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Abstract 

Anaerobic digestion is a chemical process whose purpose is to maximize biogas production whilst 

concomitantly treating organic waste mostly through co-digestion due to the variety of substrates. 

To avoid failures, the process requires the monitoring of several parameters and or inhibitors. The 

existing strategies and methods used in the process monitoring still lack sensitivity and robustness, 

when taken individually. The current study investigated the use of sequential and orthogonalized 

partial least squares (SO-PLS) regression to relate these parameters to several blocks of data 

coming for near infrared spectroscopy, chemical routine analysis and kinetics of biogas 

production. The models produced were able to extract relevant information from each block’s data 

and discard redundancies. Moreover, to meet biogas plant operators’ requirements, variable 

selection was performed on the infrared blocks using a recent method: SO-CovSel. SO‐CovSel is a 

method resulting from coupling SO-PLS and Covariance Selection (CovSel) method. The method 

has been demonstrated to be suitable for multi-response calibration purposes with infrared 

calibration. It has provided good predictions and provided an interesting interpretation of 

wavelengths involved in the monitoring of parameters of stability in anaerobic co-digestion.  
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ABBREVIATIONS 

AD Anaerobic Digestion 

AcoD Anaerobic co-Digestion  

LCFA Long Chain Fatty Acids 

NH4
+ ammonium 

NIRS Near InfraRed Spectroscopy  

OLR Organic Load Rate 

PoLiS Polarization Light Spectroscopy  

R(λ) reflectance from the immersed probe 

Rbs(λ) total backscattered reflectance of the remote 

probe 

Rms(λ) multiple scattered reflectance of the remote 

probe 

Rss(λ) single scattered reflectance of the remote probe 

TS Total Solids 

VFA Volatile Fatty Acids 

VS Volatile Solids 
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1. INTRODUCTION 

Anaerobic digestion (AD) is a sensitive process involving a synergistic effort of a diverse group of 

microbial communities for metabolizing diverse organic substrates and then producing biogas. 

However, AD usually features process imbalances and disturbances due to environmental 

fluctuations and inhibitions, especially in anaerobic co-digestion (AcoD). While AcoD can enhance 

methane production due to several co-substrates [1], substrate diversity also increases 

environmental fluctuation risks. Co-substrates such as nitrogen-rich products, fats, oils and grease 

(FOG), highly biodegradable products… boost methane production due to their high methanogenic 

potential. However these co-substrates might induce the accumulation of volatile fatty acids (VFA), 

ammonia/ammonium (NH3/NH4
+) and long chain fatty acids (LCFA), known to severely affect 

anaerobic processes. Thus, control strategies and instrumentations must be up to the level of 

development of the process, including AcoD specificities. Several studies have explored AD 

process parameters and have found some parameters (pH, Alkalinity, VFA …) which are 

characteristic of the process state and used for its monitoring [2]. These parameters reflect, to a 

certain extent, the microbial behavior of the digester, but are not always accurate especially during 

AcoD where the quality and quantity of substrate vary over time. Furthermore, the recommended 

early warning indicators are different among digesters [3]. Moreover, these indicators were only 

effective for some specific substrates and operating conditions probably due to their different 

sensitivities to environmental fluctuations in different AD systems [3-4]. 

Online monitoring and process control techniques could achieve a high-efficiency and stabilized 

performance of the process [5]. Ideal monitoring methods should be fast, sensitive, non-destructive, 

robust, and give early indications of imbalance in the microbial status of the process [6]. In 

addition, they should generate data on several parameters without analyte consumption and 

interferences with the metabolism of the process and be resistant to the changing environments 

encountered in reactors [7]. In this context, spectroscopic techniques, often coupled to optical 

fibers, seem suitable for processes monitoring and have been investigated for different bioprocess 

applications, in wavelength ranges including ultraviolet–visible (UV–Vis), near infrared (NIR) and 

mid infrared (MIR). Near infrared spectroscopy (NIRS), has been usually chosen over the other 

techniques for AD monitoring because it is an ideal compromise between cost, technology and in-

situ applicability. Information must be extracted from the acquired spectra by chemometric 

techniques, mainly Partial Least Squares regression (PLS), to produce calibrations and estimate the 

key parameters. Subsequently, several studies have been conducted based on NIRS to determine the 

stability of the process via VFA prediction [8-11]. Parameters such as Total and Volatile Solids 

(TS/VS), ammonium (NH4
+) [12] and ammonia [13] were also predicted with some success. 

However, the validity of these models and their robustness depend on the concentration range of the 

predicted parameter [14], the feed substrates and the proportion of TS contents in the final 

digestate’s samples [15]. Indeed, low TS content in the digestate suggests high water content. And, 

water has several absorbance bands in the NIR region which therefore upset PLS model calibration 

[16]. 

Thus, although a range of electrochemical, titrimetric, chromatographic and spectroscopic devices 

can be deployed for online monitoring and control of AD process, none seem to be ideal [6].  This 

may be attributed to all the possible interferences that could hinder the measures from these 



different devices. However, it remains true that each technique has some part of valid information 

on the process state or behavior. A relevant hypothesis is that the combination of these measures 

could allow a better monitoring of the process. Combining information from many datasets can 

improve interpretation of the trends observed in the studied system. Indeed, modern monitoring 

technologies usually provide large amounts of datasets, from different devices, on processes. Rather 

than a separate analysis of these datasets, integrated approaches are necessary as they can improve 

the understanding of complex systems by (i) identifying common correlation trends; (ii) revealing 

hidden structures not known a priori and (iii) extracting more information from the studied datasets 

[17]. While single dataset analysis is widespread, integrated analysis of several different types of 

datasets, also called blocks, is challenging. Several methods for integrated analysis have been used 

in bioprocesses including Bayesian factor analysis [18]; network analysis [19] and multivariate 

linear projections such as multi-block analysis [20-21].  

Recently, research in relation to the performance of multi-blocks algorithms have increased due to 

their usefulness in bioprocess monitoring. Multi-block methods are used to explore and model the 

relationships between several datasets. Most of these multivariate linear projection methods are 

based on PLS regression, for example: Hierarchical-PLS [22], Multi-Block-PLS (MB-PLS) [23], 

Sequential and Orthogonalized Partial Least Squares (SO-PLS) [24], Sequential and Orthogonalized 

multi-way version of PLS (SO-N-PLS) [25], Parallel Orthogonalized Partial Least Squares (PO-

PLS) [26]. There is also Predictive-ComDim [27] which derived from Common Components and 

Specific Weights Analysis. Multi-block methods are generally used in biological systems such as 

metabolomics, industrial pharmaceutical process or quality control, and enable important biological 

conclusions on the monitored process [17]. 

AcoD is also a biological system that could use integrated analysis of multiple datasets. Digesters 

are generally equipped with basic sensors for their monitoring. A survey on 400 full-scale AD 

plants indicated that 95% of their in-line instrumentation was limited to pH, temperature, water 

flow, biogas flow (quantity or kinetics), level and pressure [28]. There is also an indirect level of 

monitoring through the digester’s feed substrates. Given its development on digester monitoring, 

NIRS analysis on digestate could also become a routine analysis on biogas plants, representing 

another source of information. It is therefore possible to collect, on one hand, an easily acquirable 

dataset of physicochemical parameters on the digester and, on the other hand, a spectral dataset of 

digestates. As control strategies, multi-block analysis based on these inline instrumentations could 

be the answer to prevent biogas plants failures.  

To make this monitoring strategy more productive, variable selection procedure can also be 

explored. Variable selection allows selection of a sub-set of variables to be used for the creation of a 

reduced regression model. This procedure is used to remove non informative and noisy variables 

and to improve model’s prediction and interpretation ability. Moreover, reducing variables can 

simplify their acquisition. The system could become cheaper, especially for NIRS, and less time 

consuming [29]. The cost-effective point is primordial for biogas plant operators. There are several 

methods of variable selection in the context of PLS regression [30-31]. A recent method called 

covariance selection (CovSel) was also made for variable selection with multi-response calibration 

as usually encountered with infrared devices [31]. It is only recently that variable selection methods 

have been introduced in a multi-block context. For example, combinations of three variable 

selection methods (variable importance in projection (VIP), selectivity ratio (SR), and forward 



selection) were thoroughly examined with MB-PLS and SO-PLS [32]. SO‐PLS was also joined 

with a CovSel, resulting in a new method of sequential and orthogonalized covariance selection 

(SO‐CovSel) [33]. SO‐CovSel was found to be very parsimonious in selecting variables making the 

method suitable for a number of practical applications. 

Therefore, the objective of this study was to explore the applicability of SO-PLS method to predict 

relevant parameters in AcoD using inline physicochemical parameters and NIRS measurements on 

digestates. AcoD experiments were conducted with highly biodegradable or fat-containing co-

substrates, known to induce inhibitions in the digester but also to create interferences and hinder 

infrared measurements. In particular, two infrared probes were evaluated for the prediction of state 

indicators such as VFA, LCFA and NH4
+. Focus was put on interpretation as well as prediction 

ability of these multi-block models and how to assess reliability of the interpretations. Variable 

selection allows focusing on relevant wavelengths from the used probes. 

2. MATERIALS AND METHODS 

2.1.Digester operating conditions 

A continuously stirred tank reactor (CSTR) with a working volume of 35L was operated at 

38± 1°C. A semi-continuous feeding mode was used. The substrate mixture (kept at 4°C) was added 

once every morning prior to digestate sampling. Different operating conditions were tested with 

organic load rate (OLR) varying between 1.5 and 5kgCOD.m-3.d-1 (Table 1). Digestate samples 

were collected from these performed co-digestion experiments.  

Table 1: co-digestion experiments performed with their characteristic  

N° Substrates Mixture OLR 

1 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) + Food fats (20g.l-1) 4.9 

2 Pig slurry + Horse feed residues (20g.l-1) + Catering waste (200 g.l-1) 3.4 

3 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270 g.l-1) 2.2 

4 Pig slurry + Horse feed residues (40g.l-1) + Fruit waste (540 g.l-1) 4.2 

5 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.4 

Pig slurry + Horse feed residues (40g.l-1) + Fruit waste (540g.l-1) 3.0 

6 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.7 

7 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.6 

Pig slurry + Fruit waste (135g.l-1) + Protein waste (20g.l-1) 3.8 

8 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste  (270 g.l-1) 1.7 

Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270 g.l-1) + Food fats (20g.l-1) 3.4 

OLR: organic load rate  

2.2.Chemical analysis 

2.2.1. Potential online parameters  

As stated, the in-line instrumentation of digesters is limited [28]. In this study, pH was measured, 

both in the digestate (pHout) and in the feed substrates (pHin), according to APHA Standard Methods 

[34]. The brief composition of the substrate, i.e. feed mass and their contents in Total Solids (TS) 

and Volatile Solids (VS), is also easily determined or estimated.  

Biogas production was automatically determined with a wet tipping bucket flow meter connected to 



the acquisition program. The operating of these gas meters is based on the “tipping bucket” 

principle in which liquid is displaced by gas in a specially-designed chamber [35]. Such a gas meter 

also allowed the measurement of periodic tipping of the container. Therefore, Biogas Production 

Rate (BPR) was calculated by dividing the volume of biogas (36.4 ml) by the time elapsed since the 

previous tipping, considering the volume and the temperature of the headspace of the digester 

constant. Each BPR obtained was called instantaneous BPR and all BPR obtained between two 

feedings, corresponding to a day in our case, constituted the evolution of the instantaneous BPR and 

was called daily BPR kinetics. These daily BPR kinetics were always linearly interpolated with a 

time step of 0.001 day to have the same number of points (1001) for each kinetic. Standard BPR 

kinetics obtained is described in figure 1 which showed the three steps which occurred daily on the 

digester. Changes in BPR kinetics were found to be sensitive of the digester’s failures.  

 
Figure 1: Example of BPR kinetics acquired daily on the digester. 

2.2.2. Reference analysis 

Ammonium (NH4
+), VFA and LCFA contents were determined on all digestates samples. VFA 

contents were determined, on the supernatant after centrifugation of the samples, with high 

performance liquid chromatography (HPLC, Varian©, U3000). Gas chromatography/mass selective 

(GC/MS, Agilent Technologies, 7890B/5977A) was used to determine LCFA. The procedure 

required LCFA extraction from raw samples with hexane/isopropanol (3/2) solvent using an 

accelerated solvent extractor (Dionex, ASE 350) followed by a concentration step before the 

chromatographic analysis. TS and VS were also determined on digestate samples.  

2.3.NIRS Probes 

Two spectroscopic systems (Figure 2) were tested off-line on the collected digestate samples, 

maintained at the reactor bath temperature and scanned whilst ‘fresh’. Both systems use the same 

light source (Tungsten-Halogen source: Ocean Optics HL-200-FHSA) and the same spectrometer 

(LabSpec1: ASD, Boulder). The spectral range of measurement extends from 350nm to 2500nm 

with a step of 1nm, and a resolution of 3nm for the range 350nm-1000nm and 10nm for the range 

1000nm - 2500nm. The first probe is an immersible probe, based on diffuse optical spectroscopy 

and a reflectance R(λ) is computed from this measurement. The second spectroscopic system is a 

remote probe, based on polarization light spectroscopy (PoLiS) to reduce deformations of spectra 



especially in biological media such as digestates. From this system measurements, the weakly 

scattered reflectance Rss(λ) and the multiple scattered reflectance Rms(λ) were computed for each 

sample and summed into the total backscattered reflectance Rbs(λ) [36]. The specificities of these 

probes are fully described in Awhangbo et al., 2020 [37]. 

    
                 (a)                                                                  (b) 

Figure 2: Schematic (a) the immersed probe and (b) the remote or polarized probe 

2.4.Data Sets 

Four infrared predictor blocks were considered in this study: X1, X2, X3 and X4 respectively from 

the multiple scattered reflectance Rms(λ), the weakly scattered reflectance Rss(λ) and the total 

backscattered reflectance Rbs(λ) of the polarized probe and the reflectance R(λ) from the immersed 

probe. These infrared data were preprocessed using Savitsky–Golay (SG) smoothing or derivate 

algorithm [38], detrending [39] and Standard Normal Variate (SNV) [40] before computations as 

described in table 2 below. Noise presence and baseline deviation were considered when choosing 

the appropriate pretreatments. To these infrared blocks, were added blocks X5 and X6. X5 consisted 

of a block of six chemical parameters (pHin, pHout, feed mass, TS, VS and biogas production) easily 

acquirable on the digesters cited above. X6 corresponded to data from BPR kinetics acquired during 

the process. The response block Y consists of state indicators VFA, LCFA and ammonium. 

166 samples were used in this study and all analyzed by each spectroscopic probe and listed 

chemical technique.  

Table 2: Preprocessing performed on the spectra with respect to the parameters and on each probe. 

Signals  Pre-processing 

Total VFA 

R(λ) Reflectance, 1st Derivative SG 71pt window, SNV, 450–1700nm 

Rbs(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 

Rms(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 

Rss(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 

Total LCFA 

R(λ) Reflectance, 2nd Derivative SG 71pt window, 450–1700nm 

Rbs(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 

Rms(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 

Rss(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 



NH4
+ 

R(λ) Absorbance, Smoothing SG 71pt window, 450–1800nm 

Rbs(λ) Absorbance, Smoothing SG 71pt window, SNV, 450–1800nm 

Rms(λ) Absorbance, Smoothing SG 71pt window, 2-order Detrend, 450–1800nm 

Rss(λ) Reflectance, 1st Derivative SG 71pt window, 450–1800nm 

2.5.Computations 

Experiments N°1,2,3,4&7 (107 measures) were used in training and experiments N°5,6&8 (59 

measures) were used in test. Cross-validation procedures were first performed on the training set to 

deduce the number of latent variables (LV). The same split (training/ test) and CV blocks were used 

in all models. These models feature performance parameters such as the coefficient of 

determination (R2), the Root Mean Squared Error of Cross-Validation (RMSECV) and of Prediction 

(RMSEP). All computations and multivariate data analysis were performed with Matlab software v. 

R2013b (The Mathworks Inc., USA). 

3. THEORY 

3.1.Sequential and Orthogonalised Partial Least Square Regression (SO-PLS) 

In SO-PLS, the general multi-block linear regression with N blocks of independent variables can be 

represented by the equation [41]:  

Y=X1B1+X2B2+...+XNBN+E 

where X1(A×J), X2(A×M) and XN(A×N) are the N predictor blocks with the same number of 

observation A; B1(J×R), B2(M×R) and BN(N×R) are the regression coefficients ; E(A×R) is 

the residual matrix and Y(A×R) the response block. SO‐PLS algorithm consists in sequentially 

extracting information from different data structures. Orthogonalization performed in SO-PLS 

allows removing redundancies among blocks and help focusing on the incremental contributions of 

each new block. The optimal number of components in the model can be defined for each block by: 

incremental or global estimation of components giving the lowest RMSECV. A detail algorithm of 

the SO-PLS method is available in literature [24, 41].   

3.2.Sequential and Orthogonalised Covariance Selection (SO-CovSel) 

As mentioned above, SO‐CovSel method results from the coupling of SO‐PLS and CovSel [33]. 

SO‐CovSel algorithm presents the same structure as SO‐PLS, but the reduction features achieved by 

PLS are operated by CovSel. The scheme of the algorithm, considering a case of two predictor 

blocks X1(B×J) and X2(B×M) and a response Y (B×R), is summarized in the following steps: 

- First CovSel is applied in order to select features from X1, by selecting the most useful 

variable and projecting the data orthogonally to this selected variable, hence obtaining 
Sel1X , 

- Next, an ordinary least squares fit of Y to 
Sel1X as YX1 EBX Y

1Sel
+= , 

1XB  with the 

coefficients and EY the residuals, 

- Similarly with the SO‐PLS algorithm, X2 is orthogonalized with respect to 
Sel1X

obtaining orth

2X , 

- CovSel is next applied to orth

2X obtaining the reduced matrix orth

2Sel
X , 



- The previously estimated residuals EY are fitted to orth

2Sel
X with another ordinary least squares 

regression as final YX

orth

2Y EBXE
2Sel

+= , with 
2XB the new coefficients and final YE the final 

residuals, 

- The full predictive model is then computed as the ordinary least squares fit of Y to 
Sel1X and   

orth

2Sel
X  used as independent variables and can be written as: 

final YX

orth

2X1 EBXBX Y
2Sel1Sel

++=  

In SO‐CovSel, the number of variables selected on one input block affects the selection made on the 

following ones. The optimal number of variables to be selected in each block is evaluated through a 

procedure similar to the global approach used in SO‐PLS. Consequently, all the possible 

combinations of numbers of selected variables are tested and the combination providing the lowest 

RMSECV is selected as the optimal one.  

4. RESULTS AND DISCUSSION 

4.1.Digester operation 

The operating conditions used in these experiments induced different states in the digester. VFA 

and LCFA accumulated in the digester, for several experiments. VFA varied between 0 and 13500 

mg/L, while LCFA varied between 0 and 2200 mg/L. NH4
+ ranged from 1200 to 4100 mg/L. These 

high concentration values highlight the failures that occurred during these experiments. TS and VS 

varied little during all experiments due to a constant and low TS of the pig slurry used and highly 

biodegradable co-substrates added. TS content was found varying between 1.4 and 2.6% in all 

experiments.  

4.2.SO-PLS models on infrared data 

In a previous study [37], PLS and SO-PLS models were performed on single and different 

combinations of the infrared signals X1, X2, X3 and X4, with the same training / test split and the 

same blocks (in CV procedure) as in this study. Both global and incremental approaches were tested 

in the study as well as parsimony testing. The best model results from this previous study are 

summarized in Table 3. 

Table 3: SO-PLS models results based on infrared signals  

Training Range (mg/l) 

X2 & X3 & X4 X3 X1 & X2 & X4 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 

VFA 0 – 13548 3-4-2 0.12 3931    

LCFA 0 –  2269    7 0.31 391    

NH4
+ 1180 – 4090    2-2-10 0.45 464 

Test Range (mg/l) LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0 – 10096 3-4-2 0.78 1343    

LCFA 0 –  251    7 0.62 188    

NH4
+ 1420 – 2530    2-2-10 0.68 496 



Parameter predictions based on infrared blocks were improved by the SO-PLS multi-block analysis. 

For VFA, the most interesting model is a three-block model performed with signals Rss(λ) and Rbs(λ) 

of the polarized probe, and R(λ) of the immersed probe with a R2 of 0.78 and a RMSEP of 

1343mg/L. For NH4
+, a three-block model performed with the decomposed signal of the polarized 

probe (Rms(λ) and Rss(λ)) and the immersed probe R(λ) have increased the accuracy of the parameter 

prediction with an R2 of 0.68 and an error of 496 mg/l. For LCFA, only Rbs(λ) signals have provided 

the most interesting model with a mono-block analysis. No combination was able to increase the 

performance of this model due to the particularity of this parameter. Indeed, LCFA in AcoD 

processes results in flotation phenomena in the sludge [42]. Therefore, only the remote probe was 

able to capture the variations of this parameter. It is worth noting that each parameter reacted 

differently to these infrared measures and this is highlighted by the different blocks used in their 

prediction.  

4.3.SO-PLS models including chemical data 

In order to further improve these infrared models, blocks X5 and X6 were also added for multi-block 

analysis. Prior to SO-PLS computations, PLS models were first built on blocks X5 and X6 in order 

to separately analyze their ability to predict the key parameters. The results of these models are 

shown in Table 4 below.  

Models from the chemical data block X5 were not very successful, with low R2 and high RMSECV 

and RMSEP. However, looking at R2 values in CV procedures, these models still displayed some 

potential, especially for VFA and NH4
+. And with the test set, NH4

+ prediction was able to produce 

a significant R2 (0.3) and a lower RMSEP (417 mg/l) than the best infrared multi-block model (496 

mg/l). This suggests that X5 does contain latent information about the digester state. Models with 

BPR kinetics produced more interesting results than chemical data blocks. Indeed they were able to 

predict all parameters except NH4
+, with significant R2 and low RMSEP errors. These models also 

display some potentialities in the prediction of the key parameters. Therefore, a multi-block 

approach can reconcile these models by extracting, for each block, the most interesting and useful 

latent variables with respect to the anaerobic process. It would also compensate the loss of 

information related to interference from infrared measurements.  

Table 4: PLS models results based on Chemical data and BPR kinetics 

Training Range (mg/l) 

Chemical data (X
5
) BPR Kinetics (X6) 

LV R
2
 

RMSECV 

(mg/l) 
LV R

2
 

RMSECV 

(mg/l) 

VFA 0 – 13548 3 0.46 2700 3 0.09 3583 

LCFA 0 –  2269 3 0.3 498 3 0.01 533 

NH
4

+
 1180 – 4090 6 0.07 661 6 0.06 667 

Test Range (mg/l) LV R
2
 

RMSEP 

(mg/l) 
LV R

2
 

RMSEP 

(mg/l) 

VFA 0 – 10096 3 0.00 3203 3 0.21 2598 

LCFA 0 –  251 3 0.01 169 3 0.14 157 

NH
4

+
 1420 – 2530 6 0.30 417 6 0.01 362 



Based on the previous multi-blocks results with infrared blocks [37], SO-PLS was now performed 

including blocks X5 and X6. The other infrared combinations were not tested with these new 

chemical blocks as, based on the deflation step used in the SO-PLS algorithm, the same information 

will be added to all the previous blocks used in the same order. And, the potentially best model 

would still be derived from these infrared data combinations. Therefore, SO-PLS models were 

computed with X2, X3, X4, X5 and X6 for VFA, with X1, X2, X4, X5 and X6 for NH4
+ and with X3, 

X5 and X6 for LCFA. The results of these models are summarized in Table 5 below. It is worth 

noting that these results were computed with the incremental approach. Indeed, from the previous 

work on infrared blocks [37], it was highlighted that this approach is better suited for the data used 

in this study, based on all SO-PLS models tested. To avoid over-fitting, parsimony testing was also 

used especially with the increase of the number of data blocks.  

Table 5:  SO-PLS models results based on infrared signals and chemical data. 

  X2 & X3 & X4 & X5 & X6 X3 & X5 & X6 X1 & X2 & X4 & X5 & X6 

Training 
Range 
(mg/l) LV R2 

RMSECV 
(mg/l) LV R2 

RMSECV 
(mg/l) LV R2 

RMSECV 
(mg/l) 

VFA 0 – 13548 3-4-2-1-1 0.17 3721    

LCFA 0 –  2269    7-1-3 0.28 411    

NH4
+ 1180–4090       2-2-10-6-0 0.35 515 

Test 
Range 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0 – 10096 3-4-2-1-1 0.85 1115    

LCFA 0 –  251    7-1-3 0.69 204    

NH4
+ 1420–2530       2-2-10-6-0 0.75 493 

Most models have improved with the multi-block analysis of these data including chemical blocks 

X5 and X6. For all parameters CV model results were similar to CV results obtained with infrared 

data blocks (Table 2) with lower RMSECV in the case of VFA and similar errors in the cases of 

LCFA and NH4
+. In the incremental approach, the blocks are optimized one after the other. The 

final multi-block model results are always influenced by each incremental step performed. High CV 

errors can also derive from the first incremental step taken in these models. The most noticeable 

improvements were found in the prediction of these parameters.  

For VFA, R2 improved from 0.78 to 0.85 with RMSEP lower by 17% than the multi-block model 

with only infrared data. Each chemical block only added one latent variable to achieve this 

improvement. In the incremental approach, the blocks are optimized one after the other. In the first 

incremental step with X5 only, the model with 10 (3-4-2-1) LVs provided a RMSECV of 3921mg/l, 

a R2 (test) of 0.78 and a RMSEP of 1388 mg/l which is similar to SO-PLS model with infrared data 

blocks. The final multi-block model results are always influenced by each incremental step 

performed. It can therefore be deduced that most additional information came from block X6 of 

BPR kinetics. This is also confirmed by mono-block models of X5 and X6 which showed that block 

X6 was better predictors of VFA than block X6.  

For LCFA, which was only well predicted by the polarized signal Rbs(λ), the results were mitigated. 

While the multi-block model gained in accuracy with a R2 improved from 0.62 to 0.69, it loss in 



precision with a slightly higher RMSEP (204 mg/l) than the mono-block model (188 mg/l). This is 

due to first incremental step, (i.e. with only block X5). Indeed, at this step, the model obtained with 

X3 and X6 with 8 (7-1) LVs provided a RMSECV of 391 mg/l, a R2 (test) of 0.62 and a RMSEP of 

184 mg/l. It should be noted that the RMSEP at this step was the smallest obtained. At the second 

incremental step, two outcomes were possible: a parsimonious model with no LV from block X6 (7-

1-0) because it has the lowest RMSECV or the second possibility which took information in block 

X6 as shown in Table 5. 

For NH4
+, the model produced similar CV results as a multi-block model with only infrared data 

blocks. In test, the model provided a slightly lower RMSEP of 493 mg/l (previously 496 mg/L) with 

a R2 which improved from 0.68 to 0.75. As expected, the model produced for NH4
+ was 

parsimonious as no LV was selected in BPR kinetics (block X6). As a reminder, the mono-block 

model of NH4
+ prediction with BPR kinetics was not successful.  

To better identify the improvement achieved by these multi-blocks model, scatter plots of predicted 

versus reference values of each model was made and analyzed for each parameter (Figure 3). These 

plots show that the predictions were accurate on the global behavior of the digester during these 

experiments, especially in the case of VFA accumulation. There was remarkable improvement was 

with VFA prediction where higher values were more precise when using all blocks (including 

chemical blocks). For LCFA and NH4
+, with these new multi-block models, improvements were 

made on the prediction of lower values. 

 

 
Figure 3: Scatter plots of measured versus predicted values for VFA, LCFA and NH4

+ with each 
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multi-block model. 

4.4.Variable selection with SO-CovSel on infrared blocks 

While for SO-PLS data are thoroughly preprocessed in order to build the best model, it is 

inappropriate to do so in variable selection as it might distort the selection process. Moreover, the 

infrared spectra were sometimes preprocessed differently for each parameter. Therefore, before 

performing SO-CovSel on these infrared data, spectra were only reduced to wavelengths used in 

SO-PLS (450 – 1850 nm) and smoothed using Savitsky–Golay, first with reflectance and then with 

absorbance. The same conditions of split (training / test) and CV-blocks as in SO-PLS were used 

for SO-CovSel models. To avoid over-fitting, the initial variable number was set based on LVs 

selected in PLS and SO-PLS regression. The results of the variable selection models performed 

with SO-CovSel are shown in Table 6. 

Table 6: SO-CovSel models results based on infrared signals 

 
Reflectance Reflectance Absorbance 

X1, X2, X3 and X4 X3 and X4 X1, X2, X3 and X4 

Training
Range 
(mg/l) LV R2 

RMSECV 
(mg/l) LV R2 

RMSECV 
(mg/l) LV R2 

RMSECV 
(mg/l) 

VFA 0 – 13548 

5-3-0-2 

0.11 4060 

8-0 

0.43 2771 

0-0-0-11 

0.44 2780 

LCFA 0 –  2269 0.47 360 0.25 412 0.13 445 

NH4
+ 1180–4090 0.06 729 0.1 678 0.12 610 

Test 
Range 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0 – 10096 

5-3-0-2 

0.75 1420 

8-0 

0.66 1642 

0-0-0-11 

0.50 3390 

LCFA 0 –  251 0.09 193 0.36 327 0.17 131 

NH4
+ 1420–2530 0.22 452 0.18 370 0.58 512 

In general, models produced by SO-CovSel are slightly less accurate than SO-PLS predictions [33], 

and this was observed in the results of the present study. Moreover, spectra were preprocessed 

differently for the two algorithms. Specifically, with reflectance spectra the model was 

parsimonious as no variable was selected in block X3. This can be explained by the fact that X3 is 

the global signal from decomposed signals X1 and X2. Selected wavelengths are resumed in figure 4 

below. These wavelengths corresponded mostly to C-H third overtone assimilated to oils (450, 

923nm), N-H overtone or amino groups (552, 785nm) and aromatic compounds (1093, 1446, 

1677nm). With these wavelengths, VFA was the best predicted parameter with a R2 of 0.75 and 

RMSEP of 1420 mg/l. LCFA prediction was not successful as no LV was selected in block X3 

which was previously identified as the most appropriate block for the prediction of this parameter. 

A SO-CovSel model with X3 and X4 resulted in a parsimonious model with 8 LVs from only X3 and 

a better model result for LCFA with R2 of 0.36. Similar wavelengths as in the previous model were 

selected (451, 1093, 1661nm) probably for VFA prediction. Wavelengths related to methyl groups 

(744, 841, 1800, 1353nm) frequently encountered in LCFA compounds were also selected in the 



models. While VFA and LCFA were better predicted with reflectance spectra, NH4
+ was better 

predicted with absorbance spectra. This was also the case in SO-CovSel models with NH4
+ 

predicted with R2 of 0.60 and RMSEP error of 420 mg/l. There were also similar wavelengths as 

with reflectance spectra (450, 1446, 1372, 1800 nm). Some of these selected wavelengths 

corresponded to acetone absorbance (475, 1254) and amino group bands (528, 828, 1557nm) 

(Figure 4). 

 

                 (a)                                                                  (b) 

Figure 4: Selected variables by SO-CovSel the X-blocks in absorbance (a) and reflectance (b). The 

red line represents the average X4 spectrum. Blue squares: variables selected in the models.  

5. CONCLUSION 

This study demonstrates the potential of the combination of several analytical methods for the 

monitoring of anaerobic digestion. The application of SO-PLS methods improved prediction of the 

process state indicator parameters such as VFA, LCFA and ammonium. These on-line routine 

analyses allow the gain of substantial information in the prediction of these parameters. Moreover 

SO-CovSel provided a pertinent and interpretable variable selection however leading to slightly 

worse predictions than SO‐PLS. Nevertheless, it enables correlated and important conclusions in the 

infrared data blocks used and the relevant wavelengths of the used probes.  
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