
SUPPLEMENTARY MATERIAL: Detecting Abrupt Changes in

the Presence of Local Fluctuations and Autocorrelated Noise

A Proof of Proposition 1

The initial condition for Q1(µ) follows immediately from its definition.

Then, for t 2 {2, ..., n}, we need to condition the problem separately on whether or not

we have a changepoint. If we consider no change in the mean of the signal, then we can we

can re-arrange the cost at time t based on the cost at time t� 1 in the following way:

Qt(µ|�t = 0) = min
u

⇢
Qt�1(u) + �(µ� u)2 + �

⇣
(yt � µ)� �(yt�1 � u)

⌘2�
.

Similarly, when we have a change:

Qt(µ|�t 6= 0) = min
u,�

⇢
Qt�1(u) + �(µ� u� �)2 + �

⇣
(yt � µ)� �(yt�1 � u)

⌘2
+ �

�

= min
u

⇢
Qt�1(u) + �

⇣
(yt � µ)� �(yt�1 � u)

⌘2
+ �

�

where the second equality comes from minimising over �.

Lastly, to obtain the whole cost at time t we take the minimum of these two functions:

Qt(µ) = min {Qt(µ|�t = 0), Qt(µ|�t 6= 0)}

= min
u

⇢
Qt�1(u) + min{�(µ� u)2, �}+ �

⇣
(yt � µ)� �(yt�1 � u)

⌘2�
.

⇤
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B Proof of Proposition 2

From the result obtained in Appendix A, simple, albeit tedious, algebraic manipulation

enables us to re-write the recursions for Qt(µ|�t 6= 0) and Qt(µ|�t = 0) in terms of the

infimal convolution operator. Let zt = yt � �yt�1.

For Qt(µ|�t 6= 0), we can rearrange

�

⇣
(yt � µ)� �(yt�1 � u)

⌘2
= �(zt � µ+ �u)2

= �(zt � µ)2 + ��
2
u
2 + 2��uzt � 2��uµ

= �(zt � µ)2 + ��
2
u
2 + 2��uzt + ��(u� µ)2 � ��u

2 � ��µ
2

= ��(u� µ)2 � ��(1� �)

✓
u� zt

1� �

◆2

+ ��
z
2
t

1� �
+ �(zt � µ)2 � ��µ

2

Hence, we have

Qt(µ|�t 6= 0) = min
u2R

"
Qt�1(u)� ��(1� �)

✓
u� zt

1� �

◆2

+ ��(u� µ)2
#

+
�

1� �
(zt � (1� �)µ)2 + �

= INFQt�1,��(µ) +
�

1� �

⇣
zt � (1� �)µ

⌘2
+ � = Q

6=
t (µ),

where

Qt�1(u) = Qt�1(u)� ��(1� �)

✓
u� zt

1� �

◆2

.

Similar, for Qt(µ|�t = 0), we can rearrange

�(µ� u)2 + �

⇣
(yt � µ)� �(yt�1 � u)

⌘2

= (��+ �)(u� µ)2 � ��(1� �)

✓
u� zt

1� �

◆2

+ ��
z
2
t

1� �
+ �(zt � µ)2 � ��µ

2
.
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Hence

Qt(µ|�t = 0) = INFQt�1,��+�(µ) +
�

1� �

⇣
zt � (1� �)µ

⌘2
= Q

=
t (µ),

where Qt�1 is defined above.

⇤
If � < 0 then �� < 0 and the infimal convolution INFQt�1,��(µ) is not defined. In this

case we make a transformation of variable ũ = �u and �̃ = �� so that

�

⇣
(yt � µ)� �(yt�1 � u)

⌘2
= �(zt � µ+ �u)2 = �(zt � µ+ �̃ũ)2

= ��(ũ� µ)2 � ��̃(1� �̃)

✓
ũ� zt

1� �̃

◆2

+ ��̃
z
2
t

1� �̃
+ �(zt � µ)2 � ��̃µ

2
,

by the same manipulation as given at the start of this section.

Thus using that Qt�1(u) = Qt�1(ũ) we obtain

Qt(µ|�t 6= 0) = min
ũ2R

"
Qt�1(�ũ)� ��̃(1� �̃)

✓
ũ� zt

1� �̃

◆2

+ ��̃(ũ� µ)2
#

+
�

1� �̃
(zt � (1� �̃)µ)2 + �

= INFQ̃t�1,��̃
(µ) +

�

1� �̃

⇣
zt � (1� �̃)µ

⌘2
+ � = Q

6=
t (µ),

where

Q̃t�1(u) = Qt�1(�u)� ��̃(1� �̃)

✓
ũ� zt

1� �̃

◆2

.

Similarly, using the same transformation ũ = �u and �̃ = �� we also derive

Qt(µ|�t = 0) = INFQ̃t�1,��̃+�(µ) +
�

1� �̃

⇣
zt � (1� �̃)µ

⌘2
= Q

=
t (µ),

where Q̃t�1 is defined above.
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C Proof of Theorem 1

An important property of the convolution is its stability for quadratics: the infimal trans-

formation of a quadratic is a quadratic. Indeed, one can easily prove that the quadratic

q : µ 7! aµ
2 + bµ+ c with (a, b, c) 2 R+ ⇥ R2 is transformed into

INFq,! : µ 7! a!

a+ !
µ
2 +

b!

a+ !
µ+ c� b

2

4(a+ !)
.

We can also show that q and INFq,! have the same minimum and argminimum. Moreover,

INFq,!  q, resulting in a flattening of the quadratics.

The proof is based on the following lemmas.

Lemma 1 For any lower-bounded function Q : R! R, we define the proxy operator

û! :

8
<

:
R! R
✓ 7! min

n
argmin

u2R

⇣
Q(u) + !(u� ✓)2

⌘o
.

The function û! is non-decreasing on R.

Notice that we use a minimum in the definition of û! only to get a single-valued function

(we could have done another choice). Indeed, taking Q = min(q1, q2) with q1(✓) = (✓ + 1)2

and q2(✓) = (✓ � 1)2, we have û1(0) = argmin
u2R

(Q(u) + u
2) = {�1

2 ,
1
2} and we need to make

a choice (here the smallest value) to get a well-defined function.

Proof: We consider ✓1, ✓2 2 R such that ✓1 < ✓2 and define û1 = û!(✓1), û2 = û!(✓2).

Using the definition of û1 and û2 we can write

Q(û1) + !(û1 � ✓1)
2  Q(û2) + !(û2 � ✓1)

2
,

Q(û2) + !(û2 � ✓2)
2  Q(û1) + !(û1 � ✓2)

2
.
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Summing the two inequalities, the Q terms cancel out and we get

(û2 � û1)(✓2 � ✓1) � 0 ,

which shows that û1  û2 and the result is proven. ⇤
In our stochastic models the function Q is described by a list of functions Q = (q1, ..., qs)

with Q|Di
= qi where Di = [di, di+1[⇢ R is an interval and {Di}i=1,...,s a partition of the

real line. To compute the convolution, we define the functions

qi(u) =

8
<

:
qi(u) , if u 2 Di ,

+1 , if u 62 Di .

The infimal convolution of this kind of functions can be analytically described.

Lemma 2 The infimal convolution of a function q given by

q(u) =

8
<

:
q(u) , if u 2 [m1,m2] ,

+1 , if u 62 [m1,m2] ,

with any function q continuously di↵erentiable (C1) on [m1,m2] is given by

INFq,!(✓) =

8
>>><

>>>:

min
u2[m1,m2]

⇣
q(u) + !(u� ✓)2

⌘
, if ✓ 2 [m⇤

1,m
⇤
2] ,

q(m1) + !(m1 � ✓)2 , if ✓ < m
⇤
1 ,

q(m2) + !(m2 � ✓)2 , if ✓ > m
⇤
2 ,

(9)

with [m⇤
1,m

⇤
2] = [ 1

2!q
0(m1) +m1,

1
2!q

0(m2) +m2].

Proof: Using Lemma 1 we know that the proxy operator û! with Q = q is a non-decreasing

function in ✓. Thus, there exist m⇤
1,m

⇤
2 2 R such that for all ✓ 2 [m⇤

1,m
⇤
2], the argminimum

of q! : u 7! q(u) + !(u � ✓)2 belongs to the interval [m1,m2] and q = q on this interval.

As q is C
1, the stationary points of q! are solutions of the equation 1

2!q
0(u) + u = ✓. At
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point m1 (resp. m2) we have the argminimum m
⇤
1 with m

⇤
1 =

1
2!q

0(m1) +m1 (resp. m
⇤
2 =

1
2!q

0(m2) +m2). If we have ✓ < m
⇤
1, then the argminimum of q! is less than m1 and then

attained at u = m1 (as q(u) = +1 if u < m1) and we get INFq,!(✓) = q(m1) + !(m1� ✓)2.

With the same reasoning in case ✓ > m
⇤
2 the lemma is proven. ⇤

Using these two lemmas, we can prove the following proposition.

Proposition 7 The infimal convolution of the functional cost Q = (q1, ..., qs) is given by

INFQ,! = (INFq1,!, ..., INFqs,!).

Proof: With previously introduced notations we have Q(✓) = min
i=1,...,s

{qi(✓)}. Then

INFQ,!(✓) = min
u2R

✓
min

i=1,...,s
{qi(✓)}+ !(u� ✓)2

◆
= min

u2R

✓
min

i=1,...,s
{qi(✓) + !(u� ✓)2}

◆

= min
i=1,...,s

⇢
min
u2R

�
qi(✓) + !(u� ✓)2

��
,

which gives us INFQ,!(✓) = min
i=1,...,s

{INFqi,!(✓)} for all ✓ 2 R. INFQ,! can be described by

a list (INFq⌫(1),!, INFq⌫(2),!, ..., INFq⌫(r),!) with ⌫(i) 2 {1, ..., s}. The function i 7! ⌫(i) is

increasing due to Lemma 1 (and ⌫(r) = s). ⇤
In order to prove Theorem 1 we only need to show that we can remove the overline sign in

(INFq⌫(1),!, INFq⌫(2),!, ..., INFq⌫(r),!) without consequences. We assume that Q is continuously

di↵erentiable (C1) except at the points di for i = 2, ..., s. The left and right derivatives at

point ✓ are respectively designated by Q
0
�(✓) and Q

0
+(✓). With these assumptions we can

prove the following result.

Lemma 3 If at points ✓ = di we have Q
0
�(di) > Q

0
+(di) then di is never an argminimum

for the convolution.
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Proof: We study the stationary points of Q! : u 7! Q(u) + !(u � ✓)2. The necessary

condition for optimality Q!(u)  Q!(u+ ✏) for all ✏ leads to the inequalities

1

2!
Q

0
�(u) + u  ✓  1

2!
Q

0
+(u) + u .

In case Q0
�(u) > Q

0
+(u) there exists no such ✓ satisfying the two inequalities so that this u

can not be used in any minimization of Q! and û! never takes this value. ⇤
With this result the di never appear as an argminimum for the convolution and using

Lemma 2, we get (INFq⌫(1),!, INFq⌫(2),!, ..., INFq⌫(r),!) = (INFq⌫(1),!, INFq⌫(2),!, ..., INFq⌫(r),!) in

Proposition 7.

By looking at updates in Propositions 1 and 2, it remains to prove that at any time step,

no slope discontinuity at ✓ = d in Qt = Q satisfies the inequality Q
0
�(d) < Q

0
+(d). We prove

this result by recursion: at the initialisation step, there is no such breakpoint in the cost

function and all the min operators involved can not produce them. We eventually have to

prove that the infimal transformation in Lemma 2 can not introduce these discontinuities.

Around m
⇤
1 in (9) we have:

d

d✓
INFQ,!(✓) =

8
<

:

dû!(✓)
d✓ q

0(û!(✓)) + 2!(dû!(✓)
d✓ � 1)(û!(✓)� ✓) , if ✓ � m

⇤
1 ,

�2!(m1 � ✓) , if ✓ < m
⇤
1 ,

with the function ✓ 7! û!(✓) being the argminimum of the infimal convolution (see Lemma

1). By direct computation with û!(m⇤
1) = m1 andm

⇤
1 =

1
2!q

0(m1)+m1 we get INF
0

Q,!�(m
⇤
1) =

q
0(m1) = INF

0

Q,!+(m
⇤
1). This result achieves the proof of Theorem 1.
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D Algorithm for INFQt,!

Algorithm 2 shows how we can now calculate INFQt,! in a linear-in-piece O(s) time complex-

ity. In this algorithm we have input qi⇤ = INFqit, where q
i
t is the i

th piece-wise quadratic from

Qt with i 2 {1, ..., s}. Algorithm 2 computes the intervals, domi
⇤ such that {domui

⇤ , i =

1, ..., s⇤} is the partition of the real line for INFQt,!, with Q⇤ storing the associated quadrat-

ics for each interval in this partition. In Algorithm 2 we use the list-operator Last(l) to

designate the last element of the list l; indexLast(l), delete Last(l) to get the associated

index of the last element or to delete this element.
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Algorithm 2: INFQt,! pruning

Input: List of ordered quadratics (q1⇤, q
2
⇤, . . . , q

s�1
⇤ , q

s
⇤)

1 begin Initialization: Q⇤ means ”Remaining quadratics” and LB ”Left Bound”

2 Q⇤  � (q1⇤); LB  � (�1)

3 end

4 for i = 2 to s do

5 j  � indexLast(Q⇤)

6 µi : qi⇤(µi)� q
j
⇤(µi) = 0 with q

i
⇤(µ) < q

j
⇤(µ) for µ > µi close to µi

7 while µi < Last(LB) do

8 delete Last(Q⇤); delete Last(LB)

9 j  � indexLast(Q⇤)

10 µi : qi⇤(µi)� q
j
⇤(µi) = 0 with q

i
⇤(µ) < q

j
⇤(µ) for µ > µi close to µi

11 end

12 Q⇤  � (Q⇤, q
i
⇤); LB  � (LB, µi)

13 end

14 s
⇤ = #LB (the number of element in LB)

15 for i = 1 to s
⇤ � 1 do

16 domi
⇤ =]LB(i), LB(i+ 1)]

17 end

18 doms⇤
⇤ =]LB(s⇤),+1[

19 Return Q⇤ and (dom1
⇤, ...,dom

s⇤
⇤ )
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E Proofs for Section 5

By definition of the random-walk model for ⌘̃1:n in Equation (2) and the auto-regressive

model for ✏1:n in Equation (3) we have that the covariance matrices have entries

[⌃AR]ij =
�
2
⌫

1� �2
�
|i�j|

, [⌃RW]ij = �
2
⌘ min{i, j}.

It is straightforward to find that their inverses have entries

[⌃�1
AR]ij =

8
>>>>><

>>>>>:

1/�2
⌫ if i = j = 1 or n,

(1 + �
2)/�2

⌫ if i = j 6= 1 or n,

��/�2
⌫ if |i� j| = 1,

0 otherwise,

and

[⌃�1
RW]ij =

8
>>>>><

>>>>>:

1/�2
⌘ if i = j = n,

2/�2
⌘ if i = j 6= n,

�1/�2
⌘ if |i� j| = 1,

0 otherwise,

The unpenalised cost conditional on the set of changepoints is

C(⌧1:m) = min

(
(1� �

2)�(y1 � µ1)
2 +

nX

t=2


�(µt � µt�1 � �t)

2 + �

⇣
(yt � µt)� �(yt�1 � µt�1)

⌘2�
)

= min

(
(1� �

2)�(y1 � µ1)
2 +

nX

t=2


�(⌘̃t � ⌘̃t�1)

2 + �

⇣
(yt � µt)� �(yt�1 � µt�1)

⌘2�
)

where the minimisation is over µ1:n, and �2:n consistent with the set of changepoints; and

we have made a change of variables such that ⌘̃i � ⌘̃i�1 = µi � µi�1 � �i for i = 2, . . . , n in

the second equality.
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This change of variables is not unique, and we get the same value for any choice of ⌘̃1.

Thus we trivially have that

C(⌧1:m)

= min

(
(1� �

2)�(y1 � µ1)
2 +

nX

t=2


�(⌘̃t � ⌘̃t�1)

2 + �

⇣
(yt � µt)� �(yt�1 � µt�1)

⌘2�
+ �⌘̃

2
1

)
,

where the minimisation is now also over ⌘̃1, and the minimum is attained with ⌘̃1 = 0.

By our definition of the matrix X⌧1:m we have that if � = (µ1 � ⌘̃1, �⌧1:m) we can write

µ1:n = X⌧0:m�+ ⌘̃1:n. Thus by re-writing the sums, e.g.

nX

t=2

�{⌘̃t � ⌘̃t�1}2 + �⌘̃1
2 = ⌘̃

T
1:n⌃

�1
RW⌘̃1:n,

as � = 1/�2
⌘, gives that

C(⌧1:m) = min
�,⌘̃1:n

⇥
(y1:n �X⌧0:m�� ⌘̃1:n)

T⌃�1
AR(y1:n �X⌧0:m�� ⌘̃1:n) + ⌘̃

T
1:n⌃

�1
RW⌘̃1:n

⇤
. (10)

Proof of Proposition 4. To simplify notation we will write ⌘̃ for ⌘̃1:n, y for y1:n and X

for X⌧0:m . Re-writing right-hand side of (10) gives

min
�,⌘̃

⇥
(y �X�� ⌘̃)T⌃�1

AR(y �X�� ⌘̃) + ⌘̃
T⌃�1

RW⌘̃
⇤

= min
�,⌘̃

⇥
{⌘̃ � (⌃�1

AR + ⌃�1
RW)�1⌃�1

AR(y �X�)}T (⌃�1
AR + ⌃�1

RW){⌘̃ � (⌃�1
AR + ⌃�1

RW)�1⌃�1
AR(y �X�)}

+(y �X�)T
�
⌃�1

AR � ⌃
�1
AR(⌃

�1
AR + ⌃�1

RW)�1⌃�1
AR

 
(y �X�)

⇤

= min
�

⇥
(y �X�)T

�
⌃�1

AR � ⌃
�1
AR(⌃

�1
AR + ⌃�1

RW)�1⌃�1
AR

 
(y �X�)

⇤
.

Finally using the Woodbury matrix identity, for symmetric invertible matrices A and

B, (A+B)�1 = A
�1 � A

�1(A�1 +B
�1)�1

A
�1. Thus we have

�
⌃�1

AR � ⌃AR(⌃
�1
AR + ⌃�1

RW)�1⌃�1
AR

 
= (⌃AR + ⌃RW)�1

.
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The result follows immediately. ⇤
Proof of Corollary 1.

As before write y for y1:n and X for X⌧0:d ; further let X0 = X⌧0 . The value of � that

minimises the right-hand side of (8) is

�̂ = {XT (⌃AR + ⌃RW)�1
X}�1

X
T (⌃AR + ⌃RW)�1

y.

To further simplify notation let A = (⌃AR + ⌃RW)�1 and let � be such that A = ��T

with � invertible; and let  be a matrix such that ⌃ =   T . Then the reduction in cost

over fitting no change is

C0 � C(⌧0:d) = y
T
⇣
AX(XT

AX)�1
X

T
A� AX0(X

T
0 AX0)

�1
X

T
0 A

⌘
y

= y
T�T��T

⇣
AX(XT

AX)�1
X

T
A� AX0(X

T
0 AX0)

�1
X

T
0 A

⌘
��1�y = y

T�T
B�y,

for the matrix B = ��T
⇣
AX(XT

AX)�1
X

T
A � AX0(XT

0 AX0A)�1
X

T
0

⌘
��1. By standard

properties of linear models, as our model includes an intercept term this quadratic form is

invariant to adding a constant to all entries of y. Thus as our model assumes no change

we can, without loss of generality assume the mean of y is the zero vector.

Now it is straightforward to show that B
2 = B and that B has rank d. Furthermore

as under our assumptions y is Gaussian with variance ⌃, �y has variance �⌃�T . From

standard results for quadratic forms of Gaussian random variables, see for example Theorem

9.5 of Muller & Stewart (2006), the distribution of our quadratic form, yT�T
B�y is

dX

i=1

↵iZ
2
i ,

where ↵i are the non-zero eigenvalues of �T T
B �, and each Z

2
i are independent �

2
1

distributed random variables.
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The result follows by first noting that as B is a projection its eigenvalues are 1 or 0.

Thus ↵i  ↵
+, where ↵

+ is the largest eigenvalue of �T T �, which by standard results

is also the largest eigenvalue of ��T  T = (⌃AR + ⌃RW)�1⌃. Thus

dX

i=1

↵iZ
2
i 

dX

i=1

↵
+
Z

2
i = ↵

+
dX

i=1

Z
2
i ,

and the right-hand side has the same distribution as ↵
+ times a �

2
d random variable. If

⌃ = ⌃AR + ⌃RW then we further have that ↵i = 1 and hence the distribution is �2
d.

To prove the consistency of m̂ we need to show that the probability of

C0 � C(⌧1:d) < d�

jointly for all d and ⌧1:d tends to 1. A standard argument (see the proof of Proposition 3.1

in Zheng et al. 2019), is to use a union bound:

Pr(m̂ = 0) � 1�
nX

d=1

n!

d!(n� d)!
Pr

✓
�
2
d >

d�

↵+

◆

� 1�
nX

d=1

n!

d!(n� d)!
Pr
�
�
2
d > dC log(n)

�

� 1�
nX

d=1

n
d exp

(
�d
 
C log(n)�

p
2C log(n)� 1

2

!)

� 1�
nX

d=1

exp

(
�d
 
(C � 2) log(n)�

p
2C log(n)� 1

2

!)

with the second inequality using a tail bound for a �2
d random variable (Lemma 1 in Laurent

& Massart 2000). The final expression will tend to 1 as n!1 as C > 2. ⇤
Proof of Proposition 5.

We use the notations A = (⌃AR+⌃RW)�1, u1 = u⌧1 , and write c0 = u
T
0Au0, c0,1 = u

T
0Au1

and c1 = u
T
1Au1.
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The optimal cost is equal to yTAy�(XT
Ay)T (XT

AX)�1
X

T
Ay. IfX is simply a column

of ones, X = u0 then (XT
AX)�1 = 1

c0
, and X

T
Ay = u

T
0Ay.

If X is the concatenation of u0 and u1, X = (u0 u1) we can compute

X
T
AX =

2

4 c0 c0,1

c0,1 c1

3

5 and (XT
AX)�1 =

1

c0c1 � c20,1

2

4 c1 �c0,1
�c0,1 c0

3

5 .

We also have 2

4 U0

U1

3

5 =

2

4 u
T
0Ay

u
T
1Ay

3

5 = X
T
Ay .

Finally

C(⌧1) = y
T
Ay � 1

c0c1 � c20,1

⇣
U0c1U0 � 2U0c0,1U1 + U1c0U1

⌘
.

Hence we can write the reduction in cost for fitting a change as

C0 � C(⌧1) =
1

c0c1 � c20,1

⇣
c1U

2
0 � 2c0,1U0U1 + c0U

2
1

⌘
� 1

c0
U

2
0

=
1

c20c1 � c0c
2
0,1

⇣
c
2
0,1U

2
0 � 2c0,1c0U0U1 + c

2
0U

2
1

⌘
.

Simple algebraic rearrangement gives the result in (i).

For part (ii) note that
Pn

i=1 vi = u
T
0 v, using the definition of v gives

u
T
0 v =

1q
c1 � c20,1/c0

⇢
c0,1 �

c0,1

c0
c0

�
= 0.

Similarly

v
T (⌃AR + ⌃RW)v =

1

c1 � c20,1/c0

(
c1 � 2

c0,1

c0
c0,1 +

✓
c0,1

c0

◆2

c0

)
= 1.

Part (iii) is a standard result on the optimality of the weighted least squares estimator.

To show it we can directly solve the constrained optimisation problem of maximising (uT
1w)

2

14



subject to u
T
0w = 0 and w

T (⌃AR + ⌃RW)w = 1. Using Lagrange multipliers we have that

for constants ↵ and �

2(uT
1w)u1 = ↵u0 + 2�(⌃AR + ⌃RW)w.

Defining �
0 = (uT

1w)/�, and ↵
0 = �↵/(2�), we get

w = �
0(⌃AR + ⌃RW)�1

u1 + ↵
0(⌃AR + ⌃RW)�1

u0.

This means that w is a linear combination of the vectors (⌃AR + ⌃RW)�1
u1 and (⌃AR +

⌃RW)�1
u0, with the constants uniquely defined by the constraints. However this is the form

that v as defined in part (i) takes, hence part (iii) of the proposition holds. ⇤
Proof of Theorem 2

We will first consider the case where � = 0. For each n introduce the following sets of

segmentations of the data:

An
i,m =

⇢
⌧1:m : min

j=1,...,m
|⌧j � ⌧

0
i | > (log n)2

�
; i = 1, . . . ,m0

, m = 1, . . . ,mmax;

Bn
m =

⇢
⌧1:m : max

i=1,...,m0

✓
min

j=1,...,m
|⌧j � ⌧

0
i |
◆
 (log n)2

�
; m = m

0 + 1, . . . ,mmax.

Thus An
i,m is the set of segmentations with m changepoints which do not contain a change

within a distance (log n)2 of the ith actual changepoint; and Bn
m is the set of segmentations

with m > m
0 changepoints and that have one changepoint within a distance of (log n)2 of

each true changepoint. If a segmentation is in none of these sets then it must have the

correct number of chanepoints, and one changepoint within a distance (log n)2 of each true

change. As there are fixed number of these sets, to prove our result we need to show that

Pr(⌧̂1:m̂ 2 An
i,m)! 0 for each i and m; and Pr(⌧̂1:m̂ 2 Bn

m)! 0 for each m.

Let C(⌧1:m) denote the unpenalised cost for the segmentation ⌧1:m, with, for example,

C(⌧1:m, ⌧ 01:m0) the unpenalised cost from the segmentation that has the changepoints in the

15



union of ⌧1:m and ⌧
0
1:m0 . We first show that for any m = m

0+1, . . . ,mmax, Pr(⌧̂1:m̂ 2 Bn
m)!

0. To do this consider a ⌧1:m 2 Bn
m, we will compare the cost of this segmentation with that

of the true segmentation. As adding changepoints can only reduce the unpenalised cost we

have the di↵erence in penalised costs is

C(⌧1:m) +m� � C(⌧ 01:m0)�m
0
� � (m�m

0)� �
�
C(⌧ 01:m0)� C(⌧1:m, ⌧ 01:m0)

�
.

Furthermore, by the same argument used in Corollary 1, (C(⌧ 01:m0) � C(⌧1:m, ⌧ 01:m0))/↵ is

stochastically bounded by a �
2
m distribution.

As there are fewer than (2(log n)2)m
0
n
m�m0

segmentations in Bn
m we have

Pr

✓
min

⌧1:m2Bn
m

C(⌧1:m) +m� < C(⌧ 01:m0) +m
0
�)

◆

 (2(log n)2)m
0
n
m�m0

Pr(�2
m > (m�m

0)�/↵)

= (2(log n)2)m
0
n
m�m0

Pr(�2
m > (m�m

0)C log n).

By a similar argument to that used in the proof of Corollary 1, this probability tends to 0

as required.

Now we consider ⌧1:m 2 An
i,m. Again we will compare the cost of such a segmentation

with that of the true segmentation. Let ⌧ 0�i denote the set of true changepoints excluding

⌧
0
i .

C(⌧1:m) +m� � C(⌧ 01:m0)�m
0
� � C(⌧1:m, ⌧ 0�i)� C(⌧ 01:m0) + (m�m

0)�

= {C(⌧1:m, ⌧ 0�i)� C(⌧1:m, ⌧ 01:m0)�m
0
�}+ {C(⌧1:m, ⌧ 01:m0)� C(⌧ 01:m0) +m�}

There are fewer than n
m segmentations in An

i,m, and (C(⌧1:m, ⌧ 01:m0) � C(⌧ 01:m0))/↵ is

stochastically bounded by a �
2
m random variable. Thus by the same argument as above we

have that

Pr

✓
min

⌧1:m2An
i,m

C(⌧1:m, ⌧ 01:m0)� C(⌧ 01:m0) +m� < 0

◆
! 0.
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To show Pr(⌧̂1:m 2 An
i,m)! 0 we only need to show

Pr

✓
min

⌧1:m2An
i,m

C(⌧1:m, ⌧ 0�i)� C(⌧1:m, ⌧ 01:m0)�m
0
� < 0

◆
! 0.

By the same argument as used in Proposition 5(i), C(⌧1:m, ⌧ 0�i) � C(⌧1:m, ⌧ 01:m0) = (vTy1:n)

for some vector v = v1:n. By standard properties of linear models, it is straightforward to

show that v has the following properties: (i) v
T⌃⇤

nv = 1, where ⌃⇤
n = ⌃RW + ⌃AR is the

variance of the noise in the fitted model; (ii) v is orthogonal to the column-space of the X

matrix for the linear model (7) corresponding to the changepoints ⌧1:m, ⌧ 01:m0 ; (iii) among

vectors v that satisfy (i) and (ii) it is the one that maximises the signal for a change at ⌧i,

i.e. that maximises (
P⌧i

t=1 vi)
2.

If we define ⌫ = (
P⌧i

t=1 vi)
2, we can bound ⌫ by choosing any vector w = w1:n that satis-

fies (ii) and then, after normalising using (i), property (iii) gives ⌫ � (
P⌧i

t=1 wi)2/(wT⌃⇤
nw).

Let h = b(log n)2c. We choose such a w defined as wj = 1 for j = ⌧i � h + 1, . . . , ⌧i,

wj = �1 for ⌧i +1, . . . , ⌧i +h, and wj = 0 otherwise. The column space of the X matrix in

property (ii) contains vectors whose jth entries are either identically 0 or identically 1 for

for j = ⌧i � h+ 1, . . . , ⌧i + h, and hence this vector satisfies property (ii).

Now using the fact that we run DeCAFS with � = 0 and so ⌃AR is the identity:

w
T⌃⇤

nw = w
T⌃ARw + w

T⌃RWw  2hc⌫ + h
3
c⌘/n, and ⌫ � h

2
/(2hc⌫ + h

3
c⌘/n). Thus

there exists c1 > 0 such that for large enough n, v
T
y1:n is normally distributed with

|E(vTy1:n)| � c1 log n and Var(vTy1:n)  ↵. So, for large enough n,

Pr

✓
min

⌧1:m2An
i,m

C(⌧1:m, ⌧ 0i )� C(⌧1:m, ⌧ 01:m0)�m
0
� < 0

◆

 n
m Pr

✓
Z <

1p
↵
{
p
C↵ log nm0 � c1 log n}

◆
,

where Z is a standard normal random variable. Using standard tail bounds we get that

this probability tends to 0 as n!1 as required.

17



The argument for the case where � > 0 is similar. The di↵erences are just in the

definition of the sets An
i,m and Bn

m which are now

An
i,m =

⇢
⌧1:m : min

j=1,...,m
|⌧j � ⌧

0
i | > 0

�
; Bn

m =

⇢
⌧1:m : max

i=1,...,m0

✓
min

j=1,...,m
|⌧j � ⌧

0
i |
◆

= 0

�
;

and the final part of the argument that shows

Pr

✓
min

⌧1:m2An
i,m

C(⌧1:m, ⌧ 0i )� C(⌧1:m, ⌧ 01:m0)�m
0
� < 0

◆
! 0. (11)

For this last part we use a di↵erent vector w to bound the distribution of C(⌧1:m, ⌧ 0i ) �

C(⌧1:m, ⌧ 01:m0) = (vTy)2. Our choice of w has w⌧i = 1, w⌧i+1 = �1 and wj = 0 otherwise.

We then have w
T⌃⇤

nw = w
T⌃ARw + w

T⌃RWw = 2(1 � �)c⌫(1 � �
2) + c⌘/n. Now as

� = exp{�c�/n} � 1� c�/n we have wT⌃⇤
nw  c1/n for some constant c1. Thus ⌫ � n/c1.

As this is O(n) it is straightforward to use the same tail bounds of a normal random variable

to show (11)

Proof of Proposition 6

If we fix n, and let ⌃0 be the covariance matrix of the generated data then in case (i),

[⌃0]ij = Cov(⇣(i/n), ⇣(j, n)) = c
0
⌘ min i, j/n if i 6= j and [⌃0]ii = Var(⇣(i/n)) = c

0
⌘i + c

0
⌫ .

Whilst in case (ii),

[⌃0]ij = Cov(⇣(i/n), ⇣(j, n)) = c
0
⌘ min i, j/n+ c

0
⌫(exp{�c0�/n})|i�j|

.

In both cases we can write ⌃0 = ⌃0
AR + ⌃0

RW where ⌃0
AR is the covariance matrix of an

AR(1) process with auto-correlation parameter, �0 = exp{�c0�/n}, and marginal variance

c
0
⌫ and ⌃0

RW is the covariance matrix of a random walk process with variance parameter

c
0
⌘/n.

We proceed by calculating a bound for the maximum eigenvalue of ⌃�1⌃0, where ⌃ =

⌃AR +⌃RW and ⌃0 = ⌃0
AR +⌃

0
RW are respectively the covariance assumed by DeCAFS and
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the covariance of the data. We then further bound this as we vary n for the given parameter

regimes for the two covariance matrices. We do this first for case (i) where � = �
0 = 0,

then for the case where both autocorrelation parameters are non-zero.

Standard manipulations give that the maximum eigenvalues of ⌃�1⌃0 is also the max-

imum eigenvalue of ⌃�1/2⌃0⌃�1/2, where ⌃�1/2 is a symmetric square root of ⌃�1. If v is

an eigenvector of ⌃�1/2⌃0⌃�1/2 with eigenvalue ⇢, then

v
T⌃�1/2⌃0⌃�1/2

v = ⇢v
T
v.

Writing w = ⌃�1/2
v, we have

w
T⌃0

w

wT⌃w
= ⇢,

from which we have that we can bound the maximum eigenvalue by

max
w:|w|=1

w
T⌃0

w

wT⌃w
= max

w:|w|=1

w
T⌃0

ARw + w
T⌃0

RWw

wT⌃ARw + wT⌃RWw

 max

⇢
max

w:|w|=1

w
T⌃0

ARw

wT⌃ARw
, max
w:|w|=1

w
T⌃0

RWw

wT⌃RWw

�
. (12)

The first part of the Proposition follows by noting that ⌃0
RW = (c0⌘/c⌘)⌃RW, and, if � =

�
0 = 0, ⌃0

AR = (c0⌫/c⌫)⌃AR. Hence,

max
w:|w|=1

w
T⌃0

ARw

wT⌃ARw
=

c
0
⌫

c⌫
, max

w:|w|=1

w
T⌃0

RWw

wT⌃RWw
=

c
0
⌘

c⌘
.

For the case where �
0 6= 0 and � 6= 0 we use a similar argument but, in addition, need

to bound maxw:|w|=1 w
T⌃0

ARw/w
T⌃ARw. Now by similar arguments to above, we have that

this is just the largest eigenvalue of ⌃�1/2
AR ⌃0

AR⌃
�1/2
AR , which in turn is

max
w:|w|=1

w
T⌃�1

ARw

wT (⌃0
AR)

�1w
.

To simplify notation and exposition, fix n and let r = �
0. Then

⌃�1
AR =

1

c⌫(1� exp{�2c�/n})
K�, and(⌃0

AR)
�1 =

1

c0⌫(1� exp{�2c0�/n})
Kr,
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where K� is an n⇥ n matrix with entries

[K�]ij =

8
>>>>><

>>>>>:

1 if i = j = 1 or n,

1 + �
2 if i = j 6= 1 or n,

�� if |i� j| = 1,

0 otherwise,

and similarly for Kr. Clearly we have

max
w:|w|=1

w
T⌃�1

ARw

wT (⌃0
AR)

�1w
=

c
0
⌫(1� exp{�c0�/n})
c⌫(1� exp{�c�/n})

max
w:|w|=1

w
T
K�w

wTKrw
. (13)

Let v(i), for i = 1, . . . , n be the eigenvectors of Kr. Standard results, (see, e.g., ”Spectral

decomposition of Kac-Murdock-Szego Matrices”, a technical report by William F Trench

available at https://works.bepress.com/william_trench/133/), are that the eigenval-

ues are of the form 1� 2r cos ✓i + r
2, for some angles ✓1, . . . , ✓n. Furthermore the entries of

v
(i) satisfy

v
(i)
j�1 � 2 cos ✓iv

(i)
j + v

(i)
j+1 = 0, for j = 2, . . . , n,

with (2 cos ✓i � r)v(i)1 = v
(i)
2 and (2 cos ✓i � r)v(i)n = v

(i)
n�1.

Straightforward calculations then give

K�v
(i) = (1� 2� cos ✓i + �

2)v(i) + �(r � �)(v(i)1 e1 + v
(i)
n en),

where e1 and en are the n-vectors of 0s with a 1 in, respectively, the first and nth entries.

Now writing w =
Pn

i=1 div
(i), we have

w
T
K�w

wTKrw
=

Pn
i=1 d

2
i (1� 2� cos ✓i + �

2) + �(r � �)(w2
1 + w

2
n)Pn

i=1 d
2
i (1� 2r cos ✓i + r2)

.

For any w with |w| = 1 we trivially have that
Pn

i=1 d
2
i (1� 2� cos ✓i + �

2)Pn
i=1 d

2
i (1� 2r cos ✓i + r2)

 max
✓

(1� 2� cos ✓ + �
2)

(1� 2r cos ✓ + r2)
= max

⇢
(1� �)2

(1� r)2
,
(1 + �)2

(1 + r)2

�
.
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Now if we write ⇢i = (1� 2r cos ✓i + r
2) for the ith eigenvalue of Kr, then

max
w:|w|=1

w
2
1Pn

i=1 d
2
i ⇢i

= max
d:|d|=1

⇣Pn
i=1 div

(i)
1

⌘2

Pn
i=1 d

2
i ⇢i

=

 
nX

i=1

(v(i)1 )2/⇢i

!
,

where we have first rewritten w and w1 in terms of its expansion in the basis of the

eigenvectors of Kr, and then used the fact that the maximum is achieved with di / v
(i)
1 /⇢i.

Using the fact that each v
(i) is an eigenvector of K�1

r with eigenvalue 1/⇢i,
 

nX

i=1

(v(i)1 )2/⇢i

!
= [K�1

r ]11 =
1

1� r2
.

By a similar argument for the term involving w
2
n we have

max
w:|w|=1

w
T
K�w

wTKrw
 max

⇢
(1� �)2

(1� r)2
,
(1 + �)2

(1 + r)2

�
+ 2max

⇢
�
(r � �)

1� r2
, 0

�
.

Now using � = exp{�c�/n} and r = exp{�c0�/n} we have this bound is (c�/c0�)
2 + (c� �

c
0
�)/c

0
� + O(1/n) if c� > c

0
� and 1 + O(1/n) if c�  c

0
�. The result follows trivially by

combining this with (12) and (13).

F Additional Empirical Results

F.1 Parameter Estimation

We provide a simulation study to highlight the behavior of our estimators described in

Section 4 for parameters �⌘, �⌫ and �. We simulate 2000 time-series of length 5000 for

each couple (�,!2) on a grid for � 2 {0, 0.05, 0.1, . . . , 0.8, 0.85} and !
2 = �

2
⌘/�

2
⌫ 2 [0, 2]

with a log scale of 40 elements. We consider the rand1 scenario with 1, 20 and 40 segments

and use K = 10 for our estimation. In Figure 10 we used the same color scale bounds

to highlight changes with di↵erent segment structures. The sign of the bias for �⌘ and
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�⌫ tend to depend on the number of changes and an underestimation of one variance is

correlated to an overestimation of the other one. The standard deviation of the random

walk variance increased with the � parameter due to the unidentificability of case � = 1.

The number of changes seems to have less impact on the estimation of the variance of the

AR(1) when compared to the variance of the random walk. Notice also that the observed

standard deviation for � is often greater than 0.1 and an important deviation to the true

parameter of order 0.1� 0.2 is not uncommon.

In order to improve our parameter estimation, we tested a two-stage estimator by first

using our estimator, second running DeCAFS, and then using again our estimator on each

obtained segment of length greater than 50. The weighted mean (by segment length) of

the three parameters is presented in Figure 11 in a scenario with 40 segments. With this

approach, we slightly reduced all the standard deviations in particular for the random walk

variance with � close to 1.

To see what might happen in case of a distorted parameter estimation, as mentioned

in the simulation study of Section 6, please refer to Figure 12. We can see there, how even

when misspecifying the model, in this case via fitting a pure AR(1) when there was some

drift in the signal, we find a distorted signal µ estimation, however we are still able to

reconstruct the changepoint locations relatively well.

F.2 Additional well-log data segmentation

In Figure 13 we report some additional segmentations of the log-well data described in

Section 1.
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F.3 Comparison of DeCAFS with Trend Filtering

We now compare DeCAFS with Trend Filtering (Kim et al. 2009). Our comparison is for

the sinusoidal mean model from Figure 6, though to make it easier to see the di↵erences

in fit we consider just the first n = 1000 data points. Furthermore we compare the model

with and without changepoints.

Figure 14 shows a comparison of the fit for a single data set for Trend Filtering with

di↵erent degrees of smoothness to DeCAFS. The left-hand column shows the case where

there are no abrupt changes in the mean, in this case Trend Filtering, particular of order

1 or 2 (fitting piecewise linear and piecewise quadratic functions respectively) can be seen

to much better estimate the smooth mean than DeCAFS.

However, when we introduce abrupt changes, Trend Filtering of order 1 and 2 smooths

over the abrupt change. This results in a poor estimate of the mean at time points close

to the change. By comparison DeCAFS is able to detect these changes (in this example

it fits the first two changes as abrupt changes, though does miss the final change and fits

this with the random walk component of model for the mean). Trend Filtering of order 0,

which fits a piecewise constant model, is better able to fit to the abrupt change, though has

to also fit the smoothly varying component of the mean through smaller abrupt changes.

In terms of ability to estimate the underlying mean function, the qualitative picture we

get from Figure 14 is borne out by a comparison of the mean square error of the fits over

100 replication, see Table 1. The smoother versions of Trend filtering perform best, by an

order of magnitude when there are no changes, but are less accurate when we introduce

the abrupt changes.

However, perhaps the starkest di↵erence between Trend Filtering and DeCAFS comes

if we wish to detect the abrupt changes. Whilst such changes can be detected by DeCAFS,

this is not possible with the Trend Filtering. If the order of Trend Filtering is 1 or greater
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Trend Filter Trend Filter Trend Filter DeCAFS

order 0 order 1 order 2

No Changepoints 0.16 0.04 0.03 0.28

Changepoints 0.20 0.25 0.28 0.19

Table 1: Mean Square Error for estimating the mean for the sinusoidal example with or

without changepoins.

it never fits an abrupt change; whereas if the order is 0 it overfits the number of changes

as they are used for both the abrupt changes and to fit the smoothly varying mean.

F.4 Comparison of DeCAFS and AR1Seg on a Ornstein-Uhlenbeck

process

We compare performances of both DeCAFS and AR1Seg from Chakar et al. (2017) on a

discrete Ornstein-Uhlenbeck process with abrupt changes. Let y1:n = (y1, . . . , yn) 2 Rn a

sequence of n realizations of the process:

yt = µt + ✏t t = 1, . . . , n

where for t = 2, . . . , n

µt = ft + ⌫t

and ✏t ⇠
iid

N (0, �2), ft is a piecewise constant signal we wish to infer the changes of

whether ft 6= ft�1, and finally ⌫t is a discrete Ornstein–Uhlenbeck process defined by:

⌫t = ⌫t�1 � ✓⌫t�1 + �⌫⌘t; with ⌘t ⇠
iid

N (0, �2
⌘).
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Di↵erently from the RW process introduced in the main model in Equation 1 the OU

process is a mean reverting process, which rather then diverging as a pure Random Process

would do, it reverts to its original initial value. This is regulated by the parameter ✓, where

it can be seen that for ✓ = 0 we observe a pure Random Walk process.

We performed a small simulation study comparable to the previous ones, which is

summarised in Figure 15, where we report the average F1 scores of DeCAFS and AR1Seg

over 100 replicates of each experiment. Separate figures for precision and recall can be

found in Appendix G, Figure 22.

We denote how DeCAFS is relatively robust to this kind of model misspecification,

producing good changepoints estimates overall, especially for larger values of ✓. As a

matter of fact, for ✓ ⇡ 1 we have in fact a simple AR(1) noise with changes: in this

scenario AR1Seg matches DeCAFS performances.

F.5 DeCAFS penalty for the gene expression data.

F.5.1 Robustness to R(�)

For the analysis of the Gene Expression data in Bacilus subtilis as described in section 7

we learned the optimal penalty (maximising M(�) for a fixed R(�)) on the minus strand

and show the results on the plus strand in Figure 9.

In Figure 16 we represent for the plus strand and minus strand M(�) as a function of

� for various value of R(�).

F.5.2 Model checking for Gene Expression Data

In Figure 17 we show various model checking plots for the residuals, Yi � µ̂i, and the AR-

residuals, (Yi � µ̂i) � �̂(Yi�1 � µ̂i�1. As shown in the qq-plots they are not Gaussian, but
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the distribution is roughly symmetric; the middle plots suggests that distribution of the

residuals does not vary substantially with the estimated signal (m̂ui) for the residuals, or

with the fitted values (µ̂i � �̂µ̂i�1) for the AR-residuals. Finally based on the acf plots

it is clear that there is some level of auto-correlation in the data and that our AR-model

capture part of it as the second coe�cient is much smaller for the AR-residuals.
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Figure 11: For each cell 2000 time-series of length 5000 have been generated under our

model (1) – (3) with 40 changes (two first rows, same than the two last rows in Figure 10)

and with the 2-stage estimator (two last rows). As in previous Figure, we plot accuracy

and precision.
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Figure 12: An example of a sequence generated with �⌘ = 4, �⌫ = 2, � = 0.14, with

relative signal and changepoints estimates of DeCAFS with real parameter values compared

to DeCAFS with estimated ones. On this particular sequence, our estimator returns values

for initial parameters of �̂⌘ = 0, �̂⌫ = 4.6, �̂ = 0.98, resulting in a distorted signal

estimation.
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Figure 13: Segmentations of well-log data: Optimal segmentation under square error loss

with the default, BIC, penalty (top); segmentation with the AR1-seg method of Chakar

et al. (2017) that models the data as piecewise constant mean with AR(1) noise (middle);

optimal segmentation for constant-mean model with WBS2 and the number of changes

detected by the steepest drop to low levels criteria of Fryzlewicz (2018a) (bottom). Each

plot shows the data (black line) the estimated mean (red line) and changepoint location

(vertical blue dashed lines).
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Figure 14: Comparison of segmentations for Trend Filtering and DeCAFS. Left-hand col-

umn is data with a sinusoidal mean; and the right-hand column in addition includes 3

changepoints. Columns, respectively from top, are for Trend Filtering with order 0 (the

fused Lasso), 1 (fitting piecewise linear) and 2 (fitting piecewise quadratic) and DeCAFS.

In each plot the true mean is the black line, the estimated mean is the red line, and the

data are shown by the grey dots. 31
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Figure 15: F1 score on di↵erent scenarios with an underlying OU process as we vary ✓.

Data simulated fixing �⌫ = 1, �⌘ = 1 and � = 1 over a change of size 10.
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Figure 16: M(�) as a function of � for promoters (line 1 and 2) and terminators (line 3 and

4), for various value of R(�) (250, 500, 750, 1000, 2000, 3000 and 4000) for the plus strand

in red and the minus strand in black. Results of hmmTiling.ori on the plus and minus

strand are represented as horizontal dotted red and black lines. Results of hmmTiling.all

(using all probes rather than only those called transitions).
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Figure 17: Model checking plots on the residuals and AR-residuals of DeCAFS on the plus

strand using a penalty of 8 log(n) (learnt on the minus strand). The top line correspond to

the residuals (Yi�µ̂i) and the bottom line to the AR-residuals (Yi�µ̂i)��̂(Yi�1�µ̂i�1). The

right column show qq-plots versus normal quantiles. In the middle column the residuals

are plotted as a function of the fitted values. In the right column are the acf plots.
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G Additional Simulation Results

In Figures 18 and 19 we summarize the results of the first simulation of Section 6 in

terms of Precision (the proportion of detected changes which are correct) and Recall (the

proportion of true changes that are detected). Similarly, Figure 20 shows Precision and

Recall for the simulation with an AR(2) noise, Figure 21 shows Precision and Recall for the

simulation with an underlying sinusoidal signal, and Figure 22 shows Precision and Recall

for the simulations where the local fluctations in the mean are from an Ornstein-Uhlenbeck

process.

As an extension on the simple AR(1) noise (Figure 6.1 A), we investigate a further case

of model misspecification. Di↵erently to what already shown, we now assume independence

in the AR(1) noise across the various segments. Results for F1Score, Precision and Recall

across the 3 change scenarios are summarised in Figures 23. For values of �  0.5 DeCAFS

has comparable performances to the ones of the model where we have dependence across

segment. Throughout DeCAFS tends to perform similarly to or better than AR1Seg.

Figure 24 shows a comparison between LAVA and DeCAFS when the mean is sinusoidal

with abrupt jumps.
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Figure 18: Precision on the 4 di↵erent scenarios from the main simulation study of Section

6. Should be read in conjunction with Figure 6.1.
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Figure 19: Recall on the 4 di↵erent scenarios from the main simulation study of Section 6.

Should be read in conjunction with Figure 6.1.
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Figure 20: Precision (a) and Recall (b) on di↵erent scenarios with a AR(2) noise. Should

be read in conjunction with Figure 5.
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Figure 21: Precision (a) and Recall (b) on di↵erent scenarios with an underlying sinusoidal

process. Should be read in conjunction with Figure 6.
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Figure 22: Precision (a) and Recall (b) on di↵erent scenarios with an underlying Ornstein-

Uhlenbeck process. Should be read in conjunction with Figure 15.
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Figure 23: F1 score (a), Precision (b) and Recall (c) on 3 di↵erent change scenarios with an

independent between-the-changes AR(1) noise as we vary �. Data simulated fixing �⌫ = 2

over a change of size 10.
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Figure 24: On top: comparison of the F1 Score, in A1, Precision in A2 and Recall, in A3,

for DeCAFS est (in light green) and LAVA (red) and LAVA est (in orange) on the updown

scenario for a sinusoidal signal over a range of di↵erent amplitudes. On the bottom the first

250 observations of two realization of the experiment with an amplitude of 2, in B1 with no

changes, whilst in B2 with 20 changes. The continuous line over the data points represent

the relative signal estimations of DeCAFS est LAVA oracle, and LAVA est; the segments

their changepoint locations estimates. In B1, in particular, LAVA est and DeCAFS est

have an almost equal signal estimation.
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