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ABSTRACT
While there are a plethora of algorithms for detecting changes in mean in univariate time-series, almost
all struggle in real applications where there is autocorrelated noise or where the mean fluctuates locally
between the abrupt changes that one wishes to detect. In these cases, default implementations, which
are often based on assumptions of a constant mean between changes and independent noise, can lead to
substantial over-estimation of the number of changes. We propose a principled approach to detect such
abrupt changes that models local fluctuations as a random walk process and autocorrelated noise via an
AR(1) process. We then estimate the number and location of changepoints by minimizing a penalized cost
based on this model. We develop a novel and efficient dynamic programming algorithm, DeCAFS, that can
solve this minimization problem; despite the additional challenge of dependence across segments, due
to the autocorrelated noise, which makes existing algorithms inapplicable. Theory and empirical results
show that our approach has greater power at detecting abrupt changes than existing approaches. We apply
our method to measuring gene expression levels in bacteria. Supplementary materials for this article are
available online.
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1. Introduction

Detecting changes in data streams is a ubiquitous challenge
across many modern applications of statistics. It is important
in such diverse areas as bioinformatics (Olshen et al. 2004;
Futschik et al. 2014), ion channels (Hotz et al. 2013), climate
records (Reeves et al. 2007), oceanographic data (Killick et al.
2010), and finance (Kim, Morley, and Nelson 2005). The most
common and important change detection problem is that of
detecting changes in mean, and there have been a large number
of different approaches to this problem that have been proposed
(e.g., Olshen et al. 2004; Killick, Fearnhead, and Eckley 2012;
Fryzlewicz 2014; Frick, Munk, and Sieling 2014; Maidstone
et al. 2017; Eichinger and Kirch 2018; Fearnhead and Rigaill
2019; Fryzlewicz 2018b, amongst many others). Almost all of
these methods are based on modeling the data as having a
constant mean between changes and the noise in the data being
independent. Furthermore, all change-point methods require
specifying some threshold or penalty that affects the amount of
evidence that there needs to be for a change before an additional
changepoint is detected. In general, the methods have default
choices of these thresholds or penalties that have good theoret-
ical properties under strong modeling assumptions.

Although these methods perform well when analyzing sim-
ulated data where the assumptions of the method hold, they can
be less reliable in real applications, particularly if the default
threshold or penalties are used. Reasons for this include the
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noise in the data being autocorrelated, or the underlying mean
fluctuating slightly between the abrupt changes that one wishes
to detect. To see this, consider change detection for the well-
log data (taken from Fearnhead and Liu 2011; Ruanaidh and
Fitzgerald 2012) shown in Figure 1. These data come from
lowering a probe into a bore-hole, and taking measurements of
the rock structure as the probe is lowered. The data we plot has
had outliers removed. As the probe moves from one rock strata
to another, we expect to see an abrupt change in the signal from
the measurements, and it is these changes that an analyst would
wish to detect. Previous analyses of this data have shown that,
marginally, the noise in the data is very well approximated by a
Gaussian distribution; but by eye we can see local fluctuations in
the data that suggest either autocorrelation in the measurement
error, or structure in the mean between the abrupt changes.

The top plot shows an analysis of the well-log data that uses
wild binary segmentation (Fryzlewicz 2014) with the standard
cusum test for a change in mean, and then estimates the number
of changepoints based on a strengthened Schwarz information
criteria. Both the cusum test and the strengthened Schwarz
information criteria are based on modeling assumptions of a
constant mean between changepoints and independent, iden-
tically distributed (IID) Gaussian noise, and are known to con-
sistently estimate the number and location of the changepoints
if these assumptions are correct. However, in this case, we can
see that it massively overfits the number of changepoints. Sim-
ilar results are obtained for standard implementation of other
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Figure 1. Segmentations of well-log data: wild binary segmentation using the strengthened Schwarz information criteria (top); segmentation under square error loss with
penalty inflated to account for autocorrelation in measurement error (middle); optimal segmentation from DeCAFS with default penalty (bottom). Each plot shows the
data (black line) the estimated mean (red line) and changepoint location (vertical blue dashed lines).

algorithms for detecting changes in mean, see Figure 13 in the
supplementary material.

Lavielle and Moulines (2000) and Bardwell et al. (2019)
suggested that if we estimate changepoints by minimizing the
squared error loss of our fit with a penalty for each change,
then we can correct for potential autocorrelation in the noise by
inflating the penalty used for adding a changepoint. The middle
plot of Figure 1 shows results for such an approach (Bardwell
et al. 2019); this gives an improved result but it still noticeably
overfits.

By comparison, the method we propose models both
autocorrelation in the noise and local fluctuations in the
mean between changepoints—and analysis of the data using
default settings produces a much more reasonable segmentation
of the data (see bottom plot of Figure 1). This method is
model-based, and assumes that the local fluctuations in the
mean are realizations of a random walk and that the noise
process is an AR(1) process. We then segment the data by
minimizing a penalized cost that is based on the log-likelihood
of our model together with a BIC penalty for adding a
changepoint.

The key algorithmic challenge with our approach is mini-
mizing the penalized cost. In particular, many existing dynamic
programming approaches (e.g., Jackson et al. 2005; Killick,
Fearnhead, and Eckley 2012) do not work for our problem due
to the dependence across segments caused by the autocorrelated
noise. We introduce a novel extension of the functional pruned
optimal partitioning algorithm of Maidstone et al. (2017),
and we call the resulting algorithm DeCAFS, for Detecting
Changes in Autocorrelated and Fluctuating Signals. It is both
computationally efficient (analysis of the approx 4000 data
points in the well-log data taking a fraction of a second on a
standard laptop) and guaranteed to find the best segmentation
under our criteria.

While we are unaware of any previous method that tries
to model both autocorrelation and local fluctuations, Chakar
et al. (2017) introduced AR1Seg which aims to detect changes
in mean in the presence of autocorrelation. Their approach is
similar to ours if we remove the random walk component, as
they aim to minimize a penalized cost where the cost is the neg-
ative of the log-likelihood under a model with an AR(1) noise
process. However they were unable to minimize this penalized
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cost, and instead minimized an approximation that removes the
dependence across segments. One consequence of using this
approximation is that it often estimates two consecutive changes
at each changepoint, and AR1Seg uses a further post-processing
step to try and correct this. Moreover, our simulation results
show that using the approximation leads to a loss of power,
particularly when the autocorrelation in the noise is high.

Particularly if interest lies in estimating how the underly-
ing mean of the data varies over time, natural alternatives to
DeCAFS are trend filtering methods (Kim et al. 2009; Tibshirani
et al. 2014) which estimate the mean function under an L1
penalty on a suitably chosen discrete derivative of the mean.
Depending on the order of the derivative, these methods can
fit a piecewise constant (in this case trend filtering is equivalent
to the fused lasso of Tibshirani et al. 2005), linear, or quadratic
etc. function to the mean. One advantage of trend filtering is
its flexibility: depending on the application one can fit mean
functions with different degrees of smoothness. However, it does
not allow one to jointly estimate a smoothly changing mean and
abrupt changes—the L1 penalty must be chosen to capture one
or other of these effects. This is particularly an issue if the main
interest is in detecting abrupt changes rather than estimating the
mean. These issues are investigated empirically in Appendix F.3.

Distinguishing between local fluctuations and abrupt
changes is possible by methods that model the mean as a
sum of functions (Jalali, Ravikumar, and Sanghavi 2013)—for
example one smoothly varying and one piecewise constant.
And trend-filtering, or other regularized estimators can then
be used to estimate each component. The LAVA approach of
Chernozhukov, Hansen, and Liao (2017) is one such approach,
fitting the piecewise constant function and the smoothly varying
function using, respectively, an L1 and L2 penalty on the
function’s first discrete derivative. The main difference between
LAVA and DeCAFS is thus that LAVA has an L1 penalty for
abrupt changes, and DeCAFS has an L0 penalty. If interest is
primarily in detecting changes, previous work has shown the use
of an L0 penalty to be preferable to an L1 penalty – as the latter
can often over-fit the number of changes (see, e.g., the empirical
evidence in Fearnhead, Maidstone, and Letchford 2018; Jewell
et al. 2020), and a post-processing step is often needed to correct
for this (Lin et al. 2017; Safikhani and Shojaie 2020).

One important feature of modeling the random fluctuations
in the mean via a random walk, is that the information that a
data point ys has about a change at time t decays to 0 as |t−s| gets
large. This is most easily seen if we consider applying DeCAFS
to detect a single abrupt change. We show in Section 5 that
whether DeCAFS detects a change at a time t depends on some
contrast of the data before and after t. This contrast compares
a weighted mean of the data before t to a weighted mean of the
data after t, with the weights decaying (essentially) geometrically
with the length of time before/after t. This is appropriate for
the random walk model which enables, for example, the mean
of yt+h to be very different to the mean at yt+1 if h > 0
is large, and thus yt+h contains little to no information about
whether there has been an abrupt change in the mean of yt+1
compared to the mean of yt . By contrast, standard CUSUM
methods for detecting a change in mean quantify the evidence
for a change at t by a contrast of the unweighted mean of the
data before and after t – thus each data point, yt+h, has the

same amount of information about the change regardless of
the value of h. In situations where there are local fluctuations
in the mean but through some stationary process, such as a
mean-reverting random walk, data far from a change would still
have a non-negligble amount of information about it. In such
situations, particularly if the segments are long, DeCAFS could
have lower power than CUSUM or other methods that ignore
any local fluctuations in the data. We investigate this empirically
in Appendix F.4.

The outline of the article is as follows. In the next section, we
introduce our model-based approach and the associated penal-
ized cost. In Section 3 we present DeCAFS, a novel dynamic
programming algorithm that can exactly minimize the penal-
ized cost. To implement our method we need estimates of the
model parameters, and we present a simple way of preprocessing
the data to obtain these in Section 4. We then look at the
theoretical properties of the method. These justify the use of the
BIC penalty, show that our method has more power at detecting
changes when our model assumptions are correct than standard
approaches, and also that we have some robustness to model
error—in that we can still consistently estimate the number
and location of the changepoints in such cases by adapting the
penalty for adding a changepoint. Sections 6 and 7 evaluate the
new method on simulated and real data; and the article ends
with a discussion.

Code implementing the new algorithm is available in the R
package DeCAFS on CRAN. The package and full code from
our simulation study is also available at github.com/gtromano/
DeCAFS.

2. Modeling and Detecting Abrupt Changes

2.1. Model

Let y1:n = (y1, . . . , yn) ∈ Rn be a sequence of n observations,
and assume we wish to detect abrupt changes in the mean of
this data in the presence of local fluctuations and autocorrelated
noise. We take a model-based approach where the signal vector
is a realization of a random walk process with abrupt changes,
and we super-impose an AR(1) noise process.

So for t = 1, . . . , n,

yt = μt + εt , (1)

where for t = 2, . . . , n

μt = μt−1 + ηt + δt , with ηt ∼
iid

N (0, σ 2
η ), δt ∈ R, (2)

and δt = 0 except at time points immediately after a set of m
changepoints, 0 < τ1 < · · · < τm < n. That is δt = 0 unless t =
τj + 1 for some j. This model is unidentifiable at changepoints.
If τ is a changepoint, then whilst the data is informative about
μτ+1 and μτ , we have no further information about the specific
value of δτ+1 relative to ητ+1. We thus take the convention that
δτ+1 = μτ+1 −μτ and ητ+1 = 0, which is the most likely value
of ητ+1 under our model, and consistent with maximizing the
likelihood criteria we introduce below. The noise process, εt is a
stationary AR(1) process with, for t = 2, . . . , n,

εt = φεt−1 + νt with νt ∼
iid

N (0, σ 2
ν ), (3)

github.com/gtromano/DeCAFS
github.com/gtromano/DeCAFS
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for some autocorrelation parameter, φ with |φ| < 1 and ε1 ∼
N (0, σ 2

ν /(1−φ2)). Special cases of our model occur when φ = 0
or when σ 2

η = 0. When φ = 0 our noise process εt is then
IID, and the model is equivalent to a random walk plus noise
with abrupt changes. When σ 2

η = 0 we are detecting changes
in mean with an AR(1) noise process, resulting in a formulation
equivalent to the one of Chakar et al. (2017).

2.2. Penalized Maximum Likelihood Approach

In the following, we will assume that φ, σ 2
η and σ 2

ν are known;
we consider robust approaches to estimate these parameters
from the data in Section 4. We can then write down a type
of likelihood for our model, defined as the joint density of the
observations, y1:n, and the local fluctuations in the mean, η2:n.
We will express this as a function of μ1:n and δ2:n. Writing f (·|·)
for a generic conditional density, we have that this is

L(y1:n; μ1:n, δ2:n) =
( n∏

t=2
f (μt|μt−1, δt)

)
f (y1|μ1)

×
( n∏

t=2
f (yt|yt−1, μt−1, μt)

)

∝
( n∏

t=2
exp

{
− (μt − μt−1 − δt)2

2σ 2
η

})
exp

{
− (y1 − μ1)

2

2σ 2
ν /(1 − φ2)

}

×
( n∏

t=2
exp

{
− ((yt − μt) − φ(yt−1 − μt−1))

2

2σ 2
ν

})
.

We have used the specific Gaussian densities of our model, and
dropped multiplicative constants, to get the second expression.

If we knew the number of changepoints, then we could esti-
mate their position by maximizing this likelihood subject to the
constraints on the number of nonzero entries of δ2:n. However,
as we need to also estimate the number of changepoints we
proceed by maximizing a penalized version of the log of the
likelihood where we introduce a penalty for each changepoint—
this is a common approach to changepoint detection, see, for
example, Maidstone et al. (2017). It is customary to restate
this as minimizing a penalized cost, rather than maximizing
a penalized likelihood, where the cost is minus twice the log-
likelihood. That is, we estimate the number and location of the
changepoints by solving the following minimization problem:

Fn = min
μ1:n
δ2:n

{
(1 − φ2)γ (y1 − μ1)

2 +

n∑
t=2

[
λ(μt − μt−1 − δt)

2 + γ
(
(yt − μt) − φ(yt−1 − μt−1)

)2

+β 1δt �=0
]}

, (4)

where β > 0 is the penalty for adding a changepoint, λ =
1/σ 2

η , γ = 1/σ 2
ν , and 1 ∈ {0, 1} is an indicator function.

For the special case of a constant mean between changepoints,
corresponding to σ 2

η = 0, we require μt = μt−1 + δt ∀ t =
2, . . . , n and simply drop the first term in the sum.

2.3. Dynamic Programming Recursion

We will use dynamic programming to minimize the penalized
cost Equation (4). The challenge here is to deal with the depen-
dence across changepoints due to the AR(1) noise process which
means that some standard dynamic approaches for change-
point detection, such as optimal partitioning (Jackson et al.
2005) and PELT (Killick, Fearnhead, and Eckley 2012), cannot
be used. To overcome this, as in Rigaill (2015) or Maidstone et al.
(2017), we define the function μ �→ Qt(μ) to be the minimum
penalized cost for data y1:t conditional on μt = μ,

Qt(μ) = min
μ1:t

δ2:t ,μt=μ

{
(1 − φ2)γ (y1 − μ1)

2 +

t∑
i=2

[
λ(μi − μi−1 − δi)

2

+γ
(
(yi − μi) − φ(yi−1 − μi−1)

)2 + β 1δi �=0
]}

.

SoFn = minμ∈R Qn(μ); and the following proposition gives
a recursion for Qt(μ).

Proposition 1. The set of functions {μ �→ Qt(μ) , t = 1, . . . , n}
satisfies

Q1(μ) = (1 − φ2)γ (y1 − μ)2 and, for t = 2, . . . , n,

Qt(μ) = min
u∈R

{
Qt−1(u) + min{λ(μ − u)2, β}

+ γ
(
(yt − μ) − φ(yt−1 − u)

)2}
. (5)

The intuition behind the recursion is that we first condition
on μt−1 = u, with the term in braces being the minimum
penalized cost for y1:t given u and μt = μ, and then minimize
over u. The cost in braces is the sum of three terms: (i) the
minimum penalized cost for y1:t−1 given u; (ii) the cost for the
change in mean from u to μ; and (iii) the cost of fitting data
point yt with μt . The cost for the change in mean, (ii), is just
the minimum of the constant cost for adding a change and
the quadratic cost for a change due to the random walk. The
recursion applies to the special case of a constant mean between
changepoints, where λ = ∞, if we replace min{λ(μ − u)2, β}
with its limit as λ → ∞, which is β1μ�=u.

Although recursions of this form have been considered in
earlier changepoint algorithms (e.g., Maidstone et al. 2017;
Hocking et al. 2020), the dependence between the current mean
u and the previous mean μ that appears in terms (ii) and (iii)
makes our recursion more challenging to solve. We next show
one efficient way of solving by combining existing functional
pruning dynamic programming ideas with properties of infimal
convolutions.

3. Computationally Efficient Algorithm

3.1. The DeCAFS Algorithm

Algorithm 1 gives pseudo code for solving the dynamic pro-
gramming recursion introduced in Proposition 1. The key to
implementing this algorithm is performing the calculations in
line 5, and how this can be done efficiently will be described
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below. Throughout we give the algorithm for the case where
there is a random walk component, that is, λ < ∞, though it
is trivial to adapt the algorithm to the λ = ∞ case.

As well as solving the recursion for Qt(μ), Algorithm 1 shows
how we can also obtain the estimate of the mean, through a
standard back-tracking step. The idea is that our estimate of μn,
μ̂n, is just the value of μ that maximizes Qn(μ). We then loop
backwards through the data, and our estimate of μt is the value
that minimizes the penalized cost for the data y1:t conditional
on μt+1 = μ̂t+1, which can be calculated as Bt(μ) in line 11.

Finally, as we obtain the estimates of the mean, we can
also directly obtain the estimated changepoint locations. It is
straightforward to see, by examining the form of the penalized
cost, that the optimal solution for δ2:n has δt+1 �= 0 (and hence,
t is a changepoint) if and only if λ(μ̂t+1 − μ̂t)2 > β .

Algorithm 1: DeCAFS
Data: y = y1:n a time series of length n
Input: β > 0, λ > 0, γ > 0 and 0 ≤ φ < 1.

1 begin Initialization
2 Q1(μ) ←− (1 − φ2)γ (y1 − μ)2

3 end
4 for t = 2 to n do
5 Qt(μ) ←− min

u

{
Qt−1(u) + min{λ(μ − u)2, β} +

γ
(
(yt − μ) − φ(yt−1 − u)

)2}
6 end
7 begin Backtracking
8 μ̂n ←− argminQn(μ)

9 τ̂ ←− n
10 for t = n − 1 to 1 do
11 Bt(μ) ←− Qt(μ) + min{λ(μ − μ̂t+1)

2, β} +
γ
(
(yt+1 − μ̂t+1) − φ(yt − μ)

)2

12 μ̂t ←− argminBt(μ)

13 if (μ̂t − μ̂t+1)
2 > β/λ then

14 τ̂ ←− (t, τ̂ )

15 end
16 end
17 end
18 Return μ̂1:n, τ̂

3.2. The Infimal Convolution

The main challenge with Algorithm 1 is implementing line 5.
First, this needs a compact way of characterizing Qt(μ). This
is possible as Q1(μ) is a quadratic function; and the recur-
sion maps piecewise quadratic functions to piecewise quadratic
functions. Hence Qt(μ) will be piecewise quadratic and can be
defined by storing a partition of the real-line together with the
coefficients of the quadratics for each interval in this partition.

Next we can simplify line 5 of Algorithm 1. As written line
5 involves minimizing a two-dimensional function, in (u, μ) ∈
R2, over the variable u. We can recast this operation into a one-
dimensional problem by introducing the concept of an infimal
convolution (see Chapter 12 of Bauschke and Combettes 2011).

Definition 1. Let f be a real-valued function defined on R and
ω a nonnegative scalar. We define INFf ,∞(θ) = f (θ) and for
ω > 0,

INFf ,ω(θ) = min
u∈R

(
f (u) + ω(u − θ)2) , (6)

as the infimal convolution of f with a quadratic term.

The following proposition presents a reformulation of the
update-rule into a minimization involving infimal convolutions,
for the case φ ≥ 0. The proof is in Appendix B, together with
details of equivalent results when φ < 0.

Proposition 2. Assume φ ≥ 0. The functions {Qt(μ) , t =
2, . . . , n} can be written as

Qt(μ) = min
{

Q=
t (μ), Q �=

t (μ)
}

,

where

Q=
t (μ) = INFQt−1,γφ+λ(μ)

+ γ

1 − φ

(
yt − φyt−1 − (1 − φ)μ

)2
,

Q �=
t (μ) = INFQt−1,γφ(μ)

+ γ

1 − φ

(
yt − φyt−1 − (1 − φ)μ

)2 + β ,

and

Qt−1(u) = Qt−1(u) − γφ(1 − φ)

(
u − yt − φyt−1

1 − φ

)2
.

3.3. Fast Infimal Convolution Computation

As noted above we can represent Qt by Qt = (q1
t , ..., qs

t) where
each qi

t is a quadratic defined on some interval [di, di+1[ with
d1 = −∞ and ds+1 = +∞. It is this representation of Qt
that we update at each time step. Some operations involved in
solving the recursion, such as adding a quadratic to a piece-
wise quadratic, or calculating the pointwise minimum of two
piecewise quadratics are easy to perform with a computational
cost that is linear in the number of intervals (see, e.g., Rigaill
2015). The following theorem shows that a fast update for the
infimal convolution of a piecewise quadratic is also possible,
and is important for developing a fast algorithm for solving the
dynamic programming recursions.

Theorem 1. Let Qt = (q1
t , ..., qs

t) be the representation of the
functional cost Qt . For all ω ≥ 0, the representation returned
by the infimal convolution INFQt ,ω has the following order-
preserving form:

INFQt ,ω = (INFqu1
t , INFqu2

t , . . . , INFqus∗−1
t , INFqus∗

t ) ,

with 1 = u1 < u2 < ... < us∗−1 < us∗ = s and s∗ ≤ s.

The key part of this result is that the order of the quadratics is
not changed when we apply the infimal convolution, and thus we
can calculate INFQt ,ω using a linear scan over the real-line. The
proof of this theorem is given in Appendix C, and an example
algorithm for calculating INFQt ,ω with complexity that is linear
in s is shown in Appendix D.
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4. Robust Parameter Estimation

Our optimization problem Equation (4) depends on three
unknown parameters: σ 2

η , σ 2
ν and φ. We estimate these

parameters by fitting to robust estimates of the variance of the
k-lag differenced data, zk

t = yt+k − yt , for k ≥ 1.

Proposition 3. With the model defined by Equations (1)–(3),

zk
t ∼ N

( t+k∑
i=t+1

δi, kσ 2
η + 2

1 − φk

1 − φ2 σ 2
ν

)
, t = 1, . . . , n − k.

Providing k is small relative to the average length of a seg-
ment, the mean of zk

t will be zero for most t: if there are m
changes then at most km of the zk

t ’s will overlap a change and
have a nonzero mean. This suggests that we can estimate the
variance of zk

t using a robust estimator, such as the median
absolute difference from the median, or MAD, estimator.

Fix K, and let vk be the MAD estimator of the variance of zk
t

for k = 1, . . . , K. We estimate the parameters by minimizing the
least-square fit to these estimates,

Sφ(σ 2
η , σ 2

ν ) =
K∑

k=1

(
kσ 2

η + 2
1 − φk

1 − φ2 σ 2
ν − vk

)2
.

In practice, we can minimize these criteria by using a grid of
values for φ and then for each φ value analytically minimize with
respect to σ 2

η ≥ 0 and σ 2
ν ≥ 0. Obviously, if we are fitting a

model without the random walk component, then we can set
σ 2

η = 0, or if we wish to have uncorrelated noise, then we set
φ = 0.

An empirical evaluation of this method for estimating the
parameters is shown in Section F of the supplementary material.
These include an investigation of the accuracy in situations
where we have changepoints. In our simulation study, we use
K = 10, though similar results were obtained as we varied K.

5. Theoretical Properties

We can reformulate our model as a linear-regression. To do
this it is helpful to introduce new variables, η̃1:n, that give the
cumulative effect of the random-walk fluctuations. To simplify
exposition, it is further helpful to define this process so it has
an invertible covariance matrix. So we will let η̃1 ∼ N (0, σ 2

η )

and η̃t = η̃t−1 +ηt for t = 2, . . . , n. For a set of m changepoints
τ1:m, and defining τ0 = 0, we can introduce a n×(m+1) matrix
Xτ0:m where the ith column is a column of τi−1 zeros followed by
n − τi−1 ones. Our model is then

y1:n = Xτ0:m� + ζ1:n, (7)

where ζ1:n is a vector of Gaussian random variables with

var(ζ1:n) = var(ε1:n) + var(η̃1:n) := �AR + �RW

the sum of the variance matrices for the AR component of the
model, ε1:n, and the random walk component of the model, η̃1:n;
and � is a (m + 1) × 1 vector whose first entry is μ1 − η̃1 and
whose ith entry is δτi−1+1 the change at the (i−1)th changepoint.
This formulation allows us to consider the impact of model error
on DeCAFS. Later, when we consider its asymptotic properties,

we will allow for the data-generating process to be Equation (7)
but with var(ζ1:n) different from that assumed by DeCAFS.

As shown in Section E of the supplementary material, the
unpenalized version of the cost that we minimize, conditional
on a specific set of changepoints, can be written as

C(τ1:m) = min
�,η̃1:n,η̃1=0

[
(y1:n − Xτ0:m� − η̃1:n)

T

× �−1
AR(y1:n − Xτ0:m� − η̃1:n) + η̃T

1:n�
−1
RWη̃1:n

]
,

where η̃1:n is assumed to be a column vector. Thus, the penalized
cost Equation (4) is Fn = minm,τ1:m [C(τ1:m) + mβ]. In the
remainder of this section, we will call C(τ1:m) the cost, and
C(τ1:m) + mβ the penalized cost.

While our cost is obtained by minimizing over η2:n, the
following result shows that it is equal to the weighted residual
sum of squares from fitting the linear model defined in Equation
(7).

Proposition 4. The cost for fitting a model with changepoints,
τ1:m is

C(τ1:m) = min
�

(y1:n−Xτ0:m�)T (�AR + �RW)−1 (y1:n−Xτ0:m�)

(8)

Let C0 denote the cost if we fit a model with no change-
points. The following corollary, which follows from standard
arguments, gives the behavior of the cost under a null model
of no changepoints. This includes a bound on the impact of
mis-specifying the covariance matrix, for example due to mis-
estimating the parameters of the AR(1) or random walk compo-
nents of the model, or if our model for the residuals is incorrect.

Corollary 1. Assume that data is generated from the model
defined in Equation (7), with m = 0 but with ζ1:n a mean-
zero Gaussian vector with var(ζ1:n) = �. Let α+

n be the largest
eigenvalue of (�AR + �RW)−1�. If � = �AR + �RW then
C0 − C(τ1:d) ∼ χ2

d . Otherwise, for any x

Pr(C0 − C(τ1:d) > x) ≤ Pr(χ2
d > x/α+

n ).

Furthermore, if we estimate the number of changepoints using
the penalized cost Equation (4) with penalty β = Cα+

n log n
for any C > 2, then the estimated number of changepoints, m̂,
satisfies Pr(m̂ = 0) → 1 as n → ∞.

To gain insight into the behavior of the procedure in the
presence of changepoints, and how it differs from standard
standard change-in-mean procedures, it is helpful to consider
the reduction in cost if we add a single changepoint.

Proposition 5. Given a fixed changepoint location τ1:

(i) The reduction in cost for adding a single changepoint at τ1
can be written as C0 − C(τ1) = (vTy1:n)2, for some vector
v defined as

v = 1√
cτ1 − c2

0,τ1/c0

{
(�AR + �RW)−1uτ1

− c0,τ1

c0
(�AR + �RW)−1u0

}
,
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Figure 2. Top row: projections of data v for detecting a change in the middle of n = 100 data-points. Random walk model (top-left) for varying σ 2
η of 0.03 (black), 0.02

(red) and 0.01 (green); AR(1) plus random walk model (top-right) for σ 2
η = 0.01 and varying φ of 0.4 (black), 0.2 (red) and 0.1 (green). In both plots the blue line shows the

standard cusum projection. Bottom row: noncentrality parameter for a χ2
1 test of a change using the optimal projection (solid line) and the cusum projection (dashed line)

for a change of size 1 in the middle of the data as we vary n. Out-fill asymptotics (bottom-left) where (σ 2
η , φ) is (0.0025,0) (black), (0.01,0) (red), (0.0025,0.5) (green) and

(0.01,0.5) (blue); In-fill asymptotics (bottom-right) where for n = 50 (σ 2
η , φ) is (0.0025,0) (black), (0.01,0) (red), (0.0025,0.5) (green) and (0.01,0.5) (blue).

where u0 is a column vector of n ones, uτ1 is a column
vector of τ1 zeroes followed by n − τ0 ones, and

c0 =uT
0 (�AR+�RW)−1u0, c0,τ1 =uT

0 (�AR+�RW)−1uτ1 ,
cτ1 = uT

τ1(�AR + �RW)−1uτ1 .

(ii) The vector v in (i) satisfies
∑n

i=1 vi = 0 and vT(�AR +
�RW)v = 1.

(iii) For any vector w that satisfies
∑n

i=1 wi = 0 and wT(�AR +
�RW)w = 1, ⎛

⎝ n∑
i=τ1+1

wi

⎞
⎠

2

≤
⎛
⎝ n∑

i=τ1+1
vi

⎞
⎠

2

.

The vector v in part (i) of this proposition defines a projection
of the data that is used to determine whether to add a change-
point at τ1. The properties in part (ii) mean that this projection
is invariant to shifts of the data, and that the distribution of
the reduction in cost if our model is correct and there are
no changes will be χ2

1 . The statistic vTy1:n can be viewed as
analogous to the cusum statistic (Hinkley 1971) that is often

used for a standard change-in-mean problem, and in fact if we
set φ = 0 and ση = 0 so as to remove the auto regressive and
random-walk aspects of the model, |vTy1:n| is just the standard
cusum statistic. The power of our method to detect a change
at τ1 will be governed by the distribution of this projection
applied to the data in the segments immediately before and
after τ1. For a single changepoint where the mean changes by
δ this distribution is a noncentral chi-squared with 1 degree of
freedom and noncentrality parameter δ2(

∑n
i=τ1+1 vi)2. Thus,

part (iii) shows that v is the best linear projection, in terms of
maximizing the non-centrality parameter, over all projections
that are invariant to shifts in the data and that are scaled so that
the null distribution is χ2

1 .
To gain insight into how the auto regressive and random-

walk parts of the model affect the information in the data about
a change we have plotted different projections v for different
model scenarios in the top row of Figure 2. The top-left plot
shows the projections if we have φ = 0 for different ,val-
ues of the random walk variance. The projection, naturally,
places more weight to data near the putative changepoint, and
the weight decays essentially geometrically as we move away
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from the putative changepoint. In the top-right plot we show
the impact of increasing the autocorrelation of the AR(1) pro-
cess, with the absolute value of the weight given to data points
immediately before and after the putative change increasing
with φ.

A key feature of the random walk model is that for any fixed
σ 2

η > 0 the amount of information about a change will be
bounded as we increase the segment lengths either side of the
change. This is shown in the bottom-left plot of Figure 2 where
we show the noncentrality parameter for detecting a change in
the middle of the data as we vary n. For comparison we also
show the non-centrality parameter of a test based on the cusum
statistic (scaled so that it also has a χ2

1 distribution under the
null of no change). We can see that ignoring local fluctuations
in the mean, if they exist and come from a random walk model,
by using the cusum statistic leads to a reduction of power as
segment lengths increase. For comparison in the bottom right
we show an equivalent comparison where we consider an infill
asymptotic regime, so that as n increases we let the random walk
variance decay at a rate proportional to 1/n and we increase the
lag-1 autocorrelation appropriately. In this case using the opti-
mal projection gives a noncentrality parameter that increases
with n, whereas the cusum statistic has power that can be shown
to be bounded as we increase n.

We now turn to the property of our method at detecting mul-
tiple changes. Based on the above discussion, we will consider
in-fill asymptotics as n → ∞.

(C1) Let y1, . . . , yn be generated as a finite sample from a Gaus-
sian process on [0, 1]; that is yi = z(i/n) where, for t ∈
[0, 1] z(t) = μ(t) + ζ(t), μ(t) is a piecewise constant
with m0 changepoints at locations r1, . . . , rm0 , and ζ(t) is a
mean zero Gaussian process. For a given n define the true
changepoint locations as τ 0

i = �nr0
i �. The change in mean

at each changepoint is fixed and non-zero.
(C2) Assume there exists strictly positive constants cη, cν and

cφ , such that we implement DeCAFS with σ 2
η = cη/n and

either (i) φ = 0 and σ 2
ν = cν ; or (ii) φ = exp{−cφ/n} and

σ 2
ν = cν(1 − exp{−2cφ/n}).

(C3) There exists an α such that for any large enough n if
�0

n is the covariance of the noise in the data generating
model (C1), and �

(n)
AR + �

(n)
RW is the covariance assumed

by DeCAFS in (C2) then the largest eigenvalue of (�
(n)
AR +

�
(n)
RW)−1�0

n is less than α.

The two regimes covered by condition C2 are due to the
different limiting behavior of an AR(1) model under in-fill
asymptotics, depending on whether the AR(1) noise is indepen-
dent, case (i), or there is autocorrelation, case (ii). The form of σ 2

ν

in each case ensures that the AR(1) process has fixed marginal
variance, cν , for all values of n.

The key condition here is (C3) which governs how accurate
the model assumed by DeCAFS is to the true data-generating
procedure. Clearly, if the model is correct then (C3) holds with
α = 1. The following proposition gives upper bound on α in the
case where the covariance of the data-generating model is that of
a random walk plus AR(1) process, but with different parameter
values to those assumed by DeCAFS in (C2), for example, due
to misestimation of these parameters.

Proposition 6. Assume the noise process ζ(t) of the data-
generating process (C1) is equal to a random walk plus an AR(1)
process.

(i) If cov(ζ(t), ζ(s)) = c0
η min(t, s) for t �= s and var(ζ(t)) =

c0
ηt + cν , and DeCAFS is implemented as in (C2)(i), then

(C3) holds with α = max{c0
ν/cν , c0

η/cη}.
(ii) If cov(ζ(t), ζ(s)) = c0

η min(t, s) + c0
ν exp{−c0

φ |t − s|} and
DeCAFS is implemented as in (C2)(ii), then for any ε > 0
(C3) holds with

α = max

{
c0
ν

cν

c0
φ

cφ

(1 + ε),
c0
ν

cν

(
1 + cφ

c0
φ

)
(1 + ε),

c0
η

cη

}
.

The following result shows that we can consistently estimate
the number of changepoints and gives a bound on the error
in the estimate of changepoint locations, if we use DeCAFS
under an assumption of a maximum number of changepoints
(the assumption of a maximum number changes is for technical
convenience, though is common in similar results, e.g., Yao
1988).

Theorem 2. Assume data, y1:n, is generated as described in (C1),
and let m̂ and τ̂1:m̂ be the estimated number and location of
the changepoints from DeCAFS implemented with parameters
given by (C2), penalty β = Cα log n for some C > 2, and a
maximum number of changes mmax ≥ m0. Then as n → ∞: if
φ > 0

Pr
(

m̂ = m0, max
i=1,...,m0

∣∣τ̂i − τ 0
i
∣∣ = 0

)
→ 1;

and if φ = 0

Pr
(

m̂ = m0, max
i=1,...,m0

∣∣τ̂i − τ 0
i
∣∣ ≤ (log n)2

)
→ 1.

The most striking part of this result is the very different
behavior between φ = 0 and φ > 0. In the latter case, asymptot-
ically we detect the position of the changepoints without error.
This is because the positive autocorrelation in the noise across
the changepoint helps us detect it. In fact, as n → ∞ the
signal for a change at t comes just from the lag-1 difference,
yt+1 − yt . The variance of (yt+1 − yt) is O(1/n), and its mean
is 0 except at changepoints, where it takes a fixed non-zero
value. A simple rule based on detecting a change at t if and only
if (yt+1 − yt)2 is above some threshold, c1(log n)/n for some
suitably large constant c1, would consistently detect the changes.
For the infill asymptotics, we consider, empirically DeCAFS
converges to such an approach as n → ∞.

The theorem also gives insight into the choice of penalty
β . It is natural to choose this to be the smallest value that
ensures consistency, as larger values will mean loss of power
for detecting changes. Assuming the DeCAFS model is correct
and we have the true hyper parameters this suggests using β =
2 log n, the infimum of the penalties that are valid according to
the theorem. This is the value that we use within our simulation
study—though slightly inflating the penalty may be beneficial
to account for error in the estimated hyper parameters or if we
want to account for substantial model error.
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Figure 3. Four different change scenarios. Top-left, no change present, top-right, change pattern with 19 different changes, bottom-left up changes only, bottom-right,
up-down changes of the same magnitude. In this particular example data were generated from an AR model with φ = 0.7, σν = 2.

6. Simulation Study

6.1. Comparison with Changepoint Methods

We now asses the performance of our algorithm in a simulation
study on four different change scenarios, illustrated in Figure 3.
In all cases we run DeCAFS with β = 2 log n, and estimate the
parameters φ, ση, σν as described in Section 4.

Simulations were performed over a range of evenly spaced
values of φ, ση, σν . There are no current algorithms that directly
model local fluctuations in the mean, so we compare with
two approaches the assume a constant mean between changes:
FPOP (Maidstone et al. 2017) which also assumes IID noise,
and AR1Seg (Chakar et al. 2017) that models the noise as an
AR(1) process. We compare default implementation of each
method, which involves robust estimates of the assumed model
parameters. We also compare an implementation of FPOP with
an inflated penalty (Bardwell et al. 2019) to account for the auto-
correlated noise. To see the impact of possible misestimation of
the model parameters, we also implement DeCAFS and AR1Seg
using the true parameters when this is possible.

We focus on the accuracy of these methods at detecting the
changepoints. We deem a predict change as correct if it is within
±2 observations of a true changepoint. As a measure of accuracy
we use the F1 score, which is defined as the harmonic mean
of the precision (the proportion of detected changes that are
correct) and the recall (the proportion of true changes that are
detected). The F1 score ranges from 0 to 1, where 1 corresponds

to a perfect segmentation. Separate figures for precision and
recall can be found in Section G of the supplementary material.
Results reported are based over 100 replications of each simula-
tion experiment, with each simulated data having n = 5000.

In Figure 4A, we report performances of the various algo-
rithms as we vary φ for fixed values of σν = 2 and ση = 0. In
Figure 4B, we additionally fix φ = 0.85, but we vary the size of
changes. In these cases, there is no random walk component and
the model assumed by AR1Seg is correct.

There are a number of conclusions to draw from these results.
First, we see that the impact of estimating the parameters on
the performance of DeCAFS and AR1Seg is small. Second, we
see that using a method which ignores autocorrelation but just
inflates the penalty for a change does surprisingly well unless
the autocorrelation is large, φ > 0.5, this is inline with results
on the robustness of using a square error cost for detecting
changes in mean (Lavielle and Moulines 2000). For high values
of φ, DeCAFS is the most accurate algorithm. The one exception
are the simulations where there are no changes: the default
penalty choice for AR1Seg is such that it rarely introduces a false
positive.

In Figure 4C, we explore the effect of local fluctuations in the
mean by varying ση. We see a quick drop off in performance
for all methods as ση increases, consistent with the fact that it is
harder to detect abrupt changes when the local fluctuations of
the mean are greater. Across all experiments, DeCAFS was the
most accurate algorithm.
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Figure 4. F1 Scores on the 4 different scenarios. In A a pure AR(1) over a range of values of φ, for fixed values of σν = 2, ση = 0 and a change of magnitude 10. In B a pure
AR(1) process with fixed φ = 0.85 and changes in the signal of various magnitudes. In C the full model with φ = 0.85 for a range of values of ση . The gray line represents
the cross-section between parameters values in A, B, and C. AR1Seg est. and DeCAFS est. refer to the segmentation of the relative algorithms with estimated parameters.
Note, in B the results from DeCAFS and DeCAFS est overlap so only one line is visible. Other algorithms use the true parameter values.

One word of caution when fitting the full DeCAFS model, is
that when ση is large it can be difficult to estimate the parame-
ters, as a model with a very high random walk variance produces
data similar to that of a model with constant mean but high
autocorrelation. Whilst the impact on detecting changes of any
errors when estimating the parameters is small, it can lead
to larger errors in the estimate of the signal, μt : as different
parameter estimates mean that the fluctuations in the data are
viewed as either fluctuations in the noise process or in the signal.
An example of this is shown in Section F of the supplementary
material.

6.2. Robustness to Model Mis-specification

We now investigate the performance of DeCAFS when its model
is incorrect. First we follow Chakar et al. (2017) and simulate
data with a constant mean between changes but with the noise
process being AR(2), i.e. εt = φ1εt−1 + φ2εt−2 + νt . In Figure 5
we report F1 Scores for DeCAFS and AR1Seg as we vary range
φ2. Obviously as |φ2| increases, all algorithms perform worse,
but the segmentations returned from DeCAFS are the more
reliable as we increase the level of model error.

Second, we consider local fluctuations in the mean that are
generated by a sinusoidal process rather than the random walk
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Figure 5. F1 score on different scenarios with AR(2) noise as we vary φ2. Data simulated fixing σν = 2, ση = 0 and φ1 = 0.3 over a change of size 20.

model, see Figure 6B. In Figure 6A, we compare performance
of DeCAFS and AR1Seg as we vary the frequency of the sinu-
soidal process. Again we see that DeCAFS gives more reliable
segmentations in these cases. In the three change scenarios per-
formance decrease as we increase the frequency of the process.
In these cases, it becomes significantly harder to detect any
changepoints, however, DeCAFS still has higher scores than
AR1Seg since it is more robust and returns fewer false positives.

Additional simulation results, showing the robustness of
DeCAFS to the mean fluctuations being from an Ornstein-
Uhlenbeck process or to the noise being AR(1) within a segment
but independent across segments are shown in Sections F and
G in the Supplementary Material.

6.3. Comparison to LAVA

The LAVA method of Chernozhukov, Hansen, and Liao (2017)
can be applied to model a signal as the sum of a piecewise
constant function and a locally fluctuating function: and is thus
a natural alternative to DeCAFS. If we let X denote the n × n
matrix whose ith column has i − 1 zeroes followed by n − i + 1
ones then LAVA can estimate the mean μ1:n as X(f1:n + g1:n)
where the vectors f and g minimize

(y−X(f1:n +g1:n))
T(y−X(f1:n +g1:n))+λ1||f1:n||1 +λ2||g1:n||22,

with ||·||1 and ||·||2 denoting, respectively, the L1 and L2 norms.
The interpretation of this is that (f + g)i is the change in the

mean of the data from time i − 1 to time i. The penalties are
such that f1:n is sparse, and thus is modeling the abrupt changes
in the mean, while g1:n is dense and is accounting for the local
fluctuations. It is possible to show that DeCAFS is equivalent to
LAVA if we have independent noise and replace the L1 norm by
an L0 norm.

We implemented LAVA using the lavash package in R.
This implementation of LAVA is substantially slower than

DeCAFS, and empirically the computational cost appears to
increase with the cube of the number of data points. As a result
we compare DeCAFS with LAVA on simulated data of length
n = 1000 (for which LAVA takes, on average, 132 seconds and
DeCAFS 0.02 seconds per dataset).

LAVA tunes λ1 by cross-validation. We used a plug-in value
for λ2 based on the oracle choice suggested in Chernozhukov,
Hansen, and Liao (2017). This choice depends on the variance
of the local fluctuations, i.e. the variance of the random walk
component in our model, and we implemented LAVA using
both the true variance (denoted LAVA), and using the same esti-
mate of the variance as we use for DeCAFS (denoted LAVA_est).
The plug-in approach seemed to give better results, and was
substantially faster than using cross-validation to tune λ2. It also
makes a comparison with DeCAFS easier, as in situations where
neither method estimates any abrupt changes, the two methods
then give essentially identical estimates of the mean.

Results from analyzing data simulated under a pure random-
walk model (so φ = 0) are shown in Figure 7. While both
methods perform similarly at estimating the underlying mean,
we see that LAVA is less reliable at estimating the changepoint
locations—and often substantially over-estimates the number of
changepoints. As summarized in the introduction, this is not
unexpected as it is common for methods that use �1 penalties
on the size of an abrupt change to overestimate the number of
changes (see, e.g., Fearnhead, Maidstone, and Letchford 2018;
Jewell et al. 2020).

7. Gene Expression in Bacilus subtilis

We now evaluate DeCAFS on estimating the expression of cells
in the bacteria Bacilus subtilis. Specifically, we analyze data from
Nicolas et al. (2009), which is data from tiling arrays with a
resolution of less than 25 base pairs. Each array contains several
hundred thousand probes which are ordered according to their
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Figure 6. In A the F1Score on the 4 scenarios for the Sinusoidal Model for fixed amplitude of 15, changes of size 5 and IID Gaussian noise with a variance of 4, as we vary
the frequency of the sinusoidal process. In B an example of a realization for the updown scenario, vertical segments refer to estimated changepoint locations of DeCAFS
(in light green) and AR1Seg (in blue).

position on the bacterial chromosome. For a probe, labeled t
say, we get an RNA expression measure, Yt . Figure 8 shows
data from 2000 probes. Code and data used in our analyses,
presented below, are available on forgemia : https://forgemia.
inra.fr/guillem.rigaill/decafsrna.

The underlying expression level is believed to undergo two
types of transitions, large changes which Nicolas et al. (2009)
call shifts and small changes which they call drifts. Thus, it
naturally fits our modeling framework of abrupt changes, the
shifts, between which there are local fluctuations caused by the
drifts. To evaluate the performance of DeCAFS at estimating
how the gene expression levels vary across the genome we will
compare to the hmmTiling method of Nicolas et al. (2009).
This method fits a discrete state hidden Markov model to the
data, with the states being the gene expression level, and the
dynamics of the hidden Markov model corresponding to either
drifts or shifts. As a comparison of computational cost of the
two methods, DeCAFS takes about 7 min to analyze data from
one of the strands, each of which contains around 192,000 data
points. Nicolas et al. (2009) reported a runtime of 5 h and 36 min
to analyze both strands.

A comparison of the estimated gene expression level from
DeCAFS and from hmmTiling, for a 2000 base pair region of
the genome, is shown in Figure 8. We see a close agreement in
the estimated level for most of the region, except for a couple
of regions where hmmTiling estimates abrupt changes in gene
expression level that DeCAFS does not.

To evaluate which of DeCAFS and hmmTiling is more accu-
rate, we follow Nicolas et al. (2009) and see how well the esti-
mated gene expression levels align with bioinformatically pre-
dicted promoters and terminators. A promoter roughly corre-
sponds to the start of a gene, and a terminator the end, and
we expect gene expression to increase around a promoter and
decrease around a terminator.

For promoters, consider all probe locations t from the tiling
chip and consider a threshold parameter δ. We can count the
number of probe locations with a predicted difference d̂t =
μ̂t+1 −μ̂t strictly greater than δ. We call this R(δ). Among those
probes, we can count how many have a promoter nearby (within
22 base pairs). We call this M(δ). By symmetry we can define
an equivalent measure for terminators. A method is better than
another if for the same R(δ) it achieves a larger M(δ).

https://forgemia.inra.fr/guillem.rigaill/decafsrna
https://forgemia.inra.fr/guillem.rigaill/decafsrna
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Figure 7. On top: comparison of the F1 Score in A1, Precision in A2 and MSE in A3, for DeCAFS (in green) and LAVA (in red) with oracle initial parameters and the relative
results with estimated initial parameters (in lighter colours), on the updown scenario for a random walk signal over a range of values of ση . On the bottom the first 250
observations of two realizations of the experiment with, in B1, ση equal to 0.5 and in B2 ση equal to 2. Again, the continuous lines over the data points represent the signal
estimates of DeCAFS and LAVA; and the vertical lines below show their estimated changepoint locations.

We used a data-driven approach to choose the penalty, β

for DeCAFS, benefitting from having separate data from the
plus and minus strand of the chromosome. For Figure 9 the
penalty was learned on the minus strand data and tested on
the plus strand data. More specifically we ran DeCAFS on the
minus strand for β = {2 log(n), 2.5 log(n)...30 log(n)}. For each
β we computed M(δ) for a fixed R(δ) = 750 and took the
β maximizing M(δ): 8 log(n) for promoters and 5 log(n) for
terminators.

Figure 9 plots M(δ) against R(δ) for the plus strand as we
vary δ for DeCAFS and two different estimates from hmmTiling.
The first, hmmTiling.ori, are the prediction presented in Nicolas
et al. (2009). The second, hmmtTiling.all, are those obtained
when using all probes rather than only those called transitions
by hmmTiling.

In the case of promoters, the prediction of hmmTiling is
slightly better than DeCAFS for lower thresholds but noticeably
worse for higher thresholds. In the case of terminators, the
prediction of DeCAFS are clearly better than those of hmmTil-
ing. Given that DeCAFS was not developed to analyze such
data we believe that its relatively good performances for pro-
moters and better performances for terminators is a sign of its
versatility.

Unsurprisingly, we get different results and plots if we vary
the value for R(δ) used to select the penalty or if we use the plus
strand as a training dataset and the minus strand as a testing
dataset. However, Figure 16 in Appendix F.5 shows that M(δ) is
robust to these choices and that the range of penalty for which
DeCAFS is close to or better than hmmTiling is quite large,
particularly for terminators.

https://doi.org/10.1080/01621459.2021.1909598
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Figure 8. Data on 2000 bp of the plus-strand of the Bacilus subtilis chromosome. Gray dots show the original data. The plain red line represents the estimated signal of
DeCAFS with a penalty of 10 log(n). The dashed black line represents the estimated signal of hmmTiling.

Figure 9. Benchmark comparisons. The number of promoters (left) and terminators (right) correctly predicted on the plus strand, M(δ) using a 22 bp distance cutoff, as a
function of the number of predicted breakpoints, R(δ). Plain black lines are the results of hmmTiling (as reported in Figure 4 of Nicolas et al. 2009)). Dotted black lines are
the results of hmmTiling when considering all probes rather than only those called transitions. Plain red lines are the results of DeCAFS using β = 8 log(n) for promoters
and 5 log(n) for terminators. These values were learned on the minus strand using a data-driven approach. The thin dark-green leaning line represent y = x.

8. Discussion

There are various ways of developing the DeCAFS algorithm,
that build on other extensions of the functional pruning ver-
sion of optimal partitioning. For example, to make the method
robust to outliers, we can use robust losses, such as the bi-
weight loss, instead of square error loss to measure our fit to
the data (Fearnhead and Rigaill 2019). Alternatively, we can

incorporate additional constraints on the underlying mean such
as monotonicity (Hocking et al. 2020) or that the mean decays
geometrically between changes (Jewell and Witten 2018; Jewell
et al. 2020). Also it can be extended to allow for the noise to
be independent across segments, but AR(1) within a segment.
Finally, the algorithm is inherently sequential and thus should
be straightforward to adapt to an online analysis of a data
stream.
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We do not claim that the method we present in Section 4
for estimating the parameters in our model is best. It is likely
that more efficient or more robust methods are possible, for
example using different robust estimates of the variances of the
k-lag difference data (Rousseeuw and Croux 1993); or using
iterative procedures where we estimate the changepoints, and
then conditional on these changepoints re-estimate the param-
eters. Using better estimates should lead to further improvement
on the statistical performance we observed in Section 6. Our
theoretical results suggest that for estimating changes, mis-
estimation of the parameters, or errors in our model for the
noise or local fluctuations, can be corrected by inflating the
penalty for adding a changepoint. As such, in applications we
would suggest implementing the method for a range of penalty
values, for example using the CROPS algorithm (Haynes, Eck-
ley, and Fearnhead 2017), and then choosing the number of
penalties using criteria that consider how the fit to data improves
as we add more changes (e.g., Arlot et al. 2016; Fryzlewicz 2018a;
Arlot 2019); or use training data to evaluate performance for
different values of β , as we did in Section 7.
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