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Abstract

Maize genotypes can show different responsiveness to inoculation with Azospirillum brasi-

lense and an intriguing issue is which genes of the plant are involved in the recognition and

growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted

Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advan-

tage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N

stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers

were used for GWAS analyses. For the six root traits with significant inoculation effect, the

GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment,

in which only two were overlapped with the 22 found for N stress only. Most were found by

the heterozygous (dis)advantage model and were more related to exclusive gene ontology

terms. Interestingly, the candidate genes around the significant SNPs found for the maize–

A. brasilense association were involved in different functions previously described for PGPB

in plants (e.g. signaling pathways of the plant’s defense system and phytohormone biosyn-

thesis). Our findings are a benchmark in the understanding of the genetic variation among

maize hybrids for the association with A. brasilense and reveal the potential for further

enhancement of maize through this association.

Introduction

Currently, major agro-systems are highly dependent on chemical fertilizers and pesticide

inputs. One of the main strategies to develop sustainable agriculture in the face of natural

resource scarcity and environmental impacts caused by the application of these products is the

use of Plant Growth-Promoting Bacteria (PGPB) inoculants. These bacteria in association

with plants may generate several benefits to the host, such as phytohormone biosynthesis,
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biological nitrogen fixation (BNF), and induction of resistance mechanisms. Consequently,

there are positive effects on the enhancement of root traits, tolerance to abiotic stress, and

defense against pathogens [1,2].

Azospirillum brasilense is a well-known PGPB marketed by several companies in South

American countries (e.g. Brazil, Argentina, and Uruguay). It is used as a inoculant in some

cereal crops such as maize and wheat [3]. Some studies have reported the influence of plant

genotype on the degree of beneficial response to PGPB inoculation, including A. brasilense [4–

6]. In this context, Genome-wide Association Studies (GWAS) is a powerful approach for the

identification of genomic regions associated significantly with phenotypic trait variations and

has been widely applied in the study of the genetic basis of plant–microbe interactions, includ-

ing pathogens [7,8] arbuscular mycorrhizal fungi [9,10], and endogenous microbiomes [11]. As

far as we know, only two GWAS studies were reported to PGPB. The first explored traits related

to the BNF of Rhizobium tropici in a panel of 259 common beans [12]. The second evaluated

shoot and root traits of 302 accessions of Arabidopsis thaliana inoculated with Pseudomonas
simiaeWCS417r [13]. However, GWAS studies related to genetic basis of cereals for the respon-

siveness to PGPB have not been reported so far, particularly for those with N-fixing ability.

Moreover, the growing of plants on unsterilized soil should be considered in studies con-

cerning the relationship of plants with PGPB. The soil characteristics may influence this asso-

ciation, particularly due to the interaction of the inoculated strain with the soil microbiome.

For instance, they might compete for resources and site, or show antagonist effects [14]. The

understanding of the plants’ genetic basis related to PGPB and nitrogen (N) starvation is also

crucial. It is known that changes in the diversity and the amount of the compounds released by

the roots depend on the nutritional status, with consequences for the transcription of PGPB

genes [15] and the composition of the plant-associated microbiome [16,17]. Furthermore, in

tropical areas such as Africa and parts of South America, the soils are often N-limited and a

significant proportion of maize production takes place under these conditions.

Another challenge is the heterosis (or hybrid vigor) of several maize traits [18–20]. There-

fore, GWAS analyses should consider not only the additive marker effects but also the non-

additive ones that might explain an important proportion of the variation in complex traits

[21,22]. In this way, some authors speculate that the colonization of maize roots by beneficial

microbes could be regulated by heterosis, due to hybrid plants supporting more numerous

strains than their parental inbred lines [23,24]. In addition, studies of mechanisms underlying

heterosis have shown changes, for example, in the expression patterns of hormone defense

pathways and auxin biosynthesis [25], carbohydrate and nitrogen metabolism [26], besides

increase of root and shoot biomass [27,28], which may also be related to plant responses to

PGPBs [29–32]. However, this was not clearly elucidated. Thus, heterozygous (dis)advantage

GWAS models [33,34] applied to the plant-related traits of the responsiveness to PGPB could

provide additional information about the influence of heterosis concerning this association

and help to identify candidate genes with heterotic performance under the inoculation

conditions.

Knowledge about the genetic variation available and the genetic architecture of the traits

involved in maize–A. brasilense interaction is absent. However, this information can contrib-

ute to the understanding of its genetic base and how to apply it in plant breeding programs

aimed at improving the germplasm for this association. Hence, we aimed with this study (i) to

understand the genetic variation of maize in response to A. brasilense inoculation under low-

N soil conditions, and (ii) to perform GWAS analyses using additive and heterozygous (dis)

advantage models to identify Single Nucleotide Polymorphisms (SNPs) significantly associated

with traits related to this association, the underlying candidate genes, and the importance of

non-additive effects on the maize–A. brasilense association.

Candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense
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Materials and methods

Bacterial strain and inoculum

The bacterial strain A. brasilense Ab-V5 was selected from maize roots in Brazil and is regis-

tered by the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA) for the

inoculant production for maize, rice and wheat [3,35]. In addition, it is part of the Culture Col-

lection of Diazotrophic and PGPB of Embrapa Soybean (Londrina, Paraná, Brazil). The bacte-

rial inoculum of A. brasilense Ab-V5 was prepared in the Laboratory of Genetics of

Microorganisms “Prof. João Lúcio de Azevedo” at ESALQ/USP, Piracicaba-SP, Brazil, and

taken immediately to the experimental area. Bacterial inoculum was prepared by growing Ab-

V5 in Dextrose Yeast Glucose Sucrose (DYGS) liquid medium [36] at 28˚C with 150 rpm agi-

tation. The inoculum concentration was adjusted to approximately 1 × 108 UFC mL–1 and

transferred with a pipette into plastic bags containing the maize seeds of each genotype indi-

vidually. Sowing was done about 30 min after inoculation.

Plant material and greenhouse experiments

The association panel was comprised of 118 single-cross hybrids from a diallel mating design

between 19 tropical maize inbred lines with genetic diversity to nitrogen-use efficiency [37–

39]. The plants were grown under semi-controlled conditions in a greenhouse located at the

University of São Paulo, Brazil (22˚ 42’ 39" S; 47˚ 38’ 09" W, altitude 540 m), in two years:

November–December 2016 and February–March 2017. A randomized complete block experi-

mental design with three replications spatially arranged under two countertops was adopted in

each season. Two main treatments were evaluated: N stress without bacterial inoculation and

N stress plus A. brasilense inoculation. The decision to non-input N fertilizer was due to its

reported negative effects on N fixation by diazotrophic bacteria [40,41]. In each plot, three

seeds were sown at 3 cm depth in plastic pots of 3 L capacity containing unsterilized loam soil

from an area not in agricultural use. Information about the soil chemical and physical charac-

teristics is available in Vidotti et al. [42]. After germination, the seedlings were thinned singly.

Only potassium chloride and single phosphate fertilizers were added to the soil according to

the general crop demand. The average temperature was semi-controlled (20–33˚C), and sup-

plementation of luminosity was by fluorescent lamps to simulate a photoperiod of 12 h. The

water supply was provided manually by pot, with the same amount applied to all of them and

always maintaining a well-watered condition. During the conduction of the experiments, no

insect or pathogen attack was detected, and pesticides were not used.

Approximately 35 days after the emergence, when most of the hybrids had reached the V7

stage (seven expanded leaves), plant height (PH, cm) was measured from the soil level to the

insertion of the least expanded leaf. The shoot was harvested and dried in a forced-draft oven

at 60˚C for 72 h to determine the shoot dry mass (SDM, g). The soil particles in each root sys-

tem were carefully removed with water and the individual storage was performed inside plastic

pots in 25% ethanol solution for preservation. The root images acquired by an Epson LA2400

scanner (2400 dpi resolution) were analyzed by WinRHIZOTM (Reagent Instruments Inc.,

Quebec, Canada). This software provided the measurements of root average diameter (RAD,

mm), root volume (RV, cm3), and the total length of a series of root diameter classes. The

length of fragments with a diameter class less than or equal to 0.5 mm were considered as the

lateral root length (roots from the axial roots—LRL, cm), while that with diameter classes

greater than 0.5 mm were considered as axial root length (comprising crow, seminal and pri-

mary roots—ARL, cm) [43]. We determined the root dry mass (RDM, g) after drying the roots

under the same conditions used for SDM measurement. This trait was used to calculate the

Candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense
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specific root length (SRL, cm g–1) and specific root surface area (SRSA, cm2 g–1) dividing the

total root length and the surface area by the RDM, respectively. Furthermore, the root/shoot

ratio (RSR, g g–1) was obtained by dividing the RDM by the SDM. In total, 10 traits were evalu-

ated and approximately 1416 root systems analyzed.

Phenotypic analyses

The analyses were conducted using Restricted Maximum Likelihood/Best Linear Unbiased

Predictor (REML/BLUP) mixed models, by ASReml R package [44], considering the following

model:

y ¼ XEβE þ XBβB þ XCβC þ XIβI þ XEIβEI þ ZGuG þ ZGEuGE þ ZGIuGI þ ZGEIuGEI þ ε

where y is the vector of phenotypic observations of the traits evaluated on maize hybrids; βE is

the vector of fixed effects of year; βB is the vector of fixed effects of block within year; βC is the

vector of fixed effects of countertop within block and year; βI is the vector of fixed effects of

inoculation; βEI is the vector of fixed effects of inoculation × year interaction; uG is the vector

of random effects of genotype, where uG eN 0; Is2
G

� �
; uGE is the vector of random effects of

genotype × year interaction, where uGE eN 0; s2
GE

� �
; uGI is the vector of random effects of

genotype × inoculation interaction, where uGI eN 0; s2
GI

� �
; uGEI is the vector of random effects

of genotype × year × inoculation interaction, where uGEI eN 0; s2
GEI

� �
; and ε is the vector of

errors, where ε eN 0; s2
ε

� �
. XE, XB, XC, XI, XEI, ZG, ZGE, ZGI, and ZGEI are the respective inci-

dence matrices related to each vector. The significance of fixed effects was tested using the

Wald test implemented in the ASReml R package, while the significance of random effects was

assessed by Likelihood Ratio Test (LTR) from the asremlPlus R package [45]. The variance

components by treatment were estimated through reduced models disregarding the inocula-

tion effect and its interaction with genotype. Broad-sense heritabilities were estimated as

H2 ¼ s2
G=ðs

2
G þ s

2
GE=jþ s

2
ε=rjÞ, where the s2

G is the genetic variance; s2
GE is the genotype-by-

year variance; s2
ε is the error variance; j and r are the number of years and replications in each

experiment, respectively.

Genotypic data

The Affymetrix1 Axiom1Maize Genotyping Array [46] of 616,201 SNPs markers was used to

genotype the parental inbred lines. Markers with call rate <95% and heterozygous loci on at

least one individual were removed. Remaining missing data were imputed through the algo-

rithms of Beagle 4.0 using the codeGeno function from the Synbreed R package [47]. The

hybrid genotypes were obtained in silico from the genotypes of the corresponding parental

inbred lines. After that, one more filter was applied to the matrix, eliminating SNPs with

Minor Allele Frequency (MAF)� 0.05. A final SNP set of 59,215 was obtained and used for

the subsequent analyses.

GWAS analyses

Marker-trait association analyses were performed for the traits with significant inoculation

effect. For these traits, the adjusted means for each hybrid were calculated by treatment (inocu-

lated and non-inoculated), separately, considering the following model:

y ¼ XEβE þ XBβB þ XCβC þ XGβG þ XGEβGE þ ε

where y is the vector of phenotypic observations of the traits evaluated on maize hybrids; βE is

Candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense
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the vector of fixed effects of year; βB is the vector of fixed effects of block within year; βC is the

vector of fixed effects of countertop within block and year; βG is the vector of fixed effects of

the genotype; βGE is the vector of fixed effects of genotype × year interaction; and ε is the vec-

tor of errors, where ε eN 0; s2
ε

� �
. XE, XB, XC, XG, and XGE are the respective incidence matri-

ces for each vector. Density and box plots were used to compare the means between both

treatments. In addition, the changes due to A. brasilense inoculation on the hybrid traits were

calculated by Δ =M1−M2, whereM1 is the adjusted mean under N stress plus A. brasilense
andM2 is the adjusted mean under N stress.

Population structure was estimated by principal component analysis (PCA) using the geno-

mic matrix through the SNPRelate R package [48]. The GWAS analyses were conducted by a

Fixed and Random Model Circulating Probability Unification method thought the FarmCPU

R package [49]. This statistical procedure considers the confounding effect between the testing

marker and both kinship (K) and population structure (Q) as covariates to minimize the prob-

lem of false positive and false negative SNPs. The FarmCPU R package uses the FaST-LMM

algorithm to calculate the K from selected pseudo-QTNs (Quantitative Trait Nucleotides) and

not from the total SNP set, as the standard K. The threshold values were calculated by the p.

threshold function of FarmCPU. This permutes the phenotypes to break any spurious relation-

ship with the genotype. After obtaining a vector of the minimum p-values of each experiment,

the 95% quantile value of the vector is recommended for p.threshold. Finally, quantile–quan-

tile (Q–Q) plots were used to verify the fitness of the model, considering population structure

and kinship as factors.

The additive and heterozygous (dis)advantage models were applied in GWAS analyses by

using specific encodings for the SNP matrix. Concerning the additive SNP effect with two

alleles (A1 and A2), the SNP matrix was coded by 0 (A1A1), 1(A1A2), and 2 (A2 A2), considering

the A2 as the minor allele. In this context, the additive GWAS model assumes there is a linear

change in the phenotype regarding the minor allele number of copies. On the other hand, in

the heterozygous (dis)advantage GWAS model, the homozygous genotypes (A1A1 or A2A2)

were assumed to have the same effect, while the heterozygous genotypes a different one, imply-

ing an increase or decrease of the effect on the trait. Therefore, the SNP matrix was coded by 0

(A1A1), 1 (A1A2), and 0 (A2A2) [33,34]. Box plots were then used to show the phenotype values

by genotypes of the SNPs significantly associated with the traits.

The average linkage disequilibrium (LD) in the hybrid panel was investigated using the

square allele frequency correlation coefficient r2 between all pairs of SNPs across the chromo-

somes using PLINK v.1.9 software [50]. The extension of LD decay was verified by plotting the

r2 values against the physical distance of the SNPs. Moreover, the heterozygosity by hybrid and

by SNP marker was estimated dividing the number of heterozygous loci by the total of SNP

markers and maize genotypes, respectively.

Identification of candidate genes

The candidate genes associated with the significant SNPs were obtained from the B73 genome

reference (version 4) in the MaizeGDB genome browser (https://www.maizegdb.org/). Comple-

mentary information was collected from the U.S. National Center for Biotechnology Information

(http://www.ncbi.nlm.nih.gov/) and the Universal Protein Resource (http://www.uniprot.org/).

Venn diagrams were constructed to summarize the number of candidate genes identified using

the VennDiagram R package [51]. In addition, the sequences of the candidate genes were catego-

rized functionally by Gene Ontology (GO) terms [52], disregarding those with hypothetical func-

tion. The terms were obtained using the Blast2GO software with the default parameters specified

by the program [53] and were previously simplified using the GO Slim feature.

Candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense
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Results

The phenotypic effect of A. brasilense inoculation on the maize hybrids

Significant phenotypic differences among the 118 maize hybrids were observed for all traits

evaluated, except PH and SDM (S1 Table). Furthermore, the genotypic performance for RDM,

RV, RAD, SRL, SRSA, and RSR were affected significantly by the inoculation with A. brasi-
lense; thus, only these traits were considered for subsequent analyses. In general, higher broad-

sense heritabilities were found under inoculated treatment than non-inoculated (S1B Fig).

Regarding the density distribution of the adjusted means for all traits, larger phenotypic vari-

ances were found in the inoculated condition compared to the non-inoculated (Fig 1A). Overall,

the inoculation increased the RDM, RV, RAD, and RSR while the opposite was observed for SRL

and SRSA. Concerning the change due to inoculation (Δ) for all traits, a distribution close to nor-

mal was observed (Fig 1B). In this sense, most of the evaluated hybrids showed low responsive-

ness to A. brasilense. Moreover, a considerable portion of the genotypes showed negative

Fig 1. Density distributions and Pearson correlations of the phenotypic data. (A) Density distribution and box plot of the maize hybrids adjusted means under N stress

and N stress plus A. brasilense. (B) Density distribution of the Δ (difference between adjusted means of inoculated and non-inoculated treatments). (C) Pearson

correlations between Δ values.

https://doi.org/10.1371/journal.pone.0222788.g001
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responsiveness to A. brasilense; that is, a worse performance than the non-inoculated. The corre-

lations between the ΔRDM and ΔRV with ΔRSR were 0.41 and 0.35, respectively (Fig 1C).

Population structure and LD decay

The genetic structure of the hybrid panel was accessed by PCA using 59,215 SNP markers (Fig

2A). The first two PCs captured a small percentage of the total variance (20.8%). In addition,

the individuals had a wide distribution throughout the projection space, which indicates a

weak structure among the genotypes. Moreover, a rapid decline in LD was observed (Fig 2B),

with 121.7 kb extent when r2 reached 0.23 (half the maximum value). The average heterozygos-

ity of hybrids was 0.32, ranging from 0.03 to 0.38 with most of the individuals presenting

around 0.35 (Fig 2C). The low values found for some individuals indicate that some inbred

lines used in the diallel crosses were of high genetic similarity. For the heterozygosity of mark-

ers, this value was also 0.32, varying from 0.10 to 0.61 (Fig 2D).

Marker-trait associations

The additive and heterozygous (dis)advantage GWAS models were used to dissect the genetic

basis of the traits RDM, RV, RAD, SRL, and SRSA under N stress and N stress plus A.

Fig 2. Population structure and genomic data. (A) Population structure of the 118 maize hybrids revealed by the first two principal components of 59,215 SNP markers.

(B) LD decay across the whole genome. (C) and (D) heterozygosity of individuals and markers, respectively.

https://doi.org/10.1371/journal.pone.0222788.g002
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brasilense conditions, since for these traits the genotypes showed a differential performance

due to the inoculation effect. Only the genetic relatedness (K matrix) was used as a covariate in

all GWAS analyses.Thus, the population structure information was not included due to the

increase in the deviation from the expected p-values showed by Q–Q plots (not presented).

Furthermore, based on the LD decay for this hybrid panel, the gene annotation was performed

within a 50 kb sliding window around each significant SNP.

Concerning the additive GWAS model, eight significant SNP-trait associations were

revealed in the maize hybrids evaluated under N stress plus A. brasilense (Table 1 and S2 and

S6A Figs). In general, at least one candidate gene was identified for each trait, which was

located on the chromosomes 2, 4, 6, 7, and 9. In addition, using the same model but for N-

stress treatment, one significant association was detected for each trait, totaling five candidate

genes, which were located on chromosomes 2, 5, and 6 (Table 1 and S3 and S6B Figs). How-

ever, for chromosome 5, position 149998432, no candidate gene was found within the window

considered. The results for RSR in both treatments were disregarded due to poor adjustment

with the expected values shown by the Q–Q plot.

Two candidate genes identified in the inoculated treatment were similar to those identified

under N-stress treatment, but for different traits. In this sense, the candidate genes

Zm00001d013098 and Zm00001d005892 were related to RAD and SRL under A. brasilense
treatment, and to RDM and RAD under non-inoculated treatment, respectively.

A higher number of significant associations were revealed using heterozygous (dis)advan-

tage GWAS model. Seventeen significant SNPs were found associated with traits under N

stress plus A. brasilense treatment located on chromosomes 1, 2, 3, 7, and 8 (Table 2 and S4

and S7 Figs). Several common candidate genes were found among the traits:

Zm00001d029115 (RDM, RV, and RSR), Zm00001d037182 (RDM and RV),

Zm00001d003312 (RV and RAD), and Zm00001d030590 (RAD and SRL). Under N stress, 17

significant associations were identified throughout the chromosomes 1, 2, 3, 4, 5, 6, and 9

(Table 2 and S5 and S8 Figs). For this model, any of the candidate genes were detected

Table 1. List of candidate genes around of significant SNPs identified by additive GWAS model.

Trait Candidate gene SNP Chr. Position MAF Effect P-value Gene annotation

N stress plus Azospirillum brasilense
RDM Zm00001d051881 T/C 4 173317340 0.14 0.20 5.50x10-10 Protein BTR1

RDM Zm00001d035859 T/C 6 56793578 0.42 -0.20 1.31x10-16 Plastocyanin homolog 1

RV Zm00001d006108 C/G 2 198321726 0.43 -3.61 1.61x10-21 Hydroxyproline-rich glycoprotein family protein

RAD Zm00001d013098 A/G 5 4668442 0.46 0.04 3.14x10-24 Aldehyde oxidase 2

RAD Zm00001d046604 T/C 9 98488802 0.32 0.02 3.52x10-11 (Z)-3-hexen-1-ol acetyltransferase

SRL Zm00001d005892 A/G 2 191920029 0.48 -386.6 1.40x10-09 Ethylene-responsive transcription factor ERF109

SRL Zm00001d020747 T/C 7 131108804 0.34 -357.7 1.98x10-08 Aquaporin TIP4-1

SRSA Zm00001d052221 A/G 4 183616939 0.29 83.61 4.13x10-10 Tetratricopeptide repeat (TPR)-like superfamily protein

N stress
RDM Zm00001d013098 A/G 5 4668442 0.46 0.02 3.14x10-24 Aldehyde oxidase2

RV Zm00001d038300 A/T 6 153844954 0.32 -1.97 2.89x10-13 Putative cytochrome P450 superfamily protein

RAD Zm00001d005892 A/G 2 191920029 0.48 0.02 1.40x10-09 Ethylene-responsive transcription factor ERF109

SRL Zm00001d002930 A/G 2 27052534 0.21 487.5 3.24x10-11 Hypothetical protein

SRSA - A/C 5 149998432 0.40 86.9 2.93x10-10 There is no candidate gene in the region

Description of candidate genes found for root dry mass (RDM), root volume (RV), root average diameter (RAD), specific root length (SRL), and specific root surface

area (SRSA) evaluated in maize hybrids under N stress and N stress plus Azospirillum brasilense. Chr: Chromosome and MAF: Minor allele frequency.

https://doi.org/10.1371/journal.pone.0222788.t001
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simultaneously for both inoculated and non-inoculated treatments (Fig 3A). No candidate

genes were detected for chromosome 1 position 251090900 (RAD, inoculated treatment) and

chromosome 3 position 165642810 (RDM, non-inoculated treatment).

In total, 47 significant SNP-trait associations were found, where 25 were related to traits

under N stress plus A. brasilense and 22 to N stress. Regarding the models, 13 significant asso-

ciations were identified by using the additive GWAS model and 34 the heterozygous (dis)

Table 2. List of candidate genes around of significant SNPs identified by heterozygous (dis)advantage GWAS model.

Trait Candidate gene SNP Chr Position MAF APHo APHe P-value Gene annotation

N stress plus Azospirillum brasilense
RDM Zm00001d029115 T/C 1 58456902 0.09 1.34 1.51 1.92x10-10 Protein strictosidine synthase-like

RDM Zm00001d037182 C/G 6 114938556 0.10 1.40 1.26 1.07x10-11 12-oxo-phytodienoic acid reductase3

RV Zm00001d029115 T/C 1 58456902 0.09 17.75 20.31 4.37x10-13 Protein strictosidine synthase-like

RV Zm00001d032763 A/G 1 237658345 0.19 18.50 17.71 1.57x10-08 Pre-mRNA-processing factor 19 homolog 2

RV Zm00001d003312 T/G 2 39796017 0.19 18.70 17.37 5.56x10-08 3-ketoacyl-CoA thiolase 2 peroxisomal

RV Zm00001d037182 C/G 6 114938556 0.10 18.67 16.28 3.58x10-13 12-oxo-phytodienoic acid reductase3

RAD Zm00001d030590 A/G 1 146746338 0.17 0.66 0.69 3.02x10-13 Hypothetical protein

RAD - T/G 1 251090900 0.22 0.67 0.66 1.57x10-08 There is no candidate gene in the region

RAD Zm00001d003312 T/G 2 39796017 0.19 0.68 0.65 2.79x10-09 3-ketoacyl-CoA thiolase 2 peroxisomal

RAD LOC103636767 T/C 8 14392135 0.18 0.66 9.68 5.99x10-11 Formin-like protein 20

SRL Zm00001d030590 A/G 1 146746338 0.17 4364.2 4079.0 2.25x10-10 Hypothetical protein

SRL Zm00001d002736 T/C 2 20783203 0.18 4179.5 4433.6 2.52x10-09 Carotenoid cleavage dioxygenase7

SRL Zm00001d008828 T/C 8 21875974 0.18 4146.3 4485.5 1.02x10-11 Uncharacterized loci

SRSA Zm00001d033957 A/T 1 27957495 0.20 656.8 680.9 1.86x10-08 Helix-loop-helix DNA-binding domain containing protein

RSR Zm00001d029115 T/C 1 58456902 0.09 0.20 0.26 9.11x10-12 Protein strictosidine synthase-like

RSR Zm00001d043812 A/G 3 210821486 0.20 0.21 0.20 6.28x10-1 Isopentenyl transferase3B

RSR Zm00001d020647 T/C 7 126412420 0.23 0.22 0.19 7.50x10-08 Phospholipid:diacylglycerol acyltransferase 1

N stress
RDM Zm00001d003331 T/C 2 40341681 0.22 1.41 1.32 9.16x10-11 Putative WRKY transcription factor 34

RDM Zm00001d006036 A/G 2 195919131 0.27 1.40 1.34 3.55x10-08 Heat shock 70 kDa protein 9 mitochondrial

RDM - T/C 3 165642810 0.21 1.41 1.32 5.96x10-08 There is no candidate gene in the region

RDM Zm00001d044754 A/T 9 1340463 0.17 1.41 1.30 4.52x10-11 Pyrophosphate—fructose 6-phosphate 1-phosphotransferase subunit beta 2

RV LOC109941493 T/C 1 162580315 0.12 17.59 20.17 7.31x10-16 Plasma membrane ATPase 2-like

RV Zm00001d036118 T/C 6 72999857 0.26 17.63 18.74 1.09x10-09 Putative homeobox DNA-binding and leucine zipper domain family protein

RAD Zm00001d006722 T/C 2 215259958 0.23 0.68 0.65 3.50x10-08 Arabinosyltransferase RRA3

RAD Zm00001d037514 T/C 6 127764798 0.21 0.68 0.65 1.49x10-09 Putative uncharacterized mitochondrial protein

SRL LOC100279630 T/C 1 4994455 0.15 4117.5 4646.4 8.56x10-17 MADS-box transcription factor family protein

SRL Zm00001d029134 T/C 1 59906568 0.25 4401.4 4138.5 5.25x10-09 CW-type Zinc Finger

SRL Zm00001d029247 T/C 1 63585160 0.12 4151.8 4632.4 2.23x10-14 ARM repeat superfamily protein

SRL Zm00001d029385 T/C 1 68562928 0.25 4429.5 4115.7 1.74x10-07 AAA-type ATPase family protein

SRL Zm00001d030287 T/C 1 119697532 0.25 4194.0 4343.3 2.67x10-08 Protein CLT2 chloroplastic

SRL Zm00001d013070 T/C 5 4219053 0.25 4300.5 4239.4 7.64x10-09 Transcription factor MYB98

SRL Zm00001d037596 A/T 6 130932567 0.20 4445.7 4013.6 1.78E-07 RING/U-box superfamily protein

SRSA LOC100279630 T/C 1 4994455 0.15 636.8 739.5 1.99x10-13 MADS-box transcription factor family protein

RSR Zm00001d051886 C/G 4 173630271 0.15 0.18 0.22 1.04x10-13 Putative MATE efflux family protein

Description of candidate genes found for root dry mass (RDM), root volume (RV), root average diameter (RAD), specific root length (SRL), and specific root surface

area (SRSA) evaluated in maize hybrids under N stress and N stress plus Azospirillum brasilense. Chr: Chromosome, MAF: Minor allele frequency, APHo: Average

phenotype of individuals with homozygous genotype, and APHe: Average phenotype of individuals with heterozygous genotype.

https://doi.org/10.1371/journal.pone.0222788.t002
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advantage model. There was no candidate gene shared between them (Fig 3A). Finally, the

nature of the SNP effect on the traits, positive or negative, was independent of the treatment or

GWAS model (S6, S7, and S8 Figs).

The categorization of candidate genes sequences according to biological process using the

Blast2GO software showed that just one biosynthetic category was present in all treatments

(Fig 3B). Moreover, in general, the candidate genes found by additive GWAS model tended to

Fig 3. Candidate genes found by different GWAS models for N stress and N stress plus Azospirillum brasilense. (A) Venn diagrams showing the unique and shared

significant SNPs. (B) Enriched GO terms.

https://doi.org/10.1371/journal.pone.0222788.g003
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be mainly enriched for terms such as “DNA metabolic process” and “lipid metabolic process”.

In turn, those found by the heterozygous (dis)advantage model showed more exclusive biolog-

ical functions; for example, “catabolic process”, “cellular component organization”, “response

to stress”, and “secondary metabolic process”. Comparing the inoculated and non-inoculated

treatments, a different pattern of categorization was seen between them, especially for the can-

didate genes found by the heterozygous (dis)advantage model.

Discussion

Genotypic variation of maize to A. brasilense under nitrogen stress

One of our aims was to evaluate the genetic variability of the responsiveness of maize hybrids

to the inoculation with the PGPB A. brasilense and the genetic control of related traits to this

effect. The few studies that have reported the differential responsiveness among maize geno-

types to A. brasilense inoculation were based on a smaller number of hybrids or inbred lines

[5,6,54]. Moreover, as far as we know, our report has evaluated the largest number of maize

genotypes for their association with PGPB.

In general, Azospirlillum spp. promotes several benefits and changes in maize, including

phytohormone production of auxins, cytokinins, and gibberellins [55,56], plant growth and

yield [35,55], contents of secondary metabolites [57], photosynthetic potential [1], anatomical

pattern (e. g. metaxylem vessel elements) and architecture of roots [31,58], N2 fixation [6], fer-

tilizer-N recovery [59], tolerance of abiotic stresses (e. g. N limitation and drought conditions)

[55,60]. In this work, the inoculation of A. brasilense under N stress promoted significant

change in maize performance for six root-related traits: RDM, RV, RAD, SRL, SRSA, and RSR.

Some studies have also shown the positive effect of the inoculation of Azospirillum spp. on

RDM, RV, and the promotion of thinner root growth [55,61,62], but our study reports for the

first time the response in SRL and SRSA.

Our results did not show pronounced differences among the distributions of adjusted

means of the hybrids under N stress and N stress plus A. brasilense. However, we observed a

significant variation in the delta (the difference between inoculated and non-inoculated treat-

ments), including some of the maize hybrids showing negative effects on the traits due to the

inoculation. This result shows that adding only one PGPB to the microbiome is enough to

expand the range of maize plant responses under low-N stress. This may be because microbes

alter the plant functioning and confer different characteristics to the host plant, reinforcing the

emerging idea of the holobiont being a unit of selection that possess a larger variability to be

explored in plant breeding [63–65].

Studies reporting a decrease in the phenotypic traits of host plants due to the inoculation

with PGPBs, such as A. brasilense, are not common in the literature [66]. One possibility is

that the genotypes with a negative response to inoculation can have more unfavorable alleles

related to the association with A. brasilense. For example, triggering plant defense responses

incurs an energetic cost [67], which may lead to a reduction in resources to root system devel-

opment, causing a worse growth than only the N-stress condition would already entail. In

addition, similarly to the plant–endophyte interactions, the “balanced antagonism theory”

applies to the plant–PGPB relationships [68,69]; then, phenotypic plasticity in the host plants

may vary from mutualism to antagonism depending on the plant genotype, the environmental

conditions, and the bacterial strain.

Another explanation for the negative responsiveness is because the effect of A. brasilense on

the plant can vary according to the concentration of the inoculant [66,70]. In general, plant

hormones are stimulatory only at certain concentrations, which should not exceed the stimula-

tory threshold specific to each plant genotype [71]. The higher concentration of A. brasilense
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in the root environment may increase the release of plant hormones that consequently inhibit

root growth [66]. Thus, considering the number of genotypes evaluated, the concentration of

the inoculant used in our experiment could be unfavorable for some of them, even at the rec-

ommended dose.

On the other hand, the reduction in root traits due to inoculation would not necessarily be a

negative factor for the plant. Under abiotic stress conditions, such as low N supply and drought,

high root/shoot ratios are common [72,73]. In this sense, we found moderate positive correla-

tions between the ΔRDM and ΔRV root traits and ΔRSR, which indicates that under A. brasilense
inoculation some plant genotypes could reduce the investment in root growth in order to allocate

it to shoot development. However, further studies are needed to better understand the influence

of inoculation with this PGPB on the distribution of dry matter between roots and shoots.

The continuous phenotypic variation and the moderate estimates of heritability for the

traits related to the maize responsiveness to A. brasilense suggest the influence of several genes

of small effect and a strong environmental influence. In summary, these results reinforce the

complex PGPB × plant × environment interactions. Furthermore, they show the possibility of

improving plants to be more efficient by the association with PGPB.

Candidate genes related to the maize responsiveness to A. brasilense
To the best of our knowledge, this is the first report employing GWAS to assess the genetic

architecture of the association of maize with A. brasilense. Several candidate genes related to

the maize responsiveness to A. brasilense were detected. Considering the panel size used in our

study, possibly the power of our GWAS analyses has been low and only theose SNPs with

more greater effect have been identified [74]. Korte & Farlow [75] suggest that a way to miti-

gate the small sample effect is to account for large phenotypic variability. Thus, as we used

hybrids rather than inbred lines, a series of different allelic combinations can occur, increasing

the genetic variants with heterozygous loci and thereby allowing the finding of better results in

GWAS analysis [76]. This is reflected in the number of significant SNPs identified by the het-

erozygous (dis)advantage model, which was about three times higher than the additive model.

Consequently, given the high number of candidate genes found, we focused our discussion

mainly on those with functions more related to the treatments of this study.

It is known that the colonization of host plants by beneficial microbes depends on their

ability to manipulate defense-related pathways [4]. In this study, the candidate gene

Zm00001d051881 (additive model) was found, which codes the protein Binding to ToMV

RNA 1 (BTR1). This is involved in the defense against Tomato Mosaic Virus (TOMV) RNA,

with possible indirect effects on the host’s innate immunity [77]. In addition,

Zm00001d052221 (additive model) codes the tetratricopeptide repeat (TPR)-like protein

superfamily, which is determinant for the transduction of signals mediated by plant hormones

and able to activate the plant’s defense response. For example, TPR is related to the quantita-

tive resistance of soybean to Fusarium graminearum [78]. Another candidate gene is the ethyl-

ene-responsive transcription factor ERF109 (Zm00001d005892, additive model), which

besides being involved in ethylene-activated abiotic stress responses [79], induces the expres-

sion of defense-related genes promoting a positive modulation of the response against patho-

gen infections [80]. Gene Zm00001d029115, identified for two traits using the heterozygous

(dis)advantage model, codes the protein strictosidine synthase-like, known to play a key role

in the alkaloid biosynthesis pathway. These chemical compounds function as protection

against pathogenic microorganisms and herbivorous animals. In addition, the improvement

in alkaloid content in the roots has been observed with A. brasilense inoculation in medicinal

plants [81], but there are no reports about its induction in cereal crops.
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The modulation of plant hormones and related signaling pathways by A. brasilense are

aspects also frequently reported [2,61]. For example, we found Zm00001d013098 (additive

model) corresponding to Aldehyde oxidase 2, which is a key enzyme in the final step of

abscisic acid (ABA) biosynthesis. In addition, it performs the final catalytic conversion of

indole-3-acetaldehyde (IAAld) in indole-3-acetic acid (AIA) in different tryptophan-depen-

dent auxin biosynthesis pathways [82]. Moreover, we found the candidate gene for 12-oxo-

phytodienoic acid reductases (Zm00001d037182, heterozygous model), which are key enzymes

in the control of jasmonate (JA) biosynthesis in plants such as maize [83] and wheat [83].

Among other functions, this phytohormone orchestrates defense and growth responses [84].

Some studies show modulation of the induction and emission of plant volatiles by plant-

associated microorganisms, including PGPBs and Rhizobia [85,86]. In turn, these chemicals

have an important role, especially on the induction of resistance in plants against insects and

pathogens [87,88]. We found the Zm00001d046604 candidate gene (additive model) corre-

sponding to (Z)-3-hexen-1-ol acetyltransferase. This enzyme is involved in the green leaf vola-

tile biosynthetic process that is derived from the lipoxygenase pathway [89]. In agreement with

this finding, A. brasilense negatively affects the attraction of the pest insect Diabrotica speciose
to maize by inducing higher emissions of the volatile (E)-β-caryophyllene. Therefore, the vali-

dation of this candidate gene in further studies could help to understand better the role of

plant defense against pests induced by A. brasilense.
Regarding the candidate genes related to abiotic stress mitigation, we found

Zm00001d020747 (additive model), encoding Aquaporin TIP4-1. Under N deficiency, this

plant transporter is up-regulated in Arabidopsis [90] and it is induced by rhizobial and arbus-

cular mycorrhizal fungi symbiosis [91]. In both cases, its function is related to the N delivery

between plant compartments.

We found a candidate gene directly involved in plant root growth encoding hydroxypro-

line-rich glycoprotein family protein (Zm00001d006108, additive model), a protein family

from plant cell walls classified as arabinogalactan-proteins (AGPs), extensins (EXTs), and pro-

line-rich proteins (PRPs). It plays a key role in several processes of plant development such as

root elongation and root biomass, especially under stress conditions [92]. Additionally, AGPs

are exuded in the rhizosphere and help in communicating with soil microbes, participate in

the signaling cascade modulating the plant’s immune system, and are required for root coloni-

zation by symbiotic bacteria [93]. Another, LOC103636767 (heterozygous model), corre-

sponds to formin-like protein 20, which is involved in cytoskeleton movement and secondary

cell wall formation [94].

The major part of N in the leaf is allocated to the chloroplast proteins, and deficiency in this

nutrient leads to a reduction in photosynthetic efficiency [95]. The Zm00001d035859 candi-

date gene (additive model) found in our study is related to the Plastocyanin homolog 1, a pro-

tein involved in the transfer of electrons in the photosystem I. In accordance with this result,

the inoculation of the PGPB Burkholderia sp. in Arabidopsis thaliana leads to modification in

the expression of this protein [96]. Moreover, it is involved in the response of maize to N defi-

ciency [97].

Although the candidate genes found for the N-stress treatment were not the main focus of

this study, many of them have been previously described due to their direct or indirect relation

to plant responses to abiotic stress conditions. The LOC109941493 gene (heterozygous model)

encodes the plasma membrane ATPase 2-like, this being an ion pump in the plant cell mem-

brane important for root growth and architecture under different nitrogen regimes [98]. In

addition, Zm00001d006722 (heterozygous model) is related to arabinosylation of extensin pro-

teins that contribute to root-cell hair growth, these being specialized in the absorption of nutri-

ents [99]. The Zm00001d013098 and Zm00001d038300 genes (additive model) corresponding
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to Aldehyde oxidase2 and Ethylene-responsive transcription factor ERF109, respectively, were

the only candidate genes shared between both treatments. Their functions described above,

related to ABA and AIA biosynthesis and the ethylene-activated signaling pathway, are also

frequently reported in N availability and hormone interactions [100,101]. Moreover, this sug-

gests that the regulation and signalization of these hormones in the plant can be involved in

the cross talk between A. brasilense and N stress in maize. Therefore, besides these results indi-

cating that the stress applied in our experiment was effective, they also could be helpful in fur-

ther studies to understand better the genetic control of root traits under N stress in the early

stages of plant development for improving tolerance in maize.

Some of the candidate genes found by the heterozygous (dis)advantage GWAS model were

identified for more than one trait; this was not observed using the additive model. For these,

the effect on phenotypes was always in the same direction; for example, the candidate gene

Zm00001d029115 (protein strictosidine synthase-like) had a negative effect on both RDM and

RV. Possibly, this occurred because these pleiotropic candidate genes were only found between

RDM, RV, and RAD traits which showed a positive correlation among them.

Additive and heterozygous (dis)advantage GWAS models

GWAS analyses using non-additive models are common in human and animal studies [102–

104]. However, few studies have been reported using plant species [21,22]. In our study, most of

the significant SNPs were identified by heterozygous (dis)advantage GWAS analyses and none

were detected by the additive model, which demonstrates how important it is to study the non-

additive effects on the genetic variability of maize responsiveness to both A. brasilense and N

stress. This was also evident through the results of GO terms, where an increase in exclusive bio-

logical functions was verified. This indicates that the PGPB provide the plant with a broader

spectrum of internal activities, which may be an advantage for growth in stressful environments,

such as N deficiency, with possible consequences in plant evolutionary potential.

Furthermore, our results showed that heterozygous genotypes can have advantages or disad-

vantages on the root traits (both treatments) depending on the allelic combinations that are

formed by the parental crossing. Thus, the strategy of use of SNP–trait associations found by het-

erozygous loci in breeding programs depends on the effect of the heterozygous genotype. This is

a challenge to plant breeders because during hybrid development the allele combination should

be predicted by parental selection in order to benefit its association with PGPB. In this sense, fur-

ther studies underlying these candidate genes are required to understand better the biological

mechanisms of heterotic performance, in comparison to homozygous, in the presence of these

PGPB. For those providing an advantage, the alleles should be improved separately in different

heterotic groups for their subsequent combination in the mating process. On the other hand,

when the heterozygous genotypes are a disadvantage, one or other allele should be improved

simultaneously in both heterotic groups in order to obtain homozygous genotypes in hybrids.

Conclusions

Our study modeling additive and heterozygous (dis)advantage effects in GWAS analyses

revealed 25 candidate genes for the responsiveness of maize to A. brasilense, with key roles par-

ticularly in plant defense, hormonal biosynthesis, signaling pathways, and root growth provid-

ing insights into their complex genetic architecture. In this context, non-additive effects

contribute substantially to the maize phenotypic variation in response to the inoculation and

are related to a wider spectrum of biological functions. Together, these findings allow to be

started the marker-assisted selection and genome editing in breeding programs for the devel-

opment of maize hybrids that can take advantage of this association more efficiently. Finally,
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our results also represent a benchmark in the identification of homologous genes in important

related species, such as rice and wheat, besides advancing the understanding of the genetic

basis of plant–PGPB interactions.

Supporting information

S1 Table. Phenotypic data analyses. Wald Test for fixed effects and Likelihood Ratio Test for
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: error variance) and broad-sense heritabilities.
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S2 Fig. Manhattan and Q–Q plots of additive GWAS model for N stress plus Azospirillum
brasiliense. (A) root dry mass, (B) root volume, (C) root average diameter, (D) specific root

length, (E) specific root surface area, and (F) root/shoot ratio.

(TIF)

S3 Fig. Manhattan and Q–Q plots of additive GWAS model for N stress. (A) root dry mass,

(B) root volume, (C) root average diameter, (D) specific root length, (E) specific root surface

area, and (F) root/shoot ratio.

(TIF)

S4 Fig. Manhattan and Q–Q plots of heterozygous (dis)advantage GWAS model for N

stress plus Azospirillum brasiliense. (A) root dry mass, (B) root volume, (C) root average

diameter, (D) specific root length, (E) specific root surface area, and (F) root/shoot ratio.

(TIF)

S5 Fig. Manhattan and Q–Q plots of heterozygous (dis)advantage GWAS model for N

stress. (A) root dry mass, (B) root volume, (C) root average diameter, (D) specific root length,

(E) specific root surface area, and (F) root/shoot ratio.

(TIF)

S6 Fig. Box plot of significant SNPs identified by additive GWAS model. (A) N stress plus

Azospirillum brasiliense and (B) N stress.

(TIF)

S7 Fig. Box plot of significant SNPs identified by heterozygous (dis)advantage GWAS

model for N stress plus Azospirillum brasiliense.
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S8 Fig. Box plot of significant SNPs identified by heterozygous (dis)advantage GWAS

model for N stress.

(TIF)
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