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Abstract

Peak detection in genomic data involves segmenting counts of DNA sequence reads aligned
to different locations of a chromosome. The goal is to detect peaks with higher counts, and
filter out background noise with lower counts. Most existing algorithms for this problem
are unsupervised heuristics tailored to patterns in specific data types. We propose a super-
vised framework for this problem, using optimal changepoint detection models with learned
penalty functions. We propose the first dynamic programming algorithm that is guaran-
teed to compute the optimal solution to changepoint detection problems with constraints
between adjacent segment mean parameters. Implementing this algorithm requires the
choice of penalty parameter that determines the number of segments that are estimated.
We show how the supervised learning ideas of Rigaill et al. (2013) can be used to choose this
penalty. We compare the resulting implementation of our algorithm to several baselines in
a benchmark of labeled ChIP-seq data sets with two different patterns (broad H3K36me3
data and sharp H3K4me3 data). Whereas baseline unsupervised methods only provide ac-
curate peak detection for a single pattern, our supervised method achieves state-of-the-art
accuracy in all data sets. The log-linear timings of our proposed dynamic programming
algorithm make it scalable to the large genomic data sets that are now common. Our
implementation is available in the PeakSegOptimal R package on CRAN.

Keywords: Non-convex, constrained, optimization, changepoint, segmentation.

1. Introduction

In recent years, high-throughput DNA sequencing technologies have been improving at a
rapid pace, resulting in progressively bigger genomic data sets. Two common genome-wide
assays are ChIP-seq, a genome-wide assay for histone modifications or transcription factor
binding sites (Barski et al., 2007); and ATAC-seq, an Assay for Transposase-Accessible
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Figure 1: ChIP-seq read count data (grey lines) for one sample on a subset of chromo-
some 11. Top: the maximum likelihood Poisson model with 5 segment means
(horizontal blue lines) has two up changes followed by two down changes (vertical
blue lines). It does not satisfy the up-down constraint (odd-numbered changes
must be up, and even-numbered changes must be down). Bottom: the up-down
constrained model has a lower log-likelihood value, but each up change is followed
by a down change. Odd-numbered segments are interpreted as background noise,
and even-numbered segments are interpreted as peaks (a short peak on the left
and a tall peak on the right).

Chromatin which measures open chromatin (Buenrostro et al., 2015). These experiments
have been used to characterize the epigenome of samples in large-scale mapping projects
such as ENCODE (ENCODE Project Consortium, 2011). Briefly, each assay yields a set
of DNA sequence reads which are aligned to a reference genome, and then the number of
aligned reads are counted at each genomic position (Figure 1). This results in a vector of
non-negative integer counts y ∈ Zn+ over n positions.

The size n of these aligned read count data depends on the size of contiguous regions on
chromosomes in the reference genome. For example, the largest chromosome in the human
genome (hg19) is chr1, which has n = 249, 250, 621 bases (distinct positions at which the
number of aligned reads is measured). Analysis of such data thus requires computationally
efficient algorithms which scale to data sets of arbitrarily large size.

Although these read counts can be interpreted as quantitative data, they are most often
interpreted using one of the many available peak detection algorithms (Wilibanks and Fac-
ciotti, 2010; Rye et al., 2010; Szalkowski and Schmid, 2011). A peak detection algorithm is
a binary classifier c(y) ∈ {0, 1}n for each genomic position, where peaks are the 1-class, and
background noise is the 0-class. Importantly, peaks and background occur in long contigu-
ous segments across the genome. Typical algorithms from the bioinformatics literature such
as MACS (Zhang et al., 2008) and HMCan (Ashoor et al., 2013) are unsupervised heuris-
tics with several parameters that affect peak detection accuracy (window/bin sizes, p-value
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thresholds, etc). Although such algorithms are fast for large data sets, they are typically
accurate only for a specific data/pattern type (e.g. MACS works for sharp H3K4me3 but
not broad H3K36me3 data) (Hocking et al., 2016).

Hidden Markov Models (HMMs) with common mean parameters for the peak or back-
ground regions could be used to model such sequence data, but we do not explore them in
this paper for two reasons. First, we have observed in real ChIP-seq data that background
and peak means are not constant throughout the genome (Supplementary Figure 1), so
shared mean parameters would not be a good fit. Second, inference algorithms for HMMs
are only guaranteed to find a local maximum of the likelihood; we are more interested in
changepoint detection models with dynamic programming algorithms that can provably
compute the global maximum of the corresponding likelihood. Such optimal inference al-
gorithms only work for models with separate parameters for each segment.

Recently Cleynen and Lebarbier (2014) proposed a Pruned Dynamic Programming Al-
gorithm (PDPA) for computing the most likely K segment means (and K−1 changepoints)
using a Poisson model. This is computed for a range of segments K, which acts as a reg-
ularization parameter. Small values of K result in too few segments/peaks (false negative
peak detections, underfitting), and large values of K result in too many (false positive peak
detections, overfitting). Oracle penalties (Cleynen and Lebarbier, 2014) or learned penalties
(Rigaill et al., 2013) can be used to select the number of segments K. Because this model
sometimes has several consecutive up changes, it is non-trivial to interpret in terms of peaks
and background (Figure 1, top).

To ensure that the segmentation model is interpretable in terms of peaks and back-
ground, Hocking et al. (2015) introduced a Constrained Dynamic Programming Algorithm
(CDPA) for computing a model where up changes are followed by down changes, and vice
versa (Figure 1, bottom). The model with P ∈ {0, 1, . . . , } peaks has K = 2P + 1 ∈
{1, 3, . . . } segments. These constraints ensure that odd-numbered segments can be inter-
preted as background, and even-numbered segments can be interpreted as peaks. Without
the up-down constraints, it becomes harder to identify which segments should be flagged as
peak versus background—one would need some ad-hoc post-processing rules (see Section 5.2
for our analysis of three such rules). In a recent comparison study, Hocking et al. (2016)
showed that this algorithm achieves state-of-the-art peak detection accuracy in a bench-
mark of ChIP-seq data sets which include both broad H3K36me3 and sharp H3K4me3
data/patterns. This constrained model is further justified by the statistical arguments of
Gao et al. (2017), who show that using shape constraints can reduce the minimal risk
bounds; with these being O(log log n) for estimating changes in mean under a monotone
constraint as compared to O(log n) without the constraint. The fact that using shape
constraints can lead to a lower risk bound suggests that the constrained problem is statisti-
cally simpler than the unconstrained problem, and that it is worthwhile to integrate those
constraints in the model if they are known to be true.

The previously proposed CDPA suffers from two major issues, which we fix in this paper
using a rigorous mathematical analysis of the constrained maximum likelihood changepoint
detection problem. First, the CDPA does not necessarily compute the globally optimal
model, because it does not accurately account for the constraints (for a detailed explanation,
see Supplementary Figure 2). Second, the time complexity of analyzing n data points with
the CDPA is O(Kn2). Since this is quadratic in the number of data points, it can be too
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Constraint No pruning Functional pruning

None Dynamic Prog. Algo. (DPA) Pruned DPA (PDPA)
Optimal, O(Kn2) time Optimal, O(Kn log n) time

Auger and Lawrence (1989) Rigaill (2010); Johnson (2011)

Up-down Constrained DPA (CDPA) Generalized Pruned DPA (GPDPA)
Sub-optimal, O(Kn2) time Optimal, O(Kn log n) time

Hocking et al. (2015) This paper

Table 1: Our main contribution is the Generalized Pruned Dynamic Programming Algo-
rithm (GPDPA), which uses a functional pruning technique to compute the con-
strained optimal K − 1 changepoints in a sequence of n data. For each algo-
rithm we show whether or not it is guaranteed to compute the global optimum
(optimal/sub-optimal), and its time complexity on average in our empirical tests
on real ChIP-seq data sets.

slow for use on large genomic data sets which are now common. In this paper we propose
a new algorithm that resolves both of these issues (Table 1).

1.1. Contributions and Organization

In Section 2 we define the optimal changepoint detection problems. The first problem is
where there are no constraints between the segment-specific mean parameters. The second
is where we impose the up-down constraint between the means of neighboring segments.
Whilst several efficient dynamic programming algorithms can solve the unconstrained mini-
mization, we are unaware of equivalent dynamic programming algorithms for exactly solving
the constrained version. Our main contribution is described in Section 3, where we general-
ize the functional pruning technique of Rigaill (2010, 2015) so that it can be applied to the
constrained minimization problem (Table 1), leading to the fast and optimal Generalized
Pruned Dynamic Programming Algorithm (GPDPA). These new ideas around how to deal
with constraints on the means for neighbouring segments is of independent interest. For
example, since the first version of this paper appeared (Hocking et al., 2017), its ideas have
already been used to model monotone constraints in spike detection problems for calcium
imaging data (Jewell et al., 2019). In Section 4 we describe the labeled data sets and we
propose a supervised learning algorithm for predicting the crucial penalty parameter, which
determines the number of segments K. In Section 5 we show that our proposed algorithms
achieve state-of-the-art speed and peak detection accuracy in a benchmark of ChIP-seq data
sets. The paper ends with a discussion.

2. Unconstrained and Constrained Changepoint Models

In this section we define two related changepoint detection problems. We use tilde C̃ to
denote the optimal unconstrained cost, and no tilde C to denote the up-down constrained
cost. We use the notation C∗K,n, C̃

∗
K,n, where the star (*) indicates an optimal cost value
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(a real number) and the subscripts refer to the number of segments K and the number of
data points n.

2.1. Unconstrained changepoint model with K segments

The data consist of n observations denoted by the random vector y = (y1, . . . , yn). We
assume a piecewise constant mean model with K − 1 changes (K distinct values). For
each segment k ∈ {1 . . . ,K}, the real-valued mean parameter uk is assigned to data points
(tk−1, tk]. The first index, t0 = 0, and last index, tK = n, are fixed; the others, t1 < · · · <
tK−1, are changepoint variables.

For real-valued data yt ∈ R, the statistical model is for every segment k ∈ {1 . . . ,K},
each data point on that segment t ∈ (tk−1, tk] is yt

iid∼ N(uk, σ
2). Maximizing the likelihood

in this Normal model is equivalent to minimizing the square loss `(yt, uk) = (uk − yt)2. In
the case of genomic count data, we have a sequence of non-negative integers yt ∈ Z+, so we

assume yt
iid∼ Poisson(uk). Maximizing the likelihood in the Poisson model is equivalent to

minimizing the Poisson loss `(yt, uk) = uk − yt log uk. In either case we can write the cost
function for segment k as

htk−1,tk(uk) =

tk∑
τ=tk−1+1

`(yτ , uk). (1)

The optimal cost in K segments up to n data points is defined as the solution of the
optimization problem

C̃∗K,n = min
u1,...,uK∈R

0=t0<t1<···<tK−1<tK=n

K∑
k=1

htk−1,tk(uk). (2)

This optimization problem is non-convex because the changepoint variables tk are integers.
Nonetheless, the optimal solution can be computed in O(Kn2) time using a dynamic pro-
gramming algorithm (Auger and Lawrence, 1989). By exploiting the structure of the loss
function `, the pruned dynamic programming algorithm of Rigaill (2010) computes the same
optimal solution much faster; empirically having a computational cost that is O(Kn log n).
Efficient algorithms exist for solving similar problems such as Optimal Partitioning (Jack-
son et al., 2005; Johnson, 2011; Killick et al., 2012; Maidstone et al., 2017) and the Fused
Lasso (Hoefling, 2010).

2.2. Up-down constrained changepoint model with K segments

The peak detection problem we are interested in can be formulated in a similar way, but
with the addition of further constraints on the segment means. These constraints force
the mean to alternate between increasing and decreasing at each changepoint. Formally,
the optimal cost in K segments up to n data points, subject to the up-down constraint, is
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defined as

C∗K,n = min
u1,...,uK∈R

0=t0<t1<···<tK−1<tK=n

K∑
k=1

htk−1,tk(uk) (3)

subject to uk−1 ≤ uk ∀k ∈ {2, 4, . . . },
uk−1 ≥ uk ∀k ∈ {3, 5, . . . }.

Note that the constraints between adjacent segment means are defined in terms of non-strict
inequalities (e.g. uk−1 ≤ uk) so that the optimal means u1, . . . , uK and cost C∗K,n are always
well-defined real numbers. In contrast, if strict equalities were used (e.g. uk−1 < uk) the
resulting problem could be unbounded from below; see Section 3.9 for an example. It also is
worth noting the connection between this up-down constrained changepoint problem (3) and
several related problems that have been previously studied. The reduced isotonic regression
problem is similar (Schell and Singh, 1997), but uses only non-decreasing uk−1 ≤ uk change
constraints for all k ∈ {2, 3, . . . }. Hardwick and Stout (2014) proposed an efficient algo-
rithm for reduced isotonic regression. Note that the well-known Pool-Adjacent-Violators
Algorithm (PAVA) (Mair et al., 2009) solves a simpler problem (isotonic regression), with-
out the constraint on the number of segments K. As far as we know, the PAVA has not
been adapted for use with more complex constraints such as the up-down constraints we
consider in this paper.

Our contribution in this paper is proving that the functional pruning technique of Rigaill
(2010) and Maidstone et al. (2017) can be generalized to constrained changepoint models
such as (3). The resulting Generalized Pruned Dynamic Programming Algorithm (GPDPA)
computes the optimal solution to the up-down constrained changepoint model, and enjoys
O(Kn log n) time complexity (on average in our empirical tests of real ChIP-seq data sets).

3. Dynamic Programming for Constrained Changepoint Models

In this section we first discuss unconstrained and constrained algorithms that use the clas-
sical dynamic recursion in terms of optimal cost values. We then present the new approach
which recursively computes optimal cost functions.

3.1. Classical Dynamic Programming Approach

The classical dynamic programming algorithm of Auger and Lawrence (1989) recursively
computes the optimal cost in K segments up to n data points via

C̃∗K,n = min
tK−1

min
u1,...,uK−1
t1<···<tK−2

K−1∑
k=1

htk−1,tk(uk)︸ ︷︷ ︸
C̃∗K−1,tK−1

+ min
uK

htK−1,n(uK)︸ ︷︷ ︸
h∗tK−1,n

. (4)

The main idea of the classical dynamic programming recursion (4) is to separate the cost
into two terms. The left term C̃∗K−1,tK−1

is the previously computed cost of the best model
in K − 1 segments up to data point tK−1. The right term h∗tK−1,n

is the optimal cost of the
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K-th segment, which starts after the last changepoint tK−1 and continues until the final data
point n. The minimization in (4) over all possible last changepoints tK−1 ∈ {K−1, . . . , n−1}
can be computed in O(n) time. The vector of h∗K−1,n, . . . , h

∗
n−1,n values can be computed

in O(n) time using the cumulative sum; computing the entire vector of C̃∗K,K , . . . , C̃
∗
K,n is

therefore O(n2) using (4).

3.2. Classical Algorithm Modified for Constraints

In this section we review the Constrained Dynamic Programming Algorithm (CDPA), which
we previously proposed (Hocking et al., 2015). In the CDPA we proposed to constrain the
set of possible last changepoints tK−1 used in the minimization (4). In the right side of (4)
the min with respect to the last segment mean uK is achieved by

ûtK−1,n = arg min
uK∈R

htK−1,n(uK), (5)

which is the best mean value for the last segment starting after data point tK−1. The
main idea of the CDPA is to only consider last changepoints tK−1 which result in a last
segment mean ûtK−1,n that jumps in the correct direction (up or down). More precisely,
letting UK−1,τ be the best mean of the K − 1-th segment up to data point τ , we consider
the reduced set of possible changepoints

IK,n =

{
τ ∈ {K − 1, . . . , n− 1} | UK−1,τ < ûτ,n if K is even,

τ ∈ {K − 1, . . . , n− 1} | UK−1,τ > ûτ,n if K is odd.
(6)

That yields the recursive update rule for the constrained cost

c∗K,n = min
τ∈IK,n

c∗K−1,τ + h∗τ,n. (7)

Here we use the lowercase c∗ notation for the cost to emphasize that this update rule is a
greedy heuristic; it does not always compute the global optimum C∗K,n of the constrained
problem (3). Using this update rule, computing the entire matrix of constrained cost values
c∗k,t for all k ∈ {1, . . . ,K} and t ∈ {1, . . . , n} takes O(Kn2) time, which is slow and sub-
optimal. We therefore propose a new update rule in the next section which is both faster
and optimal.

3.3. Dynamic Programming with Functional Pruning

The key insight of functional pruning (Rigaill, 2010; Maidstone et al., 2017) is that the
order of minimization can be reversed in (4). By taking out the minimization with respect
to the last segment mean uK , we obtain the following equation for the optimal cost in K
segments up to data point n,

C̃∗K,n = min
uK

min
tK−1

C̃∗K−1,tK−1
+ htK−1,n(uK)︸ ︷︷ ︸

C̃K,n(uK)

. (8)

Note that in previous sections (equations 2,3,4,7) as well as in (8) we use a star (*) to
denote the scalar optimal cost values. In the underbrace of (8) we remove the star to obtain
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the function C̃K,n : R → R, which is the real-valued optimal cost as a function of the
last segment mean. Minimizing the function C̃K,n(uK) over all possible values of the last
segment mean uK yields the optimal cost value C̃∗K,n.

This functional cost representation was originally proposed for the unconstrained prob-
lem (Rigaill, 2010), and it allows recursive computation of the C̃K,n functions via

C̃K,n(uK) = min
τ∈{K−1,...,n−1}

C̃∗K−1,τ + hτ,n(uK) (9)

= `(yn, uK) + min{C̃∗K−1,n−1, min
τ∈{K−1,...,n−2}

C̃∗K−1,τ + hτ,n−1(uK)} (10)

= `(yn, uK) + min{C̃∗K−1,n−1, C̃K,n−1(uK)}. (11)

The equality (10) is obtained by removing the cost of the last data point `(yn, uK) from
the terms in the min. The Pruned Dynamic Programming Algorithm (PDPA) recursion
(11) states that the functional cost C̃K,n(uK) up to data point n can be computed using
the functional cost C̃K,n−1(uK) up to the previous data point n− 1.

3.4. Functional Pruning Modified for Constraints

In this section we present our main contribution, which generalizes the functional pruning
technique for the up-down constrained problem (3). We begin by defining the functional
cost for the up-down constrained problem,

CK,n(uK) = min
u1,...,uK−1∈R

0=t0<t1<···<tK−1<tK=n

K∑
k=1

htk−1,tk(uk) (12)

subject to uk−1 ≤ uk ∀k ∈ {2, 4, . . . },
uk−1 ≥ uk ∀k ∈ {3, 5, . . . }.

The definition of the optimal cost function above removes one optimization variable, uK ,
with respect to the definition of the optimal cost value C∗K,n (3). We have the following
recursion for all K ≥ 2:

CK,n(uK) = min
tK−1,uK−1

CK−1,tK−1
(uK−1) + htK−1,n(uK) (13)

subject to

{
uK−1 ≤ uK if K is even,

uK−1 ≥ uK if K is odd.

A key new idea of our paper is that (13) can be simplified using the min-less operator:

Definition 1 (Min-less operator) Given any real-valued function f : R→ R, we define
its min-less operator as f≤(µ) = minx≤µ f(x).

Let us consider the case of K = 2. The recursion (13) simplifies to

C2,n(u2) = min
t1

ht1,n(u2) + min
u1:u1≤u2

C1,t1(u1)︸ ︷︷ ︸
C≤1,t1

(u2)

. (14)

The min-less operator is used to write the cost as a function of a single segment mean
variable u2 (Figure 2, left). Likewise, for odd K, we need the min-more operator.
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C1,1(µ) = (µ− 2)2

minµC1,1(µ)

C≤1,1(µ) =
minx≤µC1,1(x)

0

1

2

3

4

0 1 2 3 4

segment mean µ

co
st

Min-less at data 1

constrained

C2,2(µ) =

(µ− 1)2

unconstrained

C≤1,1(µ) + (µ− 1)2

0.0

2.5

5.0

7.5

0 1 2 3 4

segment mean µ

co
st

Cost of 2 segments at data 2

Figure 2: Comparison of previous unconstrained algorithm (grey) with new algorithm
that constrains segment means to be non-decreasing (red), for the toy data set
y = [2, 1, 0, 4] ∈ R4 and the square loss. Left: rather than computing the un-
constrained minimum (constant grey function), the new algorithm computes the
min-less operator (red), resulting in a larger cost when the segment mean is less
than the first data point (µ < 2). Right: adding the cost of the second data point
(µ − 1)2 and minimizing yields equal means u1 = u2 = 1.5 for the constrained
model and decreasing means u1 = 2, u2 = 1 for the unconstrained model.

Definition 2 (Min-more operator) Given any real-valued function f : R → R, we de-
fine its min-more operator as f≥(µ) = minx≥µ f(x).

The min-less and min-more operators are used in the following theorem, which states the
update rules used in our proposed algorithm.

Theorem 3 (Generalized Pruned Dynamic Programming Algorithm/GPDPA)
The constrained optimal cost functions CK,n can be recursively computed.

1. For K = 1 we have C1,1(µ) = `(y1, µ), and for the other data points n > 1 we have
C1,n(µ) = C1,n−1(µ) + `(yn, µ).

2. For K > 1 and n = K we have CK,K(µ) = `(yK , µ) +

{
C≤K−1,K−1(µ) if K is even,

C≥K−1,K−1(µ) if K is odd.

3. For K > 1 and n > K we have

CK,n(µ) = `(yn, µ) + min{CK,n−1(µ),

{
C≤K−1,n−1(µ) if K is even,

C≥K−1,n−1(µ) if K is odd.

Proof Case 1 and 2 follow from the definition of the constrained functional cost (12). We
prove case 3 for even K (the proof for odd K is analogous). Using the min-less operator
(Definition 1), the functional cost recursion (13) simplifies to

CK,n(uK) = min
τ∈{K−1,...,n−1}

C≤K−1,τ (uK) + hτ,n(uK), (15)

9
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where the right term hτ,n(uK) is the cost of the last segmentK, and the left term C≤K−1,τ (uK)
is the cost of all previous segments. Taking out the cost of the last data point n results in

CK,n(uK) = `(yn, uK) + min


C≤K−1,K−1(uK) + hK−1,n−1(uK), . . . ,

C≤K−1,n−2(uK) + hn−2,n−1(uK),

C≤K−1,n−1(uK)

(16)

= `(yn, uK) + min{CK,n−1(uK), C≤K−1,n−1(uK)}. (17)

The final equality (17) is obtained using the definition of the constrained functional cost (12),
because CK,n−1(uK) is equivalent to all but the last term in the min in (16). This proves
that the update rules in Theorem 3 can be used to recursively compute the constrained
optimal functional cost (12).

3.5. Discussion of Pseudo-Code

In Algorithm 1 we provide pseudo-code that implements the update rules of Theorem 3.
The first for loop initializes the optimal cost function in 1 segment, C1,t(µ), for all data
points t ∈ {1, . . . , n}. The second for loop is over k, the number of segments. If k is even
then the min-less operator is used to compute the optimal cost function Ck,t(µ); otherwise
the min-more operator is used. The algorithm outputs the optimal cost functions Ck,t(µ)
for all segments k and data points t.

3.6. Intuition for Speed of Functional Pruning

In this section we provide a summary of the main ideas of functional pruning for optimal
changepoint detection; for a more complete discussion we refer the reader to Maidstone
et al. (2017). To explain why the functional pruning approach results in a fast algorithm,
we consider computing C2,n(u2), the optimal cost up to data point n with second segment
mean u2. Computing this function via (14) requires taking the pointwise min of changepoint
cost functions ht1,n(u2) + C≤1,t1(u2) for all possible changepoints t1 ∈ {1, . . . , n− 1}.

However, if there is a particular changepoint t1 with a sub-optimal cost (i.e., C2,n(u2) <

ht1,n(u2) + C≤1,t1(u2) for all u2), then that changepoint can be pruned (there is no value of
the segment mean u2 for which t1 would be the best choice of the most recent changepoint).
More precisely, let T2,n = {t1 | C2,n(µ) = ht1,n(µ) + C≤1,t1(µ) for some µ} be the set of
changepoints which have not yet been pruned. Then the optimal cost function can also be
computed by minimizing with respect to this reduced set of changepoints,

C2,n(u2) = min
t1∈{1,...,n−1}

ht1,n(µ) + C≤1,t1(µ) = min
t1∈T2,n

ht1,n(µ) + C≤1,t1(µ). (18)

This pruning results in speed improvements because typically the number of candidate
changepoints |T2,n| is much smaller than n. For example in Figure 3, pruning at data point
35 results in only one candidate changepoint. In Section 5.5, we show that the empirical
number of candidate changepoints in real ChIP-seq data sets is O(log n).

10
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Algorithm 1 Generalized Pruned Dynamic Programming Algorithm (GPDPA) for up-
down constrained changepoint model

1: Input: data y1, . . . , yn, number of segments K ∈ Z+.
2: C1,0(µ)← 0
3: for t = 1 . . . n do
4: C1,t(µ)← C1,t−1(µ) + `(yt, µ)
5: end for
6: for k = 2, . . . ,K do
7: if k is even then
8: Ck,k(µ)← `(yk, µ) + C≤k−1,k−1(µ)
9: for t = k + 1 . . . , n do

10: Ck,t(µ)← `(yt, µ) + min{Ck,t−1(µ), C≤k−1,t−1(µ)}
11: end for
12: end if
13: if k is odd then
14: Ck,k(µ)← `(yk, µ) + C≥k−1,k−1(µ)
15: for t = k + 1 . . . , n do
16: Ck,t(µ)← `(yt, µ) + min{Ck,t−1(µ), C≥k−1,t−1(µ)}
17: end for
18: end if
19: end for
20: Output: For k = 1, . . . ,K and t = 1, . . . , n all Ck,t(µ)

3.7. Implementation and Computational Complexity

To implement the Generalized Pruned Dynamic Programming Algorithm (GPDPA), we use
an exact representation of the Ck,t : R → R cost functions. Each Ck,t(µ) is represented as
a piecewise function on intervals of µ, typically a few intervals for each candidate change-
point. This is implemented as a linked list of FunctionPiece objects in C++ (for details
see Section 8). Each element of the linked list represents a convex cost function piece, and
implementation details depend on the choice of the loss function ` (for an example using
the square loss see Section 3.8). Importantly, the min-less C≤k,t and min-more C≥k,t operators
(Definitions 1 and 2) can be efficiently computed using this representation.

The functional pruning is accomplished by the min{} operation in update rule 3 of
Theorem 3. For example if k is even, C≤k−1,t−1(µ) is the cost if segment k − 1 ends on
data point t − 1, and Ck,t−1(µ) is the cost of a changepoint before that. In the min{}
operation, these two functions are compared, and pruning occurs for any cost function
pieces (candidate changepoints) which are sub-optimal for all µ. For example the right
panel of Figure 3 shows a data set for which all previous changepoints are pruned at t = 35.

We implemented the GPDPA using the Poisson loss `(y, µ) = µ − y logµ, since our
application in Section 5 is on ChIP-seq non-negative count data y ∈ Z+ = {0, 1, 2, . . . }.
Our free/open-source C++ implementation is available as the PeakSegPDPA function in

11
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Figure 3: Demonstration of GPDPA for the up-down constrained model with 3 segments.
Cost functions are stored as piecewise functions on intervals (black dots show
limits between function pieces; each function piece represents a candidate change-
point). Left: the min M3,34 is the minimum of two functions: C≥2,34 is the cost
if the second segment ends at data point t = 34 (the min-more operator forces
a non-increasing change after), and C3,34 is the cost if the second segment ends
before that. Middle: the cost C3,35 is the sum of the min M3,34 and the cost
of the next data point `35. Right: in the next step, all previously considered
changepoints are pruned (cost C3,35), since the model with the second segment

ending at data point t = 35 is always less costly (C≥2,35).

the PeakSegOptimal R package on CRAN.1 Implementation details can be found in Sup-
plementary Text 1.

The GPDPA requires computing O(Kn) cost functions Ck,t. As in the original pruned
dynamic programming algorithm (Rigaill, 2015), the average time complexity of the GPDPA
is O(KnI) where I is the average number of intervals (convex function pieces; candidate
changepoints) that are used to represent a cost function. For the unconstrained problem,
the theoretical maximum number of intervals is I = O(n), implying a worst case time
complexity of O(Kn2) (Rigaill, 2015). For the up-down constrained problem the theoretical
maximum number of intervals is unknown, but in practice we have always observed I � n.
For example, we investigate the empirical computational cost for the up-down constrained
algorithm in Section 5.5 and observe I = O(log n), which corresponds to an overall average
computational cost that is O(Kn log n).

1. https://cran.r-project.org/package=PeakSegOptimal
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3.8. Example and Comparison with Unconstrained Algorithm

In this section we show our proposed algorithm for constrained changepoint detection differs
from the previous unconstrained algorithm. We show the first few steps of the GPDPA for
the toy data set y =

[
2 1 0 4

]
∈ R4 and the square loss `(y, µ) = (y − µ)2. The first

step of the algorithm is to compute the minimum and the maximum of the data (0,4) in
order to bound the possible values of the segment mean µ. Then the algorithm computes
the optimal cost in 1 segment up to data point 1:

C1,1(u1) = (2− u1)2 = 4− 4u1 + u21 (for u1 ∈ [0, 4]). (19)

This function can be stored for all values of u1 via the three real-valued coefficients (constant =
4, linear = −4, quadratic = 1). We then compute the cost of a new segment with a non-
decreasing mean after the first data point (red curve on left of Figure 2),

C≤1,1(u2) =

{
4− 4u2 + u22 if u2 ∈ [0, 2], u1 = u2,

0 + 0u2 + 0u22 if u2 ∈ [2, 4], u1 = 2.
(20)

This function can be stored as a list of two intervals of mean values, each with associated
real-valued coefficients. To facilitate recovery of the optimal parameters, we also store the
previous segment mean u1 and endpoint (for details see Supplementary Text 1). Note that
the first interval represents the cost of an active equality constraint (u1 = u2) and the
second interval represents the cost of a change up (2 = u1 < u2). In the unconstrained
algorithm we would have computed the constant cost of any change (up or down) after the
first data point, minu1 C1,1(u1) = 0 (grey curve on left of Figure 2).

By adding the cost of a non-decreasing change after the first data point C≤1,1(u2) to the

cost of the second data point (u2− 1)2 we obtain the optimal cost in 2 segments up to data
point 2,

C2,2(u2) =

{
5− 6u2 + 2u22 if u2 ∈ [0, 2], u1 = u2,

1− 2u2 + 1u22 if u2 ∈ [2, 4], u1 = 2.
(21)

Note that the minimum of this function is achieved at µ = 1.5 which occurs in the first of
the two function pieces (red curve on right of Figure 2), with an equality constraint active.
This implies the optimal model up to data point 2 with 2 non-decreasing segment means
actually has no change (u1 = u2 = 1.5). In contrast, the minimum of the cost computed by
the unconstrained algorithm is at u2 = 1 (grey curve on right of Figure 2), resulting in a
change down from u1 = 2.

3.9. Simple Data for which GPDPA is Optimal but CDPA is Not

The CDPA update rule (7) is a heuristic for solving the up-down constrained problem (3)
because it is not guaranteed to compute the optimal solution. In this section we discuss
two illustrative examples for which the CDPA does not compute the optimal solution, but
our proposed GPDPA does.

For the set of four data points [1, 10, 14, 13] the CDPA does not compute the optimal
solution for K = 3 segments. In fact, the CDPA returns no model when run in the forward
direction on this data set, and a sub-optimal model [5.5, 5.5, 14, 13] with Poisson loss of
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≈ −51.04 when run in the backward direction. In contrast, our proposed GPDPA returns
the optimal model [1, 37/3, 37/3, 37/3 ] which has Poisson loss of ≈ −54.96. Note that the
equality constraint u2 = u3 is active between the second and third segment means. This
implies that the optimal model with strict inequality constraints u2 > u3 is undefined, i.e.
∀ε > 0, [1, 37/3+ε, 37/3+ε, 37/3−ε] is not optimal because [1, 37/3+ε/2, 37/3+ε/2, 37/3−
ε/2] has a lower cost.

There are also data sets for which an optimum that satisfies the strict inequality con-
straints exists, but the CDPA does not recover it. See Supplementary Figure 2 for a detailed
discussion of the set of six data points [3, 9, 18, 15, 20, 2], for which the CDPA returns no
model with K = 5 segments. For these data, the optimal model [6, 6, 18, 15, 20, 2] satisfies
the strict inequality constraints, and is computed by our proposed GPDPA.

4. Labeled Data and Supervised Learning Algorithm

The real data analysis problem that motivates this work is the detection of peaks in ChIP-
seq data (Bailey et al., 2013), which is essentially partitioning a noisy count data vector
y ∈ Zn+ into peaks and background. Thus a peak detector can be represented as a function
c(y) ∈ {0, 1}n for binary classification at every base position. The positive class is peaks
(genomic regions with large values, representing protein binding or modification) and the
negative class is background noise (small values).

4.1. Peak Region Labels for Genomic Data Sets

More specifically, we consider the supervised peak detection problem, in which the peak
prediction algorithm can be trained using manually determined labels that indicate pres-
ence/absence of peaks. In this context, a data set consists of M problems y1, . . . ,yM along
with label sets L1, . . . , LM that identify genomic regions with and without peaks.

Each label set Lm = {(p
l
, pl, Tl)}

|Lm|
l=1 is a set of tuples; each tuple (start position =

p, end position = p, type = T ) represents a single labeled region. Each label is a region
which a biologist has determined to have presence/absence of peaks in a particular sam-
ple. Although there are only two predicted classes (positive=peaks/negative=background),
there are four types of labels because the labels provide different kinds of weak/incomplete
information about peak presence/absence in large regions:

noPeaks label: no peaks should be predicted anywhere in the region; c(yi) = 0 for all data
i in the region. False positive if any peaks are predicted in the region.

peaks label: at least one overlapping peak should be predicted somewhere in the region;
c(yi) = 1 for at least one i in the region. False negative if no peaks are predicted in
the region.

peakStart/peakEnd labels: exactly one peak start/end should be predicted in the region.
False negative if no peak start/end predicted in region, and false positive if more than
one peak start/end predicted in region.

These labels can be used to compute an error rate E[c(ym), Lm] and in the following we
define this error rate to be the sum of false positives and false negatives. Briefly, a false
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Figure 4: Labels from a biologist (colored rectangles) can be used to quantify error rates
(good/bad line segments show where peaks are predicted in two different mod-
els). Error rates are computed by counting the number of incorrectly predicted
labels (each noPeaks label with an overlapping peak is a false positive; each
peakStart/End label requires exactly one peak start/end in that region, zero
starts/ends is a false negative, and two or more starts/ends is a false positive).
Left: a good model with two peaks results in 0 errors; a bad model with one large
peak results in three errors (two false negatives and one false positive). Right:
a good model with two peaks results in 0 errors; a bad model with three peaks
results in five errors (three false negatives and two false positives).

positive is a label with too many predicted peaks, and a false negative is a label with
not enough predicted peaks. Ideal peak predictions would yield zero incorrect labels (for
examples see Figure 4). This error rate computation is implemented in R package PeakError;
for additional details we refer the reader to (Hocking et al., 2016).

4.2. Supervised Learning Algorithm for Predicting the Penalty

For the optimal changepoint detection algorithms (CDPA, PDPA, GPDPA), predicting
peaks simplifies to selecting the number of segments/changepoints. For a given problem m,
let ym ∈ Znm

+ be the data, let ŷkm ∈ Rnm be the mean vector with k segments computed
via dynamic programming, and let `(ym, ŷ

k
m) be the total Poisson loss (summed over all

nm data of ym). We use the following function to select the number of segments for a given
problem m and non-negative penalty parameter λ:

κm(λ) = arg min
k

`(ym, ŷ
k
m) + λC(ŷkm), (22)

where C is a function that measures model complexity. If λ and C were known in advance,
then it would be computationally advantageous to reformulate the optimization problem
in terms of λ, C and then solve it directly using a modification of our proposed dynamic
programming algorithm (Maidstone et al., 2017; Hocking et al., 2018). However the penalty
λ and model complexity C are generally not known in advance; there are many algorithms
for choosing them and this is an active area of research (Yao, 1988; Lebarbier, 2005; Zhang
and Siegmund, 2007).
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In this paper we consider using the simple linear model complexity function C(ŷkm) = k
as well as the oracle model complexity proposed by Cleynen and Lebarbier (2014),

C(ŷkm) = k
(

1 + 4
√

1.1 + log(nm/k)
)2
. (23)

The oracle model complexity is motivated by a statistical argument that assumes a piecewise
constant Poisson model, but the constants (4, 1.1) may be sub-optimal in real data that do
not satisfy these assumptions.

We also investigate learned penalty functions. The main idea of penalty learning (Rigaill
et al., 2013) is to compute a fixed feature vector xm ∈ Rd for each problem m, then learn
a function f(xm) ∈ R that predicts problem-specific log λ values,

minimize
f

M∑
m=1

E [c(ym, κm(exp f(xm))), Lm] , (24)

where c(ym, k) ∈ {0, 1}nm is the peak prediction vector for the model with k segments.
The goal in (24) is to find the penalty function f that minimizes the total number of
incorrect labels. This problem is non-convex, so we learn f using the L1-regularized linear
model and convex relaxation previously described (Rigaill et al., 2013). We used d =
365 features which were computed in order to get a large set of features that estimate
relevant properties of the data (size, quantiles, mean, variance, etc). The main idea is to
compute a large set of features and then use the L1 regularization to select which ones are
relevant for predicting the penalty. First we transform x to another vector using one of
three possible operations (identity, subtract away mean, consecutive difference). Second for
each resulting vector we using one of three possible element-wise transformations (identity,
absolute value, square). Third, for each resulting vector we take one of four operations (sum,
mean, sd, quartiles). Fourth we take one of five nonlinear element-wise transformations
(identity, sqrt, log, loglog, square). The final feature vector is all combinations of the
previous operations, combined with the features that result from plugging the data size nm
into each nonlinear element-wise operation of the fourth step. We have previously used
this kind of feature representation/engineering for other kinds of supervised changepoint
problems (Rigaill et al., 2013). We did not attempt to use any other kinds of feature
engineering; this is the only set of features that we attempted to use for learning. We used
the penaltyLearning R package to compute the feature matrix and learn the L1-regularized
linear model.

To compare with a baseline, we also consider learning a constant function f(xm) = log λ
for all problems m:

minimize
λ

M∑
m=1

E [c(ym, κm(λ)), Lm] . (25)

In this case we perform the minimization using grid search over 200 λ values evenly placed
on the log scale between 10−2 and 104.
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5. Results on Peak Detection in ChIP-Seq Data

5.1. Benchmark Data Set

The seven labeled ChIP-seq data sets that we consider in this paper were originally de-
scribed by Hocking et al. (2016), and are freely available on the web.2 Data set names (e.g.
Broad H3K36me3 AM immune) indicate experiment/pattern type (Broad H3K36me3), la-
beler (AM), and cell types (immune). The data consist of two different experiment types,
H3K4me3 and H3K36me3. H3K4me3 is a histone modification which typically has a sharp
peak pattern (10–20kb peaks). H3K36me3 is a different histone modification which typi-
cally has a broad peak pattern with longer peaks (see Figure 4). Both types of peaks are
of biological interest because they indicate genomic regions with active genes (Greer and
Shi, 2012). For each experiment there are several samples of different cell types (e.g. the
H3K36me3 AM immune data set consists of 15 tcell samples, 5 monocyte samples, and 1
bcell sample). Accurate peak detection in these data is important in order to characterize
active regions in each sample and cell type (e.g. H3K36me3 peak predicted at a particular
genomic region in tcell but not in monocyte samples). Labels in these data were deter-
mined by an expert biologist, who used visual inspection of the data to determine presence
or absence of significant peaks in particular genomic regions.

5.2. Algorithms to Compare and Rules for Defining Peaks

We used the following changepoint detection algorithms to compute models with K ∈
{1, . . . , 19} segments (0 to 9 peaks) on each of the 2752 labeled ChIP-seq data sets:

Generalized Pruned Dynamic Programming Algorithm (GPDPA) Proposed algo-
rithm that computes the optimal solution to the up-down constrained problem (3). R
package PeakSegOptimal.

Pruned Dynamic Programming Algorithm (PDPA) Baseline that computes the op-
timal solution to the unconstrained problem (2). R package Segmentor3IsBack.

Constrained Dynamic Programming Algorithm (CDPA) Baseline that computes an
approximate solution to the up-down constrained problem (3). R package PeakSegDP.

Although in the up-down constrained model (3), all even-numbered segments are sup-
posed to be peaks (with a change up before and a change down after), it is possible that
an equality constraint is active (with an equal segment mean before or after). One real
data example of this is shown in Figure 5, which effectively has two consecutive up changes
for models with K ∈ {7, 9} segments. The unconstrained problem (2) also may result in
a model with several consecutive up changes (Figure 1). In general, when the model does
not satisfy the strict up-down constraints, we consider three rules for defining the predicted
peaks:

Join Peaks are defined by joining segments with active equality constraints. Equivalent to
defining background on every segment with a change down before and a change up
after; and defining peaks everywhere else.

2. http://members.cbio.mines-paristech.fr/~thocking/chip-seq-chunk-db/

17



Hocking, Rigaill, Fearnhead and Bourque

Join rule
Remove rule

Join rule
Remove rule

Join rule
Remove rule

Join rule
Remove rule

0
40
80

120

0
40
80

120

0
40
80

120

0
40
80

120

K
=

3
segm

en
ts

K
=

5
segm

en
ts

K
=

7
segm

en
ts

K
=

9
seg

m
en

ts

138295 138300 138305 138310 138315

Position on chromosome

A
li
g
n
ed

D
N

A
se

q
u
en

ce
re

a
d
s

constraint

equality

inequality

Figure 5: For piecewise constant mean models (dark blue) with active equality constraints,
two different rules are used to define peaks (light blue). Join: segments adjacent
to each equality constraint are joined to form a single peak. Remove: segments
adjacent to each equality constraint are removed from the list of predicted peaks.

Remove A peak is removed if it occurs on a segment with an active equality constraint.
Equivalent to defining a peak on every segment with a change up before and a change
down after; and defining background everywhere else.

Ignore Completely ignore any model that contains at least one infeasible change (active
equality constraints or consecutive changes in the same direction).

Examples of peaks defined using these rules are shown in Figure 5. Note that the Ignore
rule would only consider peak models with K ∈ {3, 5} segments in these data, because the
other K have active equality constraints.

We additionally compare with two unsupervised baseline algorithms from the bioinfor-
matics literature.

MACS is a heuristic algorithm with unknown time complexity from the bioinformatics
literature (Zhang et al., 2008). We consider it as a baseline because it has been shown
to achieve state-of-the-art peak detection accuracy for sharp H3K4me3 histone mark
data (Hocking et al., 2015). We computed peaks using 53 different qvalue parameters
from 0 (few peaks) to 0.8 (many peaks). We kept other parameters at default values.

HMCanBroad is a another heuristic algorithm with unknown time complexity (Ashoor
et al., 2013). We consider it as a baseline because it has been shown to achieve state-
of-the-art peak detection accuracy for broad H3K36me3 histone mark data (Hocking
et al., 2015). We computed peaks using 112 different finalThreshold parameters from
10−10 (few peaks) to 105 (many peaks). We used mergeDistance=1000 (recommended
by authors for broad peaks), and kept other parameters at default values.
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5.3. GPDPA is More Often Feasible/Optimal than Other Algorithms

In this section we compare the changepoint algorithms (PDPA, CDPA, GPDPA) in terms
of optimality and feasibility for the up-down constrained segmentation problem (with strict
inequality constraints). For each of the 2752 labeled count data vectors, we attempt to
compute models with 0, ..., 9 peaks, so there are a total of 27520 possible models for each
algorithm.

The heuristic CDPA computed the most feasible models (27469/27520=99.8%), followed
by our proposed GPDPA (21278/27520=77.3%), and the unconstrained PDPA computed
the fewest (8106/27520=29.4%). The heuristic CDPA was sub-optimal for 7246/27520 =
26.3% models (the proposed GPDPA was used to compute the optimal solution). For
1032/7246 of these, the optimal solution was feasible for the strict inequality constraints,
and was computed by our proposed GPDPA but not the unconstrained PDPA. These results
suggest that in ChIP-seq data sets, our proposed GPDPA is more accurate than the heuristic
CPDA, in terms of the Poisson likelihood. Furthermore, these results suggest that GPDPA
is more useful than the unconstrained PDPA, since there are many cases for which PDPA
does not compute models that are feasible for the strict up-down inequality constrants (but
GPDPA does).

5.4. GPDPA Fits Labels Better than Baselines in Terms of Min Train Error

In the last section we examined how the algorithms fit the data sets using the Poisson
loss. However the more important measure of fit in these benchmark data is the num-
ber of incorrect labels Lm. We used the labels to compare the algorithms in terms of
minimum train error, as follows. For each problem m, and a given algorithm A, we com-
puted a sequence of P peak models cA1 (ym), . . . , cAP (ym) (varying number of segments K
for changepoint algorithms, qvalue/finalThreshold for baselines). For each problem m and
peak model p ∈ {1, . . . , P}, we computed the number of incorrect labels E[cAp (ym), Lm].
For each problem m we then compute the minimum incorrect labels over all parameters,
EAm = minpE[cAp (ym), Lm].

An algorithm A with a perfect fit to the labels would be able to achieve EAm = 0 errors
for each problem m. This is not always possible in real data, due to the distribution of
the labels, and the definition of the models. However, we were interested to determine
which algorithms were able to achieve the fewest number of incorrect labels. In order
to determine which algorithms were best able to fit the labels, we therefore compare the
distribution of min error differences Eam−EAm between pairs of algorithms a,A in Figure 6.
Each comparison shown results in a statistically significant difference (p-value < 10−4,
two-sided paired Wilcoxon signed rank test).

Because it enforces the up-down constraints, we expected the GPDPA to be more accu-
rate than the unconstrained PDPA. In agreement with our expectation, we observed that
the up-down constrained GPDPA is indeed more accurate than the unconstrained PDPA
(top panel of Figure 6), using any of the three peak definition rules (Ignore, Join, Remove).
This is strong evidence that the up-down constraint is essential for accurate peak detection.

We expected the GPDPA to be just as accurate as the CDPA, and more accurate than
the other baselines. In fact, we observed that the proposed GPDPA (with Remove rule)
is generally more accurate than all the other algorithms (MACS, HMCanBroad, CDPA,
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Figure 6: Distribution of differences in min label error among the 2752 labeled segmentation
problems in the ChIP-seq benchmark. Top: up-down constrained GPDPA is
more accurate than unconstrained PDPA. Middle: GPDPA with Remove rule
is more accurate than baseline methods MACS, HMCanBroad, CDPA. Bottom:
Remove rule is more accurate than Join, which is more accurate than Ignore.

middle panel of Figure 6). The largest difference was for HMCanBroad (GPDPA better for
1219 problems, no difference for 1494 problems, HMCanBroad better for 39 problems). The
smallest difference was for CDPA (GPDPA better for 48 problems, no difference for 2689
problems, CDPA better for 15 problems). Overall these data provide strong evidence that
the proposed GPDPA detects peaks more accurately than previous baseline algorithms.

When the GPDPA model has active equality constraints, we proposed three rules for
defining peaks (Ignore, Remove, Join, as discussed in Section 5.2), and we did not have any
expectation as to which of these rules would be most accurate in real data. We observed
that the Join rule is always at least as accurate as the Ignore rule (bottom panel of Figure 6),
which indicates that the Ignore rule should not be used in practice. Furthermore we observed
that Remove is more accurate than Join (Remove better for 51 problems, no difference
for 2683 problems, Join better for 18 problems). These data suggest that the Remove
rule should be used for accurate peak detection when the GPDPA solution contains active
equality constraints. So for the computational cross-validation experiments in the next
sections, we used the Remove rule.

5.5. GPDPA has Log-Linear Empirical Time Complexity

Overall there are 2752 labeled count data vectors ym to segment, varying in size from n = 87
to n = 263169 data. For each count data vector ym, we ran each algorithm (CDPA, PDPA,
GDPDA) with a maximum of K = 19 segments (9 peaks, which is more than enough in
these relatively small data sets). To analyze the empirical time complexity, we recorded the
number of intervals stored in the Ck,t cost functions (Section 3.7), as well as the computation
time in seconds.

As in the PDPA, the time complexity of our proposed GPDPA isO(KnI), which depends
on the number of intervals I (candidate changepoints) stored in the Ck,t cost functions

20



Constrained Dynamic Programming for Peak Detection

max

median, quartiles

16 intervals

10

100

253

1000 1000087 263169

n = data points to segment

I
=

in
te

rv
a
ls

st
or

ed

1 second

1 minute

1 hour

GPDPA

O(n log n)

PDPA

O(n log n)

CDPA

O(n2)

1e-01

1e+01

1e+03

1000 1000087 263169

n = data points to segment

se
co

n
d

s

Figure 7: Empirical speed analysis on 2752 count data vectors from the histone mark ChIP-
seq benchmark. For each vector we ran the GPDPA with the up-down constraint
and a max of K = 19 segments. The expected time complexity is O(KnI) where
I is the average number of intervals (function pieces; candidate changepoints)
stored in the Ck,t functions. Left: number of intervals stored is I = O(log n)
(median, inter-quartile range, and maximum over all data sets of a given size n).
Right: GPDPA time complexity is O(n log n) (median line and min/max band).

(Rigaill, 2015). We observed that the number of intervals stored by the GPDPA increases
as a sub-linear function of the number of data points n (left panel of Figure 7). For the
largest data set (n = 263169), the algorithm stored only mean=16 and maximum=43
intervals (mean and maximium computed over all cost functions Ck,t so is deterministic for
a given data set). The most intervals stored in any single Ck,t function was 253 for one data
set with n = 7776. These results suggest that our proposed GPDPA stores on average only
O(log n) intervals (possible changepoints), as in the original PDPA. The overall empirical
time complexity is thus O(Kn log n) for K segments and n data points.

We recorded the timings of each algorithm for computing models with up to K = 19
segments. Since K is constant, the expected time complexity was O(n2) for the CDPA
and O(n log n) for the PDPA and GPDPA. In agreement with these expectations, our
proposed GPDPA shows O(n log n) asymptotic timings similar to the PDPA (right panel of
Figure 7). The right panel of Figure 7 also shows that the O(n2) CDPA algorithm is slower
than the other two algorithms, especially for larger data sets. For the largest count data
vector (n = 263169), the CDPA took over two hours, but the GPDPA took only about two
minutes. Our proposed GPDPA is nearly as fast as MACS (Zhang et al., 2008), a heuristic
from the bioinformatics literature which took about 1 minute to compute 10 peak models
for this data set.

The total computation time to process all 2752 count data vectors was 156 hours for
the CDPA, and only 6 hours for the GPDPA (26 times faster). Overall, these results
suggest that our proposed GPDPA enjoys O(n log n) time complexity in ChIP-seq data,
which makes it possible to use for the very large data sets that are now common in the field
of genomics.

21



Hocking, Rigaill, Fearnhead and Bourque

Broad
H3K36me3

AM
immune

Broad
H3K36me3

TDH
immune

Broad
H3K36me3

TDH
other

Sharp
H3K4me3

PGP
immune

Sharp
H3K4me3

TDH
immune

Sharp
H3K4me3

TDH
other

Sharp
H3K4me3

XJ
immune

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MACS(baseline)
HMCanBroad(baseline)

PDPA(unconstrained)
CDPA(previous best)

GPDPA(proposed)

0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0
Test AUC (larger values indicate more accurate peak detection)

A
lg

or
ith

m

Figure 8: Four-fold cross-validation was used to estimate peak detection accuracy (black
points show predicted AUC in each test fold). Each panel shows one of seven
ChIP-seq data sets, labeled by pattern/experiment (Broad H3K36me3), labeler
(AM), and cell types (immune). It is clear that the proposed GPDPA is just as
accurate as the previous state-of-the-art CDPA, and both are more accurate than
the other baseline methods.

5.6. GPDPA is More Accurate than Baselines in Terms of Test AUC

We wanted to compare the peak detection accuracy of our proposed algorithm with others
from the bioinformatics literature, which typically report many false positive peaks using
default parameter settings. In a typical analysis, to control the false positive rate, the default
peak list is pruned by only considering the top p peaks, according to some likelihood or
significance threshold. For example, the MACS algorithm of Zhang et al. (2008) uses a q-
value threshold parameter, and the HMCanBroad algorithm of Ashoor et al. (2013) uses a
finalThreshold parameter (higher thresholds result in more false positives). For changepoint
models with a learned penalty function f (Section 4.2), the threshold is a constant β ∈ R
which is added when selecting the number of segments κm(exp(f(xm)+β)) (larger constants
β result in larger penalties, fewer segments, and fewer false positives).

To account for this pruning step in our evaluation, we used Receiver Operating Charac-
teristic (ROC) curve analysis. For each threshold parameter, we computed the false positive
rate and true positive rate using the labels, which results in one point on the ROC curve.
The area under the curve (AUC) is computed by varying the threshold parameter over its
entire range (from a complete list of peaks with many false and true positives, to a com-
pletely pruned/empty list of peaks with FPR=TPR=0, see Supplementary Figure 3 for an
illustration). Because the largest peak list does not necessarily predict peaks in all positive
labels, we linearly extrapolate each ROC curve to TPR=FPR=1 in order to compute AUC
(see Supplementary Figure 3 for an illustration of how the ROC/AUC is computed). To
estimate the variance of AUC on each data set, we use four-fold cross-validation. Each la-
beled count data vector was randomly assigned a fold ID from 1 to 4 and then ROC curves
and test AUC were computed for each fold ID.

In each of the seven data sets in the histone benchmark, we performed four-fold cross-
validation and computed test AUC to estimate the accuracy of each algorithm. For the
changepoint models, we learned penalty functions using the labels in each train set (Sec-
tion 4.2). The previous algorithm with state-of-the-art accuracy on this benchmark was the
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CDPA, the heuristic that enforces the up-down constraint on segment means. We expected
our proposed GPDPA to perform just as well, since it also enforces that constraint. In
agreement with our expectation, we observed that the CDPA and GPDPA yield compara-
ble test AUC in all seven data sets (Figure 8). In five of the seven data sets, there was
no significant difference in test AUC (p-value > 0.2 in two-sided paired t3-test). In one of
the two other data sets (H3K4me3 PGP immune), the GPDPA (mean AUC=0.873) was
slightly less accurate than the CDPA (mean AUC=0.887, p-value=0.056); in the other data
set (H3K4me3 XJ immune) the GPDPA (mean AUC=0.913) was significantly more accu-
rate than the CDPA (mean AUC=0.897, p-value=0.02). In contrast, the unconstrained
PDPA had significantly lower test AUC in all seven data sets (p-value < 0.04), because
of lower true positive rates. These results provide convincing evidence that the up-down
constraint is necessary for optimal peak detection accuracy.

Since the baseline HMCanBroad algorithm was designed for data with a broad peak
pattern, we expected it to perform well in the H3K36me3 data. In agreement with this
expectation, HMCanBroad showed state-of-the-art test AUC in two H3K36me3 data sets
(broad peak pattern), but was very inaccurate in four H3K4me3 data sets (sharp peak
pattern). We expected the baseline MACS algorithm to perform well in the H3K4me3 data
sets, since it was designed for data with a sharp peak pattern. In contrast to this expectation,
MACS had test AUC values much lower than the optimal changepoint algorithms in all
seven data sets (Figure 8). These results suggest that for detecting peaks in ChIP-seq
data, the optimal changepoint algorithms are more accurate than the heuristics from the
bioinformatics literature.

5.7. Learned Penalties Have Higher Test AUC than Oracle Penalties

In Section 4.2 we proposed to select the number of segments in changepoint models using
two kinds of model complexity functions C. The oracle model complexity (23) of Cleynen
and Lebarbier (2014) is a relatively complex expression motivated by statistical arguments;
the linear model complexity simply measures the number of segments. In this section we
compare these methods in terms of test AUC.

We consider learning a one-parameter penalty function consisting of a constant penalty
λ, given either the linear or oracle model complexity function. We expected the oracle
model complexity to result in higher test AUC, because of its statistical motivation. The
second row of Supplementary Figure 4 plots the distribution of test AUC values for one
model complexity function versus the other. Contrary to our expectation, for all three
changepoint algorithms (CDPA, GPDPA, PDPA), the linear and oracle penalties showed
no significant difference in test AUC (mean difference from 0.00004 to 0.0006, p-value > 0.05
in paired t27-test). These data indicate that, despite the statistical arguments that motivate
the oracle model complexity, it is no more accurate than the simple linear model complexity
for peak detection in real genomic data.

We also compare learning a penalty function with either one or multiple parameters,
given the linear model complexity function. We expected higher test AUC for the penalty
function with multiple parameters. The first row of Supplementary Figure 4 plots the
distribution of test AUC values for one penalty function versus the other. In agreement
with our expectation, for all three changepoint algorithms, the multi-parameter penalty
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function has a slightly larger test AUC (mean difference from 0.003 to 0.005, p-value < 0.07).
These data indicate that learning a multi-parameter penalty function should be preferred
for accurate peak detection in genomic data.

5.8. Supervised is More Accurate than Unsupervised Model Training

Unsupervised algorithms are common for peak detection in genomic data, and our change-
point penalty learning method is to the best of our knowledge the first supervised method
for this problem. We therefore wanted to demonstrate the superior accuracy of the super-
vised approach. In this section, we compare supervised and unsupervised algorithms in
terms of percent correctly predicted labels in four-fold cross-validation experiments on each
of the seven data sets.

First, we compared supervised single-parameter learning (grid search on a peak de-
tection threshold) with unsupervised learning (keeping that threshold at the suggested
default value). For unsupervised learning, default significance thresholds were used for
HMCanBroad (finalThreshold=10) and MACS (qvalue=0.05); elbow/hinge heuristic for or-
acle penalty was used for PDPA/CDPA/GPDPA, as implemented in Segmentor3IsBack R
package (Cleynen and Lebarbier, 2014). We expected that supervised learning would result
in more accurate peak predictions. In agreement with these expectations, we observed that
supervised learning had significantly higher test accuracy than unsupervised learning for
almost every algorithm and data set (Supplementary Figure 5). The only exception was
in data set H3K36me3 TDH other, for which the unsupervised GPDPA and CDPA were
slightly more accurate (mean difference of 6.9–8.2% accuracy, not significant, p-value > 0.3
in paired t3-test). This makes sense because that data set has the fewest labels (200) to
learn from, whereas the other data sets had at least three times as many labels (630–3834).
Overall these data suggest that supervised learning should be preferred for accurate peak
detection, especially when there are several hundred or more labels.

We also expected that learning multi-parameter penalty functions would result in higher
percent accuracy rates than single-parameter penalty functions. In agreement with this ex-
pectation, we observed that multiple parameters was at least as accurate as single parame-
ters for every data set and algorithm (Supplementary Figure 5). For example, the GPDPA
with multiple penalty parameters was significantly more accurate on two data sets (mean
difference of 1–3% accuracy, p-value < 0.05 in paired t3-test). Overall these data suggest
that the current state-of-the-art for peak detection in labeled genomic data sets is achieved
by the GPDPA with multi-parameter supervised penalty learning.

6. Discussion and Conclusions

Algorithms for changepoint detection can be classified in terms of time complexity, op-
timality, constraints, and pruning techniques (Table 1). In this paper, we investigated
generalizing the functional pruning technique originally discovered by Rigaill (2010) and
Johnson (2011). Our main contribution was showing that the functional pruning technique
can be used to compute optimal changepoints subject to constraints on the directions of
changes (Section 3, Theorem 3), which results in an efficient Generalized Pruned Dynamic
Programming Algorithm (GPDPA).
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We showed that the GPDPA enjoys the same log-linear O(Kn log n) time complexity
as the original unconstrained PDPA, when applied to peak detection in ChIP-seq data sets
(Section 5.5, Figure 7). We also observed that the up-down constrained GPDPA is much
more accurate than the unconstrained PDPA, in terms of minimum train error (Section 5.4,
Figure 6), test AUC (Section 5.6, Figure 8), and test accuracy (Section 5.8, Supplementary
Figure 5). These results suggest that the up-down constraint is necessary for computing
a changepoint model with optimal peak detection accuracy. Indeed, we observed that the
GPDPA enjoys the same state-of-the-art accuracy as the previous best, the relatively slow
quadratic O(Kn2) time CDPA.

We observed that the heuristic algorithms which are popular in the bioinformatics liter-
ature (MACS, HMCanBroad) are much less accurate than the proposed GPDPA, in terms
of minimum train error, test AUC, and test accuracy. In the past these sub-optimal heuris-
tics have been preferred because of their speed. For example, the CDPA took 2 hours
to compute 10 peak models in the largest data set in the ChIP-seq benchmark, whereas
the GPDPA took 2 minutes, and the MACS heuristic took 1 minute. Using our proposed
GPDPA, it is now possible to compute highly accurate models in an amount of time that is
comparable to heuristic algorithms. Finally, we have recently investigated a penalized for-
mulation of the constrained changepoint problem that results in further speedups (Hocking
et al., 2018).

From a modeling perspective, the approach we implement assumes that the data starts
and ends in a background segment. This is motivated by the simplicity and ease with which
the results can be processed—we have a simple rule that odd numbered segments are back-
ground and even numbered ones are peaks. In our experience this does well in practice, in
part because most of the genome is background noise. Our approach also assumes a Poisson
model, which is simple but other loss functions may be more appropriate. The algorithmic
ideas presented in this paper can be extended to include other loss functions, and data that
starts or ends in a peak. In fact, inference of these models can be done with the recently
released gfpop R package of Runge et al. (2020) (free/open-source implementation available
on https://github.com/vrunge/gfpop). In the context of the supervised changepoint
detection, learning the loss function (e.g. the over-dispersion parameter of the Negative
Binomial) or the structure of the constraints is an interesting avenue for future work.

One can imagine jointly segmenting multiple samples, in a model that looks for common
peak start/end positions across samples. Recent work in this direction has been proposed
(Hocking and Bourque, 2020), but the functional pruning algorithms presented in this paper
are not easily adaptable to the multi-sample case (it would require exact representation of
a multi-variate cost function, which is much more complicated than the univariate cost
functions presented in this paper).

The framework we have introduced for estimating changepoints when there are con-
straints on parameters of neighboring segments can be applied in other fields than genomics.
For example, ideas from an early draft of this paper (Hocking et al., 2017) have already been
used to obtain an efficient and optimal algorithm for computing a model with non-decreasing
change constraints in neuro spike train data (Jewell et al., 2019). That model uses an expo-
nential decreasing mean model for each segment (rather than the constant mean model we
consider in this paper); future work may consider triangular or other shapes for the mean
model in ChIP-seq data. More generally, constrained changepoint detection models will be
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interesting to explore in the context of other data such as time series and statistical process
monitoring.

7. Reproducible Research Statement

The source code and data used to create this manuscript (including all figures) is available
at https://github.com/tdhock/PeakSegFPOP-paper
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Supplementary Figure 1: background level varies across a sample
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Caption: Hidden Markov Models have a uniform background/noise mean level, rather
than a new segment mean for every background segment (as in the model we proposed). We
have observed different mean levels in different background/noise regions in the same ChIP-
seq sample, which suggests that the uniform background/noise mean model would not be
appropriate in these data. Left: we computed mean coverage in each sample and genomic
region with the noPeaks label (which means a biologist has observed that there are no peaks
in that region, so it must only contain background noise), and observed that the mean is
highly variable between regions of the genome. For example in sample McGill0028, the
mean coverage in background/noise regions ranges from 1.78 to 6.76, which suggests that a
uniform/constant mean would not be a good model of these data. Right: for one sample,
we computed peaks throughout the genome, then computed mean coverage in each peak and
mean coverage in nearby background. We observed that the mean of the nearby background
increases as the mean of the peak increases, which suggests that a uniform/constant mean
would not be a good model of these data.
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Supplementary Figure 2: details of example where CDPA fails

Consider computing the 5 segment up-down constrained model for the set of 6 data points
y = [3, 9, 18, 15, 20, 2] using the Poisson loss `(yi,m) = m− yi logm.

• The unconstrained PDPA computes the model m = [3, 9, 16.5, 16.5, 20, 2] which has
a total Poisson loss of ≈ −109.8827. Its two increasing changes followed by two
decreasing changes are not feasible for the up-down constrained problem.

• The up-down constrained GPDPA computes the model m = [6, 6, 18, 15, 20, 2] which
has a total Poisson Loss of ≈ −108.4495. Each up change is followed by a down
change, so it is feasible for the up-down constrained problem.

• The CDPA returns no feasible model with 5 segments.

To see why the CDPA fails, we give the detailed calculations of the GPDPA and CDPA
below. The first cost function computed by the GPDPA is the Poisson loss of the first data
point:

C1,1(u1) = `(3, u1) = u1 − 3 log u1 (26)

The minimum of C1,1 is at 3, so its min-less operator is convex for u2 ≤ 3, and constant for
u2 ≥ 3:

C≤1,1(u2) =

{
C1,1(u2) = u2 − 3 log u2 if u2 ∈ [2, 3], u1 = u2

C1,1(3) = −0.296 if u2 ∈ [3, 20], u1 = 3
(27)

The second cost function is the total Poisson loss of the first two data points:

C1,2(u1) = `(9, u1) + C1,1(u1) = 2u1 − 12 log u1 (28)

The minimum of C1,2 is at 6, so its min-less operator is convex for u2 ≤ 6, and constant for
u2 ≥ 6:

C≤1,2(u2) =

{
C1,2(u2) = 2u2 − 12 log u2 if u2 ∈ [2, 6], u1 = u2

C1,2(6) = −9.501 if u2 ∈ [6, 20], u1 = 6
(29)

The best cost in 2 segments up to data point 2 is:

C2,2(u2) = `(9, u2) + C≤1,1(u2) =

{
2u2 − 12 log u2 if u2 ∈ [2, 3], u1 = u2

u2 − 9 log u2 − 0.296 if u2 ∈ [3, 20], u1 = 3
(30)

Note in the equation above that a non-decreasing change between data points 1 and 2 is
enforced by the min-less operator C≤1,1.

The best cost in 2 segments up to data point 3 is defined as:

C2,3(u2) = `(18, u2) + min

{
C2,2(u2) if t1 = 1

C≤1,2(u2) if t1 = 2
(31)
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The GPDPA computes the roots of C2,2(u2)−C≤1,2(u2) in order to find their intersection
at u2 ≈ 15.41, so the best cost in 2 segments up to data point 3 simplifies to:

C2,3(u2) = `(18, u2) +

{
C2,2(u2) if u2 ∈ [2, 15.41], t1 = 1

C≤1,2(u2) if u2 ∈ [15.41, 20], t1 = 2
(32)

=


3u2 − 30 log u2 if u2 ∈ [2, 3], u1 = u2, t1 = 1

2u2 − 27 log u2 − 0.296 if u2 ∈ [3, 15.41], u1 = 3, t1 = 1

u2 − 18 log u2 − 9.501 if u2 ∈ [15.41, 20], u1 = 6, t1 = 2

(33)

Caption: The cost function above is shown as the black curve in the figure below. The part
on the left (u2 ≤ 15.41) in blue is the cost of a non-decreasing change after the first data
point (t1 = 1). The part on the right in violet (u2 ≥ 15.41) is the cost of a non-decreasing
change after the second data point (t2 = 2).
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The GPDPA then computes the functional min cost C≥2,3(u3) for all possible values of
the mean parameter u3 (shown as grey function in plot above):

C≥2,3(u3) =


−43.57 if u3 ∈ [2, 13.5], u2 = 13.5, t1 = 1

2u3 − 27 log u3 − 0.296 if u3 ∈ [13.5, 14.25], u2 = u3, t1 = 1

−43.53 if u3 ∈ [14.25, 18], u2 = 18, t1 = 2

u3 − 18 log u3 − 9.501 if u3 ∈ [18, 20], u2 = u3, t1 = 2

(34)

Since the optimal cost is computed for both possible changepoints, and all possible mean
values, the GPDPA is able to compute the optimal solution (which occurs at u3 = 15, u2 =
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18, u1 = 6, t1 = 2, but is unknown until the algorithm computes the total cost of all the
data points C5,6). In contrast, the CDPA computes a scalar min cost of a non-decreasing
change after the first data point (red circle in the plot above, u2 = 13.5, u1 = 3, t1 = 1),
and discards the possibility of a non-decreasing change after the second data point (which
ends up being optimal). The CDPA is thus a greedy algorithm.
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Supplementary Figure 3: ROC curves for peak detection accuracy

We wanted to compare the peak detection accuracy of our proposed algorithm with others
from the bioinformatics literature, which typically report many false positive peaks using
default parameter settings. Therefore in a typical analysis, to control the false positive
rate, the default peak list is pruned by only considering the top p peaks, according to
some likelihood or significance threshold. For example, the MACS algorithm uses a q-value
threshold parameter, and HMCanBroad uses a finalThreshold parameter (higher thresholds
result in more false positives).

Caption: To account for this pruning step in our evaluation, we used Receiver Operat-
ing Characteristic (ROC) curve analysis. For each threshold parameter, we computed the
false positive rate and true positive rate using the labels, which results in one point on the
ROC curve. The area under the curve (AUC) is computed by varying the threshold param-
eter over its entire range (from a complete list of peaks with many false and true positives,
to a completely pruned/empty list of peaks with FPR=TPR=0). Note that even with the
largest number of predicted peaks in each model, not all labels achieve their max possible
TP and FP, because the largest peak list does not necessarily predict peaks in all labels.
We therefore linearly extrapolate each ROC curve to TPR=FPR=1 in order to compute
AUC (dotted lines in plot below).
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Note that the ROC curves are not necessarily monotonic, because the peak pruning is
not necessarily hierarchical. For example the GPDPA computes optimal models from 0 to
9 peaks for each problem; the peak present in the optimal model with 1 peak may not be
present in the optimal model with 2 or more peaks.

Supplementary Figure 4: test AUC comparison between penalty
functions

CDPA(previous best) GPDPA(proposed) PDPA(unconstrained)
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Caption: Test AUC of one algorithm is plotted against another algorithm, in order to
visualize whether or not there are any significant differences between algorithms. Each dot
represents the accuracy with respect to a single train/test split. Mean difference is shown
as well as p-value in paired t-test.

We proposed to select the number of segments in changepoint models using two kinds
of model complexity functions C. The oracle model complexity is a relatively complex
expression motivated by statistical arguments; the linear model complexity simply measures
the number of segments. In this section we compare these methods in terms of test AUC.

We consider learning a one-parameter penalty function consisting of a constant penalty
λ, given either the linear or oracle model complexity function. We expected the oracle
model complexity to result in higher test AUC, because of its statistical motivation. The
second row of Supplementary Figure 4 plots the distribution of test AUC values for one
model complexity function versus the other. Contrary to our expectation, for all three
changepoint algorithms (CDPA, GPDPA, PDPA), the linear and oracle penalties showed
no significant difference in test AUC (mean difference from 0.00004 to 0.0006, p-value > 0.05
in paired t27-test). These data indicate that, despite the statistical arguments that motivate
the oracle model complexity, it is not more accurate than the simple linear model complexity
for peak detection in real genomic data.

We also compare learning a penalty function with either one or multiple parameters,
given the linear model complexity function. We expected higher test AUC for the penalty
function with multiple parameters. The first row of Supplementary Figure 4 plots the
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distribution of test AUC values for one penalty function versus the other. In agreement
with our expectation, for all three changepoint algorithms, the multi-parameter penalty
function has a slightly larger test AUC (mean difference from 0.002 to 0.006, p-value < 0.07).
These data indicate that learning a multi-parameter penalty function should be preferred
for accurate peak detection in genomic data.
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Supplementary Figure 5: test accuracy for peak models
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Caption: Four-fold cross-validation was used to estimate peak prediction accuracy.
Each panel shows one of seven ChIP-seq data sets, labeled by pattern/experiment (Broad
H3K36me3), labeler (AM), cell types (immune), and number of labels. It is clear that
supervised models are generally more accurate than unsupervised, and multi-parameter
models are generally more accurate than single parameter models.

8. Implementation details

8.1. GPDPA pseudocode

In this section we give more detailed pseudocode for our proposed Generalized Pruned
Dynamic Programming Algorithm (GPDPA). We propose the following data structures
and sub-routines for the computation:

• FunctionPiece: a data structure which represents one piece of a Ck,t(u) cost function
(for one interval of mean values u). It has coefficients which depend on the convex loss
function ` (for the square loss it has three real-valued coefficients a, b, c which define a
function au2 + bu+ c). It also has two real-valued elements for min/max mean values
[u, u] of this interval, meaning the function Ck,t(u) = au2 + bu + c for all u ∈ [u, u].
Finally it stores a previous segment endpoint t′ (integer) and mean u′ (real).

• FunctionPieceList: an ordered list of FunctionPiece objects, which exactly stores a
cost function Ck,t(u) for all values of last segment mean u.

• OnePiece(y, u, u): a sub-routine that initializes a FunctionPieceList with just one
FunctionPiece `(y, u) defined on [u, u].

• MinLess(t, f): an algorithm that inputs a changepoint and a FunctionPieceList, and
outputs the corresponding min-less operator f≤ (another FunctionPieceList), with
the previous changepoint set to t′ = t for each of its pieces. This algorithm also needs
to store the previous mean value u′ for each of the function pieces (see pseudocode
below).

• MinOfTwo(f1, f2): an algorithm that inputs two FunctionPieceList objects, and out-
puts another FunctionPieceList object which is their minimum.
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• ArgMin(f): an algorithm that inputs a FunctionPieceList and outputs three values:
the optimal mean u∗ = arg minu f(u), the previous segment end t′ and mean u′.

• FindMean(u, f) an algorithm that inputs a mean value and a FunctionPieceList. It
finds the FunctionPiece in f with mean u ∈ [u, u] contained in its interval, then
outputs the previous segment end t′ and mean u′ stored in that FunctionPiece.

The above data structures and sub-routines are used in the following pseudo-code, which
describes the GPDPA for solving the up-down constrained changepoint problem with K
segments.

Algorithm 2 Generalized Pruned Dynamic Programming Algorithm (GPDPA)

1: Input: data set y ∈ Rn, maximum number of segments K ∈ {2, . . . , n}.
2: Output: matrices of optimal segment means U ∈ RK×K and ends T ∈ {1, . . . , n}K×K
3: Compute min y and max y of y.
4: C1,1 ← OnePiece(y1, y, y)
5: for data points t from 2 to n:
6: C1,t ← OnePiece(yt, y, y) + C1,t−1
7: for segments k from 2 to K: for data points t from k to n: // dynamic programming
8: MinLessOrMore← MinLess if k is even, else MinMore
9: min prev← MinLessOrMore(t− 1, Ck−1,t−1)

10: min new← min prev if t = k, else MinOfTwo(min prev, Ck,t−1)
11: Ck,t ← min new + OnePiece(yt, y, y)
12: for segments k from 1 to K: // decoding for every model size k
13: u∗, t′, u′ ← ArgMin(Ck,n)
14: Uk,k ← u∗; Tk,k ← t′ // store mean of segment k and end of segment k − 1
15: for segment s from k − 1 to 1: // decoding for every segment s < k
16: if u′ <∞: u∗ ← u′ // equality constraint active, us = us+1

17: t′, u′ ← FindMean(u∗, Cs,t′)
18: Uk,s ← u∗; Tk,s ← t′ // store mean of segment s and end of segment s− 1

Algorithm 2 begins by computing the min/max on line 3. The main storage of the
algorithm is Ck,t, which should be initialized as a K × n array of empty FunctionPieceList
objects. The computation of C1,t for all t occurs on lines 4–6.

The dynamic programming updates occur in the for loops on lines 7–11. Line 9 uses the
MinLess (or MinMore) sub-routine to compute the temporary FunctionPieceList min prev
(which represents the function C≤k−1,t−1 or C≥k−1,t−1). Line 10 sets the temporary Function-
PieceList min new to the cost of the only possible changepoint if t = k; otherwise, it uses
the MinOfTwo sub-routine to compute the cost of the best changepoint for every possible
mean value. Line 11 adds the cost of data point t, and stores the resulting FunctionPieceList
in Ck,t.

The decoding of the optimal segment mean U (a K × K array of real numbers) and
end T (a K ×K array of integers) variables occurs in the for loops on lines 12–18. For a
given model size k, the decoding begins on line 13 by using the ArgMin sub-routine to solve
u∗ = arg minuCk,n(u) (the optimal values for the previous segment end t′ and mean u′ are
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also returned). Now we know that u∗ is the optimal mean of the last (k-th) segment, which
occurs from data point t′ + 1 to n. These values are stored in Uk,k and Tk,k (line 14). And
we already know that the optimal mean of segment k − 1 is u′. Note that the u′ =∞ flag
means that the equality constraint is active (line 16). The decoding of the other segments
s < k proceeds using the FindMean sub-routine (line 17). It takes the cost Cs,t′ of the best
model in s segments up to data point t′, finds the FunctionPiece that stores the cost of u∗,
and returns the new optimal values of the previous segment end t′ and mean u′. The mean
of segment s is stored in Uk,s and the end of segment s− 1 is stored in Tk,s (line 18).

The time complexity of Algorithm 2 is O(KnI) where I is the complexity of the MinLess
and MinOfTwo sub-routines, which is linear in the number of intervals (FunctionPiece
objects) that are used to represent the cost functions. There are pathological synthetic data
sets for which the number of intervals I = O(n), implying a time complexity of O(Kn2).
However, the average number of intervals in real data sets is empirically I = O(log n), so
the average time complexity of Algorithm 2 is O(Kn log n).

8.2. Min-less algorithm

The following sub-routines are used to implement the MinLess sub-routine.

• GetCost(p, u): an algorithm that takes a FunctionPiece object p, and a mean value
u, and computes the cost at u. For a square loss FunctionPiece p with coefficients
a, b, c ∈ R, we have GetCost(p, u) = au2 + bu+ c.

• OptimalMean(p): an algorithm that takes one FunctionPiece object, and computes
the optimal mean value. For a square loss FunctionPiece p we have OptimalMean(p) =
−b/(2a).

• ComputeRoots(p, d): an algorithm that takes one FunctionPiece object, and computes
the solutions to p(u) = d. For the square loss we propose to use the quadratic formula.
For other convex losses that do not have closed form expressions for their roots, we
propose to use Newton’s root finding method. Note that for some constants d there
are no roots, and the algorithm needs to report that.

• f.push piece(u, u, p, u′): push a new FunctionPiece at the end of FunctionPieceList f ,
with coefficients defined by FunctionPiece p, on interval [u, u], with previous segment
mean set to u′.

• ConstPiece(c): sub-routine that initializes a FunctionPiece p with constant cost c (for
the square loss it sets a = b = 0 in au2 + bu+ c).

Pseudocode for the MinLess sub-routine is given below. The MinMore sub-routine is
similar.
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Algorithm 3 MinLess algorithm.

1: Input: The previous segment end tprev (an integer), and fin (a FunctionPieceList).
2: Output: FunctionPieceList fout, initialized as an empty list.
3: prev cost←∞
4: new lower limit← LowerLimit(fin[0]).
5: i← 0; // start at FunctionPiece on the left
6: while i < Length(fin): // continue until FunctionPiece on the right
7: FunctionPiece p← fin[i]
8: if prev cost = ∞: // look for min in this interval.
9: candidate mean← OptimalMean(p)

10: if LowerLimit(p) < candidate mean < UpperLimit(p):
11: new upper limit← candidate mean // Minimum found in this interval.
12: prev cost← GetCost(p, candidate mean)
13: prev mean← candidate mean
14: else: // No minimum in this interval.
15: new upper limit← UpperLimit(p)
16: fout.push piece(new lower limit,new upper limit, p,∞)
17: new lower limit← new upper limit
18: i← i+ 1
19: else: // look for equality of p and prev cost
20: (small root, large root)← ComputeRoots(p,prev cost)
21: if LowerLimit(p) < small root < UpperLimit(p):
22: fout.push piece(new lower limit, small root,ConstPiece(prev cost),prev mean)
23: new lower limit← small root
24: prev cost←∞
25: else: // no equality in this interval
26: i← i+ 1 // continue to next FunctionPiece
27: if prev cost <∞: // ending on constant piece
28: fout.push piece(new lower limit,UpperLimit(p),ConstPiece(prev cost),prev mean)
29: Set all previous segment end t′ = tprev for all FunctionPieces in fout

Consider Algorithm 3 which contains pseudocode for the computation of the min-less
operator. The algorithm initializes prev cost (line 3), which is a state variable that is used
on line 8 to decide whether the algorithm should look for a local minimum or an intersection
with a finite cost. Since prev cost is initially set to ∞, the algorithm begins by following
the convex function pieces from left to right until finding a local minimum. If no minimum
is found in a given convex FunctionPiece (line 15), it is simply pushed on to the end of
the new FunctionPieceList (line 16). If a minimum occurs within an interval (line 10), the
cost and mean are stored (lines 11–12), and a new convex FunctionPiece is created with
upper limit ending at that mean value (line 16). Then the algorithm starts looking for
another FunctionPiece with the same cost, by computing the smaller root of the convex
loss function (line 20). When a FunctionPiece is found with a root in the interval (line 21),
a new constant FunctionPiece is pushed (line 22), and the algorithm resumes searching for
a minimum. At the end of the algorithm, a constant FunctionPiece is pushed if necessary
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(line 28). The complexity of this algorithm is O(I) where I is the number of FunctionPiece
objects in fin.

The algorithm which implements the min-more operator is analogous. Rather than
searching from left to right, it searches from right to left. Rather than using the small root
(line 21), it uses the large root.

8.3. Implementation details

Some implementation details that we found to be important:

Weights for data sequences that contain repeats it is computationally advantageous to
use a run-length encoding of the data, and a corresponding loss function. For ex-
ample if the data sequence 5,1,1,1,0,0,5,5 is encoded as n = 4 counts yt 5,1,0,5
with corresponding weights wt 1,3,2,2 then the Poisson loss function for mean µ is
`(yt, wt, µ) = wt(µ− yt logµ).

Mean cost The text defines Ck,t functions as the total cost. However for very large data
sets the cost values will be very large, resulting in numerical instability. To overcome
this issue we instead implemented update rules using the mean cost. For weights
Wt =

∑t
i=1wi, the update rule to compute the mean cost is

Ck,t(µ) =
1

Wt

[
`(yt, µ) +Wt−1 min{Ck,t−1(µ), C≤k−1,t−1(µ)}

]
Intervals in log(mean) space For the Poisson model of non-negative count data yt ∈

{0, 1, 2, . . . } there is no possible mean µ value less than 0. We thus used log(µ) values
to implement intervals in FunctionPiece objects. For example rather than storing
µ ∈ [0, 1] we store log µ ∈ [−∞, 0].

Root finding For the ComputeRoots sub-routine for the Poisson loss, we used Newton
root finding. For the larger root we solve a logµ+ bµ+ c = 0 (linear as µ→∞) and
for the smaller root we solve ax + bex + c = 0 (x = logµ, linear as x → −∞ and
µ→ 0). We stop the root finding when the cost is near zero (absolute cost value less
than 10−12).

Storage Since the dynamic programming update rule for Ck,t only depends on C≥k−1,t−1
and Ck,t−1, these are the only functions that need to be in memory, and the rest of
the cost functions can be stored on disk (until the decoding step).
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