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A B S T R A C T   

We consider the management of a mono-specific even-aged forest at the stand level. Optimal silviculture based 
on timber income and sequestered carbon income in an no risk case and a risky case are compared. In this study, 
using calculus of variations we discuss the validity of using a risk adjusted discount rate (a rate of natural risk 
added to the discount rate) or using a carbon adjusted discount rate (a rate of natural risk subtracted to the 
carbon discount rate) without risk to mimic the natural risk case in term of optimal thinnings. Except for very 
high risk rate values in the risky case, the optimal trajectory for carbon sequestration is very different from that 
obtained for the timber criterion. We show that without risk or with risk case but moderate risk rate, the optimal 
cutting age for sequestered carbon will be the senescence age. For higher risk rate the optimal cutting age for 
sequestered carbon may be more comparable to optimal timber cutting age.   

1. Introduction 

Until very recently, silviculture was mainly based on timber pro
duction. But the increasing concentration of carbon dioxide in the at
mosphere has become a concern. Forests are seen as an opportunity to 
absorb significant amounts of carbon Forest management taking into 
account carbon stocks is therefore desirable: the quantities of carbon 
stored depend on the silviculture and in particular on cutting and 
thinning. As with timber production, the presence of risk, such as storm 
risk, can potentially modify silviculture based on sequestered carbon 
criteria. 

For timber production in the absence of risk, (Faustmann, 1849) 
proposed a formalism based on the expected discounted income, which 
allows to determine the optimal rotation period. Many authors have 
been studying ((Schreuder, 1971), (Clark, 1976), (Haight et al., 1992)) 
the determination of optimal thinning and cutting age at the stand 
level. The impact of a destructive event risk (in this case the fire risk) on 
the optimal forest rotation was studied in (Reed, 1984). More recently 
concerning natural risk, (Staupendahl and Möhring, 2011) studied the 
impact of risk on the expected value of a forest stand for various hazard 
rate functions, (Loisel, 2011) examined the impact of density dependent 
growth on optimal cutting age, (Price, 2011) focused on the validity of 
using the rate of physical risk, added to the discount rate as a new 
adjusted discount rate. Impact of storm risk on optimal thinnings and 
cutting age are analyzed in (Loisel, 2014). The combined impact of 
storm risk and price uncertainty has been studied in (Rakotoarison and 

Loisel, 2017). (Möllmann and Möhring, 2017) used the concept of ex
pected losses in order to determine the optimal rotation. Using em
pirical material, (Deegen and Matolepszy, 2015) highlighted the com
plexity of forest management under storm risk. 

Concerning the carbon sequestration, using a Hartman framework 
(Hartman, 1976) many authors ((Plantinga and Birdsey, 1994), (Creedy 
and Wurzbacher, 2001), (Gutrich and Howarth, 2007), (Liski et al., 
2001)) considered the joint timber production and carbon sequestra
tion, they analyzed the influence of carbon sequestration incomes on 
the optimal cutting age: it is optimal to increase the cutting age. In some 
circumstances, with carbon taxes (Van Kooten et al., 1995) or high 
carbon prices, (Price and Willis, 2011) showed that it may become 
optimal never to harvest forest stand. (Susaeta et al., 2014) analyzed 
influence of carbon price fluctuations on optimal cutting age. 
(Kaipainen et al., 2004) analyzed the influence of elongation of rotation 
length on carbon stock. (Assmuth and Tahvonen, 2018) studied optimal 
harvesting in even and uneven-aged forest. There is a lack of studies 
relatives to the C sequestration analysis and the prediction of the 
modification induced by natural risk on optimal thinnings and cutting 
age. In the present work, we model the impact of natural risk on op
timal silviculture for carbon sequestration at the stand level. With 
Faustmann value based on the joint production of timber and carbon 
sequestration, the corresponding analysis will be subject to fluctuating 
economic environment (Susaeta et al., 2014), to avoid this influence we 
then choose to consider a criterion not impacted by carbon price i.e. the 
Faustmann value based on carbon sequestration alone. In our 
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presentation we study the dependency of optimal forest management, 
in order to maximize forest sequestration, with respect to economic or 
risk parameter. In order to be as accurate as possible, our study is based 
on a forest growth model. Moreover in our presentation, from obtaining 
analytical expression of the criteria to optimize, we compare strategies 
that maximize carbon sequestration to those that maximize the timber 
income. The study presented is done at the stand level. The optimized 
strategies are set by dates and amplitudes for respacing and thinnings 
and of course the cutting age. 

In Section 2, we first consider the reference case without the natural 
risk, which will be used for comparison. Based on a growth model we 
express under which sufficient conditions it is possible to predict the 
behavior of the cutting age with respect to physical or economic 
parameters. Secondly, based on the growth model, on the risk and tree 
damage models in case of natural risk, we analyze the impact of the 
natural destructive event on the behavior of cutting age. In Section 3, 
we successively analyze the optimal criterion and corresponding op
timal trajectory without and with natural risk. We discuss the validity 
of using a risk adjusted discount rate (a rate of natural risk added to the 
discount rate) or using a carbon adjusted discount rate (a rate of natural 
risk subtracted to the carbon discount rate) without risk to mimic the 
natural risk case in terms of optimal thinnings. 

2. The optimization based on timber production 

2.1. The forest growth 

We consider a forest stand. The design of the chosen model is de
scribe in Appendix A. To resume, the forest growth is described by the 
evolution of the basal area B is, for each initial condition B0, given by: 

=dB t
dt

g r t I t e t( ) ( ( )) ( ) ( ) (1) 

where the RDI (Reineke Density Index) r satisfies r(t) = AB(t) ≤ 1, the 
harvesting control e satisfies and the evolution of the tree height H(t) is 
a given function independent of the silviculture, the increase of basal 
area of the forest stand at its peak of density I(t). 

We assume that I(t), t  >  0 and g(r), 0  <  r ≤ 1 satisfy the following 
properties: 

(H1): I(.) is a positive, decreasing function of time t. 
(H2): g(.) is a positive, increasing, concave function of r such that g 

(r) ≥ r for all r, g(0) = 0 and g(1) = 1. 
(H3): H(.) is a increasing function and (.)H

H is a decreasing function 
of time t. 

To finish the model description, the average tree height H(t) is in
dependent of the silviculture (thinning e(.)), hence independent of B. 

We now consider specific trajectories which make a rule in opti
mization: 

(i) E0(B1), starting from the initial basal area B0 at initial time sa
tisfying r(0) = AB0  <  1, reaching B1 with r1 = AB1 ≤ 1, we apply 
minimum cutting e(t) = 0 until reaching the value r1 for the RDI, then 
we apply the control er(t) = g(r1)I(t). Let denote t0(B1) is the time 
needed to reach from the RDI r(0) to r1, from e(t) = 0 for t  <  t0(B1) Eq.  
(1) may be rewritten: = AI t dt( )dr t

g r t
( )

( ( )) . Hence integrating this equation 
between the initial time and t0(B1) we obtain the following relation: 

=dx
g x

A I u du
( )

( )
r

r t

(0) 0

1 0

(2)  

Hence control may be summarized: e0(t;B1) = g(r1)I(t)1t > t0(B1). We 
denote B0(t;B1) the corresponding basal area starting from initial basal 
area B0 at initial time. 

(ii) E t B( , )0 0 , starting from the initial condition satisfying r(t0) = AB 
(t0) ≤ 1 we apply maximum cutting =e t e( ) . We denote B t t B( ; , )0 0 the 
corresponding basal area. 

We also consider auxiliary problem which consist in seeking the 

maximum values reached by the basal area B. We obtain the following 
Lemma: 

Lemma 2.1. Assume (H2). The basal area B(.) satisfies B(t) ≤ B0(t;1) 
for all t ∈ [0,T]. 

Proof: From Eq. (1) we deduce: g AB t I t( ( )) ( )dB t
dt

( ) and 
I t dt( )dB t

g AB t
( )

( ( )) . By integration between the initial time and time 

( )t t A
0 1 : =I u du( )B

B t dx
g Ax

t
B

B t dx
g Ax

( )
( ) 0

( ;1)
( )0 0

0
which implies 

0B t
B t dx

g Ax( )
( ;1)

( )

0
. From the positivity of g we deduce the result. □ 

We are focusing here, on the setting in the timber market of a forest 
stand whose evolution is given the basal area Eq. (1) and tree-height H 
(.). The timber incomes depend only on the basal area B and the height 
H: p0v(B,H) where p0 is the timber price (net of thinning costs) and v 
(B,H) is the volume assumed to be proportional to the basal area B and 
height H: v(B,H) = c0BH. 

2.2. Optimal silviculture without natural risk 

Let δ the discount rate. We are assuming that a thinning of basal 
area e(t) occurs at each time t and the remaining trees would have been 
cut at age T. The criterion which we suggest to maximize is the sum of 
the thinning incomes per unit of time xp0c0e(t)H(t) that would have 
occurred during the interval [0,T] and the final income xp0c0B(T)H(T) 
corresponding to the final cut at age T. The optimization problem, re
lating to the thinnings e(.), on the interval [0,T], is therefore written: 

= +W T p c e t H t e dt p c B T H T e( ): max ( ) ( ) ( ) ( ) ( )
e

T t T
(.)

0 0 0 0 0 0P
E

where = e e t e{ (.) 0 ( ) for all t} and basal area B following evo
lution given by Eq. (1) with initial conditions B0 and fulfilling the 
constraint: r(t) = AB(t) ≤ 1. 

By replacing e(t) by g AB t I t( ( )) ( ) dB t
dt

( ) , the optimization problem 
( )P can be rewritten in terms of trajectory B(t): 

=

+

W T p c g AB t I t dB t
dt

H t e

dt p c B T H T e

max ( ) ( ( )) ( ) ( ) ( )

( ) ( )
B

T t

T

(.)
0 0 0 0

0 0

B0C

where B0C is the whole set of curves: 

=

= +

B BC T B

B e g AB t I t dB t
dt

g AB t I t AB t

(.) ([0, ]) | (0)

, ( ( )) ( ) ( ) ( ( )) ( ) & ( ) 1

B
1

0

0C

where BC1 stands for the space of bounded derivative functions defined 
on the interval [0,T]. By an integration by part we reformulate the 
program: 

+B t t e dt p B Hmax ( ( ), ) (0)
B

T t
(.) 0 0 0 0

B0
L

C

where 

= +B t p g AB I t H t BH t BH t( , ) [ ( ) ( ) ( ) ( ) ( )]0 0L

The derivative of ℒ0(B, t) with respect to B is proportional to: 

+Ag AB I t H t H t H t( ) ( ) ( ) ( ) ( ) (3) 

Remark 2.1. In our study, due to the fact that the expression of the 
control variable can be substituted in the criterion, the control problem 
can be reduced to a calculus of variation problem. This substitution 
permits an easier study than the initial control problem. But it is not 
always possible and requires that the number of variables is not greater 
than the number of variables in the control. 

On BC1, the first order optimality condition given by the Euler- 
Lagrange Equation, applies (Blot and Cartigny, 1995). We suppose that 
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B(.) stands for an interior solution and then B(.) has to satisfy: 
= 0B t

B
( , )0 hence: 

=Ag AB I t H t H t H t( ) ( ) ( ) ( ) ( )

Let the function δH(.) defined by: =t t( ) ( )H
H
H for any t  >  0. 

Hence defines the time-dependent singular solution B1 for t t t[ , ] such 
that Ag′(1)I(t) ≤ δH(t) ≤ Ag′(0)I(t) and AB t( ) ]0, 1]1 by: 

=AB t g( ) t
AI t1

1 ( )
( )

H . The corresponding singular control is: 

=e t g AB t I t( ) ( ( )) ( ) dB t
dt1 1

( )1 . For <t t (respectively >t t ) or for 
<B B t( )1 (respectively >B B t( )1 ) with < <t t t , B t

B
( , )0 is positive 

(respectively negative). We make the following assumptions: 

+ < <H Ag I T H
H

T H
H

t( ): (1) ( ) ( ) lim ( )t4 0

With (H3) and this assumption δH(t) starts from a negative value at 
initial time, then increases and becomes sufficiently positive for large 
time value to ensure that the singular arc B1 is not empty. Depending of 
the position of the cutting age T with respect to t and position of B(t0) 
with respect to B t( )1 , the optimal solution differs. We assume 

< < <t T t0 , <e t e( )1 for < <t t T and (H3). Two cases may occur: 
(i) Case <B t B B t( , ) ( )0

1 1 and it exists t1such that =B t B( , )0 1
1

B t( )1
1 witht t T1 : 
Depending on the position of e t( )1

1 with respect to e two subcases 
must be explored: 

(ia) subcasee t e( )1
1 : 

Following the same reasoning that in (Sethi and Thompson, 2000), 
we deduce that the optimal solution B0

∗ is characterized by: 

=
< <

B t
B t B if t t

B t if t t T
( )

( ; ) 0
( )0

0
1

1

1
1

(ib) subcase >e t e( )1
1 : 

Let > >t t tr
1 the time such that =e t e( )r1 . Starting from the curve 

B0(.,B1) the optimal solution reaches the singular arc. A transition 
trajectory between B0(.,B1) and the singular arc is needed. To show it, 
we noticed that the optimization problem on [0,T] can be decomposed 
in two subproblems respectively on [0, tr] and on [tr,T]. We deduce that 
the optimal trajectory is obtained by applying the maximum available 
control =e e at the end of the first period and reaches the singular arc 
at time tr. Let tl the time which permits to reach the singular arc at time 
tr with the control =e e so the optimal trajectory is given by: 

= =
< <

<B t B t t
B t B if t t

B t t B t B if t t t
B t if t t T

( ) ( ; )
( ; ) 0

¯ ( ; , ( ; ))
( )

l

l

l l l r

r

0

0
1

0
1

1

(ii) Case >B t B B t( , ) ( )0
1 1 , so >B t B B t( , ) ( )0

1 1 for all >t t: 
As in the previous case a transition trajectory between B0(.,B1) and 

the singular arc is needed. In this case we decomposed in two sub
problems respectively on t[0, ] and on t T[ , ] introducing a new control 
B t( ). Hence the optimal trajectory is obtained by applying the max
imum available control =e e at the end of the first period and at the 
beginning of the second period. Let t l

1 the time which permits to reach 
the singular arc at time t with the control =e e . The optimal trajectory 
is similar than in the previous case but with unknown switching time tl1 

such that t t tl l
1 1 , to each tl1 it corresponds if it exists the time tr1 at 

which i.e. =B t t B t B B t( ; , ( ; )) ( )r l l r
1 1 0 1

1 1
1 , otherwise tr1 = T. To each tl1 we 

associates the corresponding trajectory B t t( ; )l
1 . The optimal switching 

time tl∗ is given by: =t W Targ max ( )l
t t t

B t(.; )
l l

l1 1
1 . We deduce the optimal 

trajectory: =B t B t t( ) ( ; )l0 . 

2.3. The natural risk case 

In case of natural risk, the chosen cutting age may not be reached. If 
a natural event occurs before a tipping age tL, the event may have no 

impact due, for example if a storm occurs before a time tL due to the 
small tree-height the storm has no impact (Schmidt et al., 2010). Let τ 
the spending time between the beginning of the stand and the first 
event of the stand after tL, either by destructive event or by logging at 
time T. The distribution of the time τ is: Fτ(t) = F 
(t − tL) = 1 − e−λ(t−tL) for tL  <  t ≤ T. We consider an adaptation of 
the scenario of (Reed, 1984) to the natural risk case taking into account 
the tipping age: 

- if an event occurs at age τ ≤ tL, the event has no impact, the stand 
continues to grow. 

- if an event occurs at age τ with tL  <  τ ≤ T, the proportion of 
damaged trees θt is non neglectable, a clearcutting and a regeneration 
of the stand is made at age τ. 

- if no event occurs before age T, a clearcutting and a regeneration of 
the stand is made at age T. 

With this scenario, the real cutting age is random. In order to take it 
into account in the evaluation fo the silviculture it is suitable to use the 
Faustmann Approach. Let Δ = δ + λ, α(t) = E(1 − θt), we shows in  
Appendix B that, for fixed cutting T, maximizing the Faustmann value 
Jλ is equivalent to maximize W(T) which is a modified criterion of W0 

on [0,T] taking into account the stochastic incomes due to natural risk: 

=

+ +

+

+

+

W T p c e t H t e dt

p e t t p t c B t c H t e dt

p c B T H T e

( ): max ( ) ( ) ( )

[ ( ) ( ( ) (1 ( )) ) ( )] ( )

( ) ( )

e

tL t

tL

T
v t tL

T tL

(.) 0 0 0

0 0 0

0 0

P
E

Replacing e(t) by g AB t I t( ( )) ( ) dB t
dt

( ) and integrating by part we 
deduce that (P ) is equivalent to: 

+ ++B t t e dt B t t e dt p B Hmax ( ( ), ) ( ( ), ) (0)
B

t t
t

T t t
(.) 0 0 0 0

B

L

L
L

0
L L

C

where: ℒλ(B, t) = ℒ0(B, t) − λ(1 − α(t))(p0 − cv)BH(t). 
As in the no-risk case, the control problem is reduced to a calculus of 

variation problem. The Euler Lagrange conditions give two singular 
Equations: 

=
< <

=
+ <

(
)

Ag AB t I t
H t

H t H t for t t t if t t

AB t I t
H t

t

H

t
H t

for t t T

( ( )) ( )
( )

( ) ( ) ¯ ( ¯ )

Ag ( ( )) ( )
( )

(1

( )) 1

( )
( )

L L

c
p

L

v
0

We deduce the existence for t  >  tL of a second singular arc B2
defined for t t t[ , ] with similar condition than for the definition of t
and t . Assuming cv  <  p0, due the increasing of δH, the decreasing of I 
and the concavity of g we deduce that < <t t t t, , this second singular 
arc is lower than the first singular arc and L B t

B
( , ) is positive for <t t

and for < < <B B t t t t( ),2 . We assume t tL and <T t . Depending on 
the position of threshold tL with respect to t1 and the position of B0 with 
respect to B t( )1

1 or B t( )L2 the optimal solution differs: the optimal so
lution may not reach the first singular arc B1 but reach the second 
singular arc B2 or reach successively the first and the second singular. 

If tL ≤ t1, the optimal trajectory is obtained by replacing B1 by B2. 
If tL  >  t1 and α(tL) = 1, the optimal trajectory is obtained by re

placing B1 by B12 which is defined by: 

=
< <

< <
B t

B t if t t t

B t if t t T
^ ( )

^ ( ) ¯
^ ( )

L

L
12

1

2 (4)  

Otherwise, if α(tL)  <  1. As with no risk, two cases may occur: 
(i) Case <B t B B t( , ) ( )0

1 1 and it exists t1such that =B t B( , )0 1
1
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B t( )1
1 witht t T1 : 
(ia) subcasee t e( )1

1 : 
Following the same reasoning that with no risk, we let t l

2 the time 
which permits to reach the second singular arc at time tL with the 
control =e e i.e. =B t B t t B t( ) ( ; , ( ))L L l l2

2
1

2 . We assume <t t tl L
1 2 . To 

each time tl2 such that t t tl l L
2 2 , we correspond if it exists the time tr2 

at which i.e. =B t t B t B t( ; , ( )) ( )r l l r
2 2

1
2

2
2 , otherwise tr2 = T. For each tl2 we 

consider the trajectory B t(.; )l
2 deduce the optimal trajectory based on 

the following trajectories: 

=

< <
< <

B t t

B t B if t t
B t if t t t

B t t B t if t t t
B t if t t T

( ; )

( ; ) 0
( )

¯ ( ; , ( ))
( ))

l
l

l l l r

r

2

0
1

1

1
1 2

2
1

2 2 2

2
2

The optimal switching time tl2∗ is given by: 
=t T W T( ) arg max ( )l t t t

B t
2

(.; )
l l L l2 2

2 . 

(ib) subcase >e t e( )1
1 : 

Using the same reasoning than in the previous we consider the 
trajectories B t t t( ; , )l l

1 2 for each t tl l
2 2 (assumed ≥tr) with corre

sponding tr2: 

=

< <

B t t t

B t B if t t
B t t B t B if t t t

B t if t t t
B t t B t if t t t

B t if t t T

( ; , )

( ; ) 0

¯ ( ; , ( ; )
( )

¯ ( ; , ( ))
( ))

l l

l

l l l r

r l

l l l r

r

2

0
1

0
1

1
2

2
1

2 2 2

2
2

The optimal switching times tl2∗ is given by: 
=t W Targ max ( )l t t t

B t t
2

(.; , )
l l L

l l2 2
2 . 

(ii) Case >B t B B t( , ) ( )0
1 1 , so >B t B B t( , ) ( )0

1 1 for all >t t: 
We consider the trajectories B t t t( ; , )l l

1 2 for each tl1, tl2 with corre
sponding tr1, tr2 and assume t t tr l l

1 2 2. The optimal switching times 
tl2∗ is given by: =t W Targ max ( )l t t t

B t t
2

(.; , )
l l L l l2 2

1 2 . 

Hence more generally, due the fact that the second singular arc is 
lower than the first singular arc, cuttings are the same or are made 
earlier in the case with risk. It is a self insurance strategy used by the 
forest manager. 

2.4. Numerical application 

We propose a numerical application to help visualize the main 
findings or implications of the previous results. For this numerical si
mulation, we consider a beech forest at the stand level. Table 1 presents 
the function values used to solve the problem in the benchmark case. 

To complete: T = 100 year, tL = 61 year, δ = 0.02 year−1, 
λ = 0.015 year−1. 

We deduce the expressions of B t B B( , ),0
1 1 and B2: 

=
+ <

>

+
B t B p

e e for t t

B for t t
( , )

1 log(1 . ( 1)) ,p p t p H t p B
0

1 1

.( . . ( )) . 0

1
0

1 2 3 1 0

=

= +

B t
p p I t

H t
H t

B t
p p I t

t c
p

H t
H t

( ) 1 log 1
( )

( )
( )

( ) 1 log 1
( )

(1 ( )) 1 ( )
( )

v

1
1 1

2
1 1 0

Hence, =t 32.625 years, =B t B m( , ) 11.820
1

2 and =B t m( ) 29.451
2

so we are in the case (i). Moreover t1 = 34.125 years and 
=e t m year^ ( ) 2. 191

1 2 1. Depending on whether e t( )1
1 is smaller or larger 

than e the optimal trajectory differs. Thus if =e m year¯ 2. 2 2 1 the op
timal trajectory is of type (ia) and given in Fig. 1 for the no-risk case 
and Fig. 2 for the risk case. At the opposite if =e m year¯ 1. 25 2 1 the 
optimal trajectory is of type (ib) with tl = 33.45 years et tr = 38 years 
and given in Fig. 3 for the no-risk case and Fig. 4 for the risk case. 

2.5. Impact of natural risk on optimal cutting age 

Now, we consider the optimization of the Faustmann Value with 
respect to the cutting age with the previous optimal silviculture. 

Proposition 2.1. For sufficiently low risk rate λ, if ∫ tL
T[R(B(T),T) − R 

(B(t), t) + (t − tL)(ℒ0(B(T),T) − ℒ0(B(t), t))]e−δtdt  >  0 (with R 
(B, t) = (p0 − cv)(1 − α(t))BH(t)) then the optimal cutting age with risk 
is shorter than optimal cutting age without risk. 

The proof is given in Appendix C. For sufficiently decreasing ex
pected proportion survival tree α and not too high value of T − tL, the 
condition in Proposition 2.1 is satisfied and the optimal cutting age T is 
shortened in case of risk. This conclusion is in accordance with the 
empirical results of the literature. 

3. The optimization problem based on sequestered carbon 

We assume that there exists a carbon market, hence increasing 
(resp. decreasing) of sequestered carbon is valuated positively (resp. 
negatively). 

3.1. Without natural risk 

Denote the individual sequestered carbon c(B,H) = kBH for a basal 
area B and tree height H where k is a conversion coefficient in tCO2m−3. 
The exported wood is divided in wood energy and timber with the 
corresponding proportion xE and xT. The respective carbon flux can be 
specified. 

Inside the forest:  

− in the vegetation: 

=

= +

+

F k e dt kB T H T e

k g AB t I t H t B t H T e dt

k e t H t e dt B T H T e

( ) ( )

[ ( ( )) ( ) ( ) ( ) ( )]

( ( ) ( ) ( ) ( ) )

V
T dB t H t

dt
t T

T t

T t T

0
( ) ( )

0

0

Outside the forest:  

- in the wood products from the exported trees: 

=
+

+( )F k x e t H t e dt B T H T e( ) ( ) ( ) ( )W
p

T
T t T

0

Table 1 
selected functions and parameters.      

Function Parameters  

RdI AB ≤ 1 A = 3/160 m−2 (i.e.  
B1 = 53.33 m2) 

Height H(t) = H0. (1 − e−p4. t) H0 = 40 m,  
p4 = 0.0121 year−1  

H′(t) = p4. H0. e−p4. t  

Increase I(t) = p2 + p3. H′(t) p2 = 0.15 m2year−1,  
p3 = 2.056 m 

Density-dependence g(B) = 1 − e−p1. B p1 = 0.4158 m−2 

Salvage proportion α(t) = [p5 + (t − tL).  
p6]It > tL 

p5 = 0.2, p6 = 0.01 year−1 
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Fig. 1. Optimal Basal Area without risk and associated optimal harvesting in case (ia).  

Fig. 2. Optimal Basal Area with natural risk and associated optimal harvesting in case (la).  
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Fig. 3. Optimal Basal Area without risk and associated optimal harvesting in case (ib).  

Fig. 4. Optimal Basal Area with natural risk and associated optimal harvesting in case (lb).  
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where γp is the discount carbon rate in energy. 
- in energy from the exported trees: we assume that in the end all the 

exported trees ends in energy. Proportion xE is converted directly in 
wood energy and proportion xT is converted with discount carbon rate 
γp): 

= +
+

+( )F C x x e t H t e dt B T H T e( ) ( ) ( ) ( )E E E
p

p
T

T t T
0

where CE is the substitutability coefficient, CE  <  k. 
We may decide to choose to consider: 
(i) only the carbon flux corresponding to the vegetation FV, by 

convention γV =  + ∞. 
(ii) the carbon flux corresponding to the vegetation and the wood 

products FV + FW, hence we let γVW such that =+VW + xT
p

. 
(iii) the previous fluxes and the flux corresponding the substitutable 

energy then consider FV + FW + FE, hence we let γVWE such that 

=+VWE
+ ++ +x x xT

C
k E T

p
E p

p
(with 1C

k
E ). 

Remark: The different products have different carbon discount rates 
but in this case it is enough in this case to calculate an average carbon 
discount rate as we did to build γVWE. The only outstanding problem is 
the variable composition over time but this has only a very marginal 
impact on the final result. 

We have the following relations: γVWE  <  γVW  <  γV =  + ∞. In all 
cases, the criterion to optimize can be expressed in the following form: 

+

++

k g AB t I t H t B t H t e dt

k e t H t e dt B T H T e

( ): max [ ( ( )) ( ) ( ) ( ) ( )]

( ( ) ( ) ( ) ( ) )

e

T t

T t T

(.) 0

0

Q
E

with the corresponding γ. 
Hence by replacing e(t) by g AB t I t( ( )) ( ) dB t

dt
( ) and integrating by 

parts, we deduce that problem (Q ) is equivalent to: 

+
B t t e dt kB Hmax ( ( ), ) (0)

B

T C t
(.) 0 0 0

B0
L

C

with = + ++B t g AB I t H t BH t BH t( , ) ( ( ) ( ) ( ) ( ) ( ))C k
0 . The deriva

tive of ℒ0
C(B, t) with respect to B is proportional to: 

+ +Ag AB I t H t H t H t( ) ( ) ( ) ( ) ( )

is positive for all time t. Hence the optimal trajectory is the trajectory 
which gives the higher value of basal area i.e. B0(.;1). 

3.2. Comparison with optimization based on timber production 

The optimal trajectory for the carbon sequestration consists in 
keeping standing timber as long as possible. Therefore optimal solution 
for the carbon sequestration is slightly different with the optimal so
lution for timber criterion B0

∗. 

3.3. The natural risk case 

In case of natural risk, we assume that the damaged trees have a 
higher discount carbon rate Γ. With the same reasoning that for the 
timber criterion (see Appendix D) we obtain a Faustmann criterion 
proportional to: 

= + +

W T

B t t e dt B t t e dt

( ): max ( )

( ( ), ) ( ( ), )

B
B
C

t C t
t

T C t t

(.)
(.)

0 0

B

L

L
L

0
Q

L L

C

where 

=
+ +

B t B t k t BH t( , ) ( , ) (1 ( )) ( )C C
0L L

The derivative of the integrand with respect to B is proportional to: 

+ + <

+

+

< <

+

Ag AB I t H t H t H t for t t

AB I t H t H t

t H t

for t t T

( ) ( ) ( ) ( ) ( )

Ag ( ) ( ) ( ) ( )

(1 ( )) ( )

L

L

Remark 3.1. As δ ≪ Γ, the first order condition weakly depends on the 
economic discount rate δ. 

We deduce:  

i) For t  <  tL and if < + for t  >  tL, there is no singular arc. 
Hence, first there is no thinning before the tipping age tL. Second, if 
λ is lower than γ so in this case the optimal trajectory will be the 
same than in the no risk case: no thinning.  

ii) For sufficiently high value of the risk rate λ, + t(1 ( ))
would be negative and a singular arc exists. 

3.4. Comparison with optimization based on timber production 

Except for very high (and therefore usually unrealistic) risk rate 
values, the optimal trajectory for carbon sequestration is identical to 
that without risk and therefore very different from that obtained for the 
timber criterion. With risk but sufficiently high risk rate, the optimal 
trajectory for carbon sequestration is a little closer to the optimal tra
jectory for timber production. 

3.5. Optimal cutting age 

without risk. 
We consider the optimization of the Faustmann Value with respect 

to the cutting age with the previous optimal silviculture, the Faustmann 
Value is: 

=J
L t e dt

e
( )

1
C

T C T t

T0
0 0

( )

with L0
C(t) = ℒ0

C(B0(t;1), t). We deduce: 

Lemma 3.1. If L0
C satisfies:∫ 0

T(L0
C(T) − L0

C(t))e−δtdt  >  0 for all T, 
then the Faustmann Value J0

C is increasing with respect to cutting age 
T. Therefore the optimal cutting age will be the senescence age. 

Proof: The derivative of J0
C with respect to T is proportional (with 

the same sign) to: 

=

L T e L t e dt

L T L t e dt

( )( 1) ( )

( ( ) ( ))

C T T C T t

T C C T t

0 0 0
( )

0 0 0
( )

Due to non neglectable value of γ, L0
C(t) will be increasing hence 

will satisfy the condition in Lemma 3.1. We note that the condition 
expressed in Lemma 3.1 authorizes a weak decreasing for old ages. 

with natural risk. 
For < + , there is no singular arc hence the Faustmann Value is 

given by: 

=
+ +( )

J
L t e dt L t e dt e

b T

( ) ( )

( )
C

t C t
t

T C t t T t

0
0 0

L
L

L L

with Lλ
C(t) = ℒλ

C(B0(t;1), t)). We deduce: 

Lemma 3.2. If L0
C, Lλ

C satisfy:∫ 0
tL(Lλ

C(T) − L0
C(t)) 

e−δtdt + ∫ tL
T(Lλ

C(T) − Lλ
C(t))e−Δt+λtLdt  >  0 for all T, then the 

Faustmann Value J0
C is increasing with respect to cutting age T. 

Therefore the optimal cutting age will be the senescence age. 

Hence for moderate value of λ, the optimal cutting age will be the 
senescence age as in the no risk case. 

At the opposite, for sufficiently high value λ and moderate discount 
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carbon rate γ, γ − λ may be negative so Lλ
C may not satisfy the con

dition of the Lemma 3.2 hence the optimal cutting age may be lower 
than the senescence age: if λ(1 − α(t))  >  γ a singular arc is available 
and as in the classical Faustmann problem an optimal cutting age may 
exist. 

3.6. Comparison with optimization based on timber production 

Except for very high (and therefore usually unrealistic) risk rate 
values, the optimal cutting age for carbon sequestration with or without 
risk will be the senescence age and therefore very different from the 
optimal cutting age for the timber criterion. With risk but sufficiently 
high risk rate, the optimal cutting age for sequestered carbon may not 
be deduced from the senescence age and is a little closer to optimal 
timber cutting age. 

4. Discussion 

The work presented here has focused on timber revenues and 
carbon sequestration separately. As such, it differs from work in the 
literature that focused on joint production. In contrast to the latter, our 
study provides a precise analysis of strategies to improve carbon se
questration in forests. 

In our study, due to the fact that the expression of the control 
variable can be substituted in the criterion, the control problem can be 
reduced to a Calculus of Variations problem. This substitution permits 
an easier study than the initial control problem. Calculus of Variations 
works fine for our problem but it may not be as useful for other optimal 
rotation problems. 

The results presented have been obtained by making simplifying 
assumptions, which allowed us to determine the optimal strategies. 
These simplifications concerned the price function, the diversity of 
carbon discount rates and as we have expressed are justified as they 
have no serious consequences. 

An important point concerns the consideration of changing en
vironmental conditions. In the Faustmann approach, it is assumed that 
the environmental conditions are the same to each new rotation. To 
take into account changing environmental conditions, it becomes ne
cessary to work with a value function. 

5. Conclusion 

From analytical expression of the criteria to optimize, we compare 
optimal strategies (in term of thinning and cutting age) that maximize 
carbon sequestration to optimal strategies that maximize the timber 
income. The study presented is done at the stand level. We show that 
the optimal trajectory for the carbon sequestration consists in keeping 
standing timber as long as possible. Therefore optimal solution for the 
carbon sequestration is slightly different with the optimal solution for 
timber criterion. With no natural risk or with risk but low risk rate, the 
optimal cutting age for sequestered carbon will be the senescence age. 
With natural risk but sufficiently high risk rate, the optimal trajectory 
for carbon sequestration is a little closer to the optimal trajectory for 
timber production. 

To extend this study, we could consider risk averse forest managers, 
which should substantially modify the optimal strategies for carbon 
sequestration. Moreover to take into account changing environmental 
conditions, we could consider a function value approach. 
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Appendix A. The growth model 

We consider a forest stand. The tree number which this area can bear is limited. Let's note b the average tree basal area (at the height of 1.3 
meters) of the forest, the maximum tree number nM(b) that a forest stand can bear is given by the self-thinning relation (Reineke, 1933): 

=n b C blog ( ) logM
q

0 2 , C0  >  0, 1  <  q ≤ 2 are constant values characteristic of the forest species and of its environment (ground fertility). Hence, 
for a given averaged tree basal area b, beyond the tree number nM(b), the trees die, the forest stand has to remain under this limit. Reineke (Reineke, 
1933) defines the Relative Density Index RDI by: = =r Anbn

n b( )M

q
2 with A ≔ e−C0. By definition this ratio is always less than 1. We will now describe 

the temporal evolution of the total basal area B = nb. 
The growth of the trees depends on the tree density r: the increase of basal area of the forest stand at its peak of density r = 1 is given by the 

function I(t) at time t (Loisel and Dhôte, 2011). For a lower density (r  <  1), the increase of the basal area for the forest is reduced by a factor 
dependent on this same density: g(r). Thus the effective increase at time t is equal to: g(r(t))I(t) hence, for a cutting policy e(.), the evolution of the 
basal area is given by: 

=dn t b t
dt

g r t I t e t( ) ( ) ( ( )) ( ) ( )

with the initial basal area B0 = n0b0, the constraints e t e0 ( ) and =r t An t b( ) ( ) 1
q
2 for any t. A complete analysis of this model is given in 

(Loisel and Dhôte, 2011). We here consider the limit case q = 2. In this case, the RDI is proportional to the total basal area: B = nb and r = AB. 

Appendix B. Timber production with risk 

Let τi the time spent between the beginning of the stand and the first event of the stand after tL, either by event or by logging at time T for the ith 
rotation. The net economic return iY (thinning incomes, final income minus costs) actualized at final time τ is given by: 

=
+ < <

+ =( )
( )p c e t H t e dt B H c c c B H if t T

p c e t H t e dt B T H T c if T

( ) ( ) (1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
i

t
i i v i i L i

T T t
i

0 0 0
( )

1 0

0 0 0
( )

1

i
i

Y
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with costs cv per unit of volume of damaged trees. 
As the event occurs independently of one another and randomly in time, we deduce the following expression for the Faustmann Value: 

= = + = +
=

+ +…+

=

+…+J E e E e e E e J[ ( )]
i

i
i

i
1

( )
1

1

( )i i1 2 1 2Y Y Y Y

Hence, the Faustmann Value is the expected value of the actualized sum at the initial time of the net economic return Y and the Faustmann 
Value. Moreover the Fautmann value is given by: 

=J E e
E e

[ ]
1 [ ]

Y

From = +E e e dF t e T F T t[ ] ( ) ( ) ( )(1 ( ))t
T

l
T

LL
Y Y Y , inverting the integral with respect to τ and t we deduce: 

=J W T c e c a T
b T

( ) ( )
( )

T t
0 1L

(5)  

=

+ +

+

+

+

with W T p e t H t e dt

xp e t t p t c B t H t e dt

p B T H T e

( ) ( ) ( )

[ ( ) ( ( ) (1 ( )) ) ( )] ( )

( ) ( )

t t

t
T

v
t t

T t

0 0

0 0

0

L

L
L

L

and constants a(T), b(T): Δa(T) = λeΔ(T−tL) + δ and b(T) = eΔT−λtL − a(T). 

Appendix C. Proof of Proposition 2.1 

From expression of: W = ∫ 0
tLℒ0(B(t), t)e−δtdt + ∫ tL

Tℒλ(B(t), t)e−Δt+λtLdt we deduce: 

=
= +

= +

+

+

+

W B T T e
W T t W R B T T e

W R B t t t t B t t e dt

( ( ), )
( ) ( ( ), )

[ ( ( ), ) ( ) ( ( ), )]

T
T t

T L T
T t

t

T
L

t t

L

L

L
L

L

L

In this case: 

=

=

+ +

= + <

=A T b T t b W bR B T T e W

T t e B T T e R B T T e

R B t t t t B t t e dt

R B t t R B T T t t B t t B T T e dt

( ) [( ( ) ) ( ( ), ) ]
1 ( ( ), ) ( ( ), )(1 )

[ ( ( ), ) ( ) ( ( ), )]

[ ( ( ), ) ( ( ), ) ( )( ( ( ), ) ( ( ), ))] 0

L T
T

L
T t

T T

t

T
L

t

t

T
L

t

0

( )
0

0

0 0

L

L

L

L

L

L L

Appendix D. Carbon sequestration with risk 

The net carbon return i
CY actualized at final time τ is given by: 

=

+

+

< <

+

+ =

+

+

+

k g AB t I t H t B t H t e dt

ke t H t e dt kB H

k B H if t T

k g AB t I t H t B t H t e dt

ke t B t H t e dt kB T H T if T

[ ( ( )) ( ) ( ) ( ) ( )]

( ( ) ( ) (1 ) ( ) ( ))

( ) ( )

[ ( ( )) ( ) ( ) ( ) ( )]

( ( ) ( ) ( ) ( ) ( ))

i
C

t

t
i i

i i L i

T t

T T t
i

0
( )

0
( )

0
( )

0
( )

i i

i i

i

Y

Similarly for the timber case, we deduce the criterion: 

=J W T e
b T

( )
( )

C
C T tL

with: 

= +

+ +

+ +

+

+

+
+ +

+
+

( )

W T k g AB t I t H t B t H t e dt

k g AB t I t H t B t H t e dt

k e t H t e dt

k e t H t t B t H t e dt B T H T e

k t B t H t e dt

( ) [ ( ( )) ( ) ( ) ( ) ( )]

[ ( ( )) ( ) ( ) ( ) ( )]

( ) ( )

[ ( ) ( ) ( ) ( ) ( )] ( ) ( )

(1 ( )) ( ) ( )

C t t

t
T t t

t t

t
T t t T t

t
T t t

0

0

L

L
L

L

L
L L

L
L
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Hence by replacing e(t) by g AB t I t( ( )) ( ) dB t
dt

( ) and integrating by parts we obtain: 

= +
+ +

+
+

+W t B t t e dt B t t k t B t H t e dt kB H( ) ( ( ), ) ( ( ), ) (1 ( )) ( ) ( ) (0) (0)C t C t
t

T C t t
0 0 0

L

L
LL L
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