regulators of membrane proteins, J. Physiol, vol.588, pp.3179-3185, 2010.

A. Sobinoff, J. Sutherland, and E. A. Mclaughlin, Intracellular signalling during female gametogenesis, Mol. Hum. Reprod, vol.19, pp.265-278, 2012.

N. Hatzirodos, K. Hummitzsch, R. J. Rodgers, M. L. Harland, S. E. Morris et al., Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia, BMC Genom, vol.15, 2014.

K. Annes, D. B. Müller, J. A. Vilela, R. S. Valente, D. P. Caetano et al., Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content, Reprod. Fertil. Dev, vol.31, 2019.

R. J. Assey, P. Hyttel, T. Greve, and B. Purwantara, Oocyte morphology in dominant and subordinate follicles, Mol. Reprod. Dev, vol.37, pp.335-344, 1994.

D. Milhas, C. J. Clarke, and Y. A. Hannun, Sphingomyelin metabolism at the plasma membrane: Implications for bioactive sphingolipids, FEBS Lett, vol.584, pp.1887-1894, 2009.

S. Mathias, L. A. Peña, and R. Kolesnick, Signal transduction of stress via ceramide, Biochem. J, vol.335, pp.465-480, 1998.

F. Lolicato, J. F. Brouwers, C. H. Van-de-lest, R. Wubbolts, H. Aardema et al., The Cumulus Cell Layer Protects the Bovine Maturing Oocyte Against Fatty Acid-Induced Lipotoxicity1, Biol. Reprod, vol.92, 2015.

H. Aardema, H. T. Van-tol, R. W. Wubbolts, J. F. Brouwers, B. M. Gadella et al., Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress, Biol. Reprod, vol.96, pp.982-992, 2017.

P. Humblot, P. Holm, P. Lonergan, C. Wrenzycki, A. Lequarré et al., Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes, Theriogenology, vol.63, pp.1149-1166, 2005.

A. Lequarré, C. Vigneron, F. Ribaucour, P. Holm, I. Donnay et al., Influence of antral follicle size on oocyte characteristics and embryo development in the bovine, Theriogenology, vol.63, pp.841-859, 2005.

K. Jewgenow, B. Heerdegen, and K. Müller, In vitro development of individually matured bovine oocytes in relation to follicular wall atresia, Theriogenology, vol.51, pp.745-756, 1999.

A. Zeuner, K. Müller, K. Reguszynski, and K. Jewgenow, Apoptosis within bovine follicular cells and its effect on oocyte development during in vitro maturation, Theriogenology, vol.59, pp.1421-1433, 2003.

M. Salhab, L. Tosca, C. Cabau, P. Papillier, C. Perreau et al., Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion, Theriogenology, vol.75, pp.90-104, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01129418

D. Brisard, F. Chesnel, S. Elis, A. Desmarchais, L. Sánchez-lazo et al., Tribbles expression in cumulus cells is related to oocyte maturation and fatty acid metabolism, J. Ovarian Res, vol.7, p.44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00995701

J. Demarquoy and F. Le-borgne, Crosstalk between mitochondria and peroxisomes, World J. Biol. Chem, vol.6, pp.301-309, 2015.

T. J. Grevengoed, E. L. Klett, and R. A. Coleman, Acyl-CoA metabolism and partitioning, Annu. Rev. Nutr, vol.34, pp.1-30, 2014.

V. Tillander, E. A. Nordström, J. Reilly, M. Strozyk, P. P. Van-veldhoven et al., Acyl-CoA thioesterase 9 (ACOT9) in mouse may provide a novel link between fatty acid and amino acid metabolism in mitochondria, Cell. Mol. Life Sci, vol.71, pp.933-948, 2013.

H. Robenek, O. Hofnagel, I. Buers, M. J. Robenek, D. Troyer et al., Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis, J. Cell Sci, vol.119, pp.4215-4224, 2006.

F. Matsuda, N. Inoue, N. Manabe, and S. Ohkura, Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells, J. Reprod. Dev, vol.58, pp.44-50, 2012.

K. E. Valdez, S. P. Cuneo, and A. M. Turzillo, Regulation of apoptosis in the atresia of dominant bovine follicles of the first follicular wave following ovulation, Reproduction, vol.130, pp.71-81, 2005.

Y. Tan, Y. Jin, and X. Wu, Ren, Z. PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism, BMC Mol. Biol, vol.20, pp.1-20, 2019.

S. E. Dautel, J. E. Kyle, G. C. Clair, R. L. Sontag, K. K. Weitz et al., Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

Y. Liang, W. Qi, W. Guo, C. Wang, Z. Hu et al., Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets, Food Nutr. Res, vol.62, 2018.