, ARIMNet2 (ERA-NET) has received funding from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement, Call by the following funding agencies: ANR (France), MERS (Algeria), 618127.

E. Afgan, D. Baker, B. Batut, M. Van-den-beek, D. Bouvier et al., The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Res, vol.46, pp.537-544, 2018.

M. Alves, T. Gonçalves, and C. Quintas, Microbial quality and yeast population dynamics in cracked green table olives' fermentations. Food Contr, vol.23, pp.363-368, 2012.

D. A. Anagnostopoulos, E. Kamilari, and D. Tsaltas, Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation, Front. Microbiol, vol.11, p.1128, 2020.

M. Aponte, V. Ventorino, G. Blaiotta, G. Volpe, V. Farina et al., Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses, Food Microbiol, vol.27, pp.162-170, 2010.

F. N. Arroyo-lópez, V. Romero-gil, J. Bautista-gallego, F. Rodriguez-gomez, R. Jimenez-diaz et al., Potential benefits of the application of yeast starters in table olive processing, Front. Microbiol, vol.5, p.34, 2012.

F. N. Arroyo-lópez, E. Medina, M. Á. Ruiz-bellido, V. Romero-gil, M. Montes-borrego et al., Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis, PLoS One, vol.11, 2016.

F. N. Arroyo-lópez, A. Querol, J. Bautista-gallego, and A. Garrido-fernández, Role of yeasts in table olive production, Int. J. Food Microbiol, vol.128, pp.189-196, 2008.

J. Bautista-gallego, F. Rodríguez-gómez, E. Barrio, A. Querol, A. Garrido-fernández et al., Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications, Int. J. Food Microbiol, vol.147, pp.89-96, 2011.

J. Bengtsson-palme, M. Ryberg, M. Hartmann, S. Branco, Z. Wang et al., Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data, Methods Ecol. Evol, vol.4, pp.914-919, 2013.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Royal Stat. Soc. Ser B, vol.57, pp.289-300, 1995.

G. Bleve, M. Tufariello, M. Durante, F. Grieco, F. A. Ramires et al., Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters, Food Microbiol, vol.46, pp.368-382, 2015.

G. Bleve, M. Tufariello, M. Durante, E. Perbellini, F. A. Ramires et al., Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives, Front. Microbiol, vol.5, p.570, 2014.

S. Bonatsou, A. Benítez-cabello, F. Rodriguez-gómez, E. Panagou, and F. Arroyo-lópez, Selection of yeasts with multifunctional features for application as starters in natural black table olive processing, Food Microbiol, vol.46, pp.66-73, 2015.

S. Casaregola, N. Jacques, C. Louis-mondesir, M. Coton, C. et al., Citeromyces nyonsensis sp. nov., a novel yeast species isolated from black olive brine, Int. J. Syst. Evol. Microbiol, vol.63, pp.3086-3090, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004233

P. Conte, C. Fadda, A. Del-caro, P. P. Urgeghe, and A. Piga, Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality, vol.9, p.514, 2020.

E. Coton, M. Coton, D. Levert, S. Casaregola, and D. Sohier, Yeast ecology in French cider and black olive natural fermentations, Int. J. Food Microbiol, vol.108, pp.130-135, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00089674

M. Coton, A. Pawtowski, B. Taminiau, G. Burgaud, F. Deniel et al., Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods, FEMS Microbiol. Ecol, vol.1, p.93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01866765

M. J. Cramer, N. Haghshenas, C. E. Bagwell, G. Y. Matsui, and C. R. Lovell, Celerinatantimonas diazotrophica gen. nov., sp. nov., a nitrogenfixing bacterium representing a new family in the Gammaproteobacteria, Celerinatantimonadaceae fam. nov, vol.61, pp.1053-1060, 2011.

L. M. Crawford, D. M. Holstege, and S. C. Wang, High-throughput extraction method for phenolic compounds in olive fruit, 2018.

, J. Food Compos. Analys, vol.66, pp.136-144

R. C. Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, vol.10, pp.996-998, 2013.

F. Escudié, L. Auer, M. Bernard, M. Mariadassou, L. Cauquil et al., FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, vol.34, pp.1287-1294, 2018.

N. Eshkol, M. Sendovski, M. Bahalul, T. Katz-ezov, Y. Kashi et al., Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain, J. Appl. Microbiol, vol.106, pp.534-542, 2009.

O. Harlé, H. Falentin, J. Niay, F. Valence, C. Courselaud et al., Diversity of the metabolic profiles of a broad range of lactic acid bacteria in soy juice fermentation, Food Microbiol, vol.89, p.103410, 2020.

D. Heperkan, Microbiota of table olive fermentations and criteria of selection for their use as starters, Front. Microbiol, vol.4, p.143, 2013.

A. Hurtado, C. Reguant, A. Bordons, and N. Rozès, Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives, Food Microbiol, vol.26, pp.827-833, 2009.

A. Hurtado, C. Reguant, A. Bordons, and N. Rozès, Lactic acid bacteria from fermented table olives, Food Microbiol, vol.31, pp.1-8, 2012.

. International-olive and . Council, World Table Olives Exports & Imports" International Olive Council Website, 2019.

N. Jacques, C. Louis-mondesir, M. Coton, E. Coton, and S. Casaregola, Two novel Saccharomycopsis species isolated from black olive brines and a tropical plant. Description of Saccharomycopsis olivae f. a., sp. nov. and Saccharomycopsis guyanensis f. a., sp. nov. Reassignment of Candida amapae to Saccharomycopsis amapae f. a., comb. nov., Candida lassenensis to Saccharomycopsis lassenensis f. a., comb. nov. and Arthroascus babjevae to Saccharomycopsis babjevae f. a. comb. nov, Int. J. Syst. Evol. Microbiol, vol.64, pp.2169-2175, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02630357

R. L. Johnson and A. E. Mitchell, Reducing Phenolics Related to Bitterness in Table Olives, J. Food Q, p.3193185, 2018.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, pp.1647-1649, 2012.

A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast et al., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucl. Acids Res, vol.41, p.1, 2013.

C. P. Kurtzman and C. J. Robnett, Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the largesubunit (26S) ribosomal DNA gene, J. Clin. Microbiol, vol.35, pp.1216-1223, 1997.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Statist. Soft, vol.25, pp.1-18, 2008.

M. I. Love, W. Huber, A. , and S. , Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Gen. Biol, vol.15, p.550, 2014.

F. Mahé, T. Rognes, C. Quince, C. De-vargas, and M. Dunthorn, Swarm v2: highly-scalable and high-resolution amplicon clustering, Peer J, vol.3, p.1420, 2015.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, vol.8, p.61217, 2013.

P. J. Mcmurdie and S. Holmes, Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible, PLoS Comput. Biol, vol.10, p.1003531, 2014.

E. Medina, M. A. Ruiz-bellido, V. Romero-gil, F. Rodríguez-gómez, M. Montes-borrego et al., Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis, Int. J. Food Microbiol, vol.236, pp.47-55, 2016.

E. Medina-pradas, I. M. Pérez-díaz, A. Garrido-fernández, and F. N. Arroyo-lópez, Chapter 9 -Review of Vegetable Fermentations With Particular Emphasis on Processing Modifications, Microbial Ecology, and Spoilage, The Microbiological Quality of Food Woodhead Publishing Series in Food Science, pp.211-236, 2017.

A. A. Nisiotou, N. Chorianopoulos, G. E. Nychas, and E. Z. Panagou, Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions, J. Appl. Microbiol, vol.108, pp.396-405, 2010.

G. E. Nychas, E. Z. Panagou, M. L. Parker, K. W. Waldron, and C. C. Tassou, Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brine, Lett. Appl. Microbiol, vol.34, pp.173-177, 2002.

J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. Minchin et al., Vegan: Community Ecology Package, R Package Ver, vol.2, issue.9, pp.1-295, 2013.

B. D. Ondov, N. H. Bergman, and A. M. Phillippy, Interactive metagenomic visualization in a Web browser, BMC Bioinformatics, vol.12, p.385, 2011.

Y. Ozdemir, E. Guven, and A. Ozturk, Understanding the characteristics of oleuropein for table olive processing, J. Food Process. Technol, vol.5, pp.1-5, 2014.

E. Z. Panagou and C. C. Tassou, Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives, Food Microbiol, vol.23, pp.738-746, 2006.

E. Ramírez, M. Brenes, P. García, E. Medina, and C. Romero, Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes, Food Chem, vol.206, pp.204-209, 2016.

C. L. Randazzo, A. Todaro, A. Pino, I. Pitino, O. Corona et al., Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives, Food Microbiol, vol.65, pp.136-148, 2017.

C. Restuccia, S. Muccilli, R. Palmeri, C. L. Randazzo, C. Caggia et al., An alkaline ?-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus, FEMS Yeast Res, vol.11, pp.487-493, 2011.

F. V. Romeo, Microbiological Aspects of Table Olives, " in Olive Germplasm -The Olive Cultivation. Table Olive and Olive Oil Industry in Italy, I. Muzzalupo (Lisbon: In tech), 2012.

Z. Safari, A. Bruneau, M. Monnoye, M. Mariadassou, C. Philippe et al., Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet, Nutrients, vol.12, p.287, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02503303

J. J. Salas, M. Williams, J. L. Harwood, and J. Sánchez, Lipoxygenase activity in olive (Olea europaea) fruit, J. Am. Oil Chem.' Soc, vol.76, pp.1163-1168, 1999.

S. Selli, H. Kelebek, S. Kesen, and A. S. Sonmezdag, GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives, J. Sci. Food Agricul, vol.98, pp.4104-4111, 2018.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, pp.779-787, 2006.

C. C. Tassou, E. Z. Panagou, and K. Z. Katsaboxakis, Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines, Food Microbiol, vol.19, pp.605-615, 2002.

H. Toju, A. S. Tanabe, S. Yamamoto, and H. Sato, High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples, PLoS One, vol.7, p.40863, 2012.

M. Tufariello, M. Durante, F. A. Ramires, F. Grieco, L. Tommasi et al., New process for production of fermented black table olives using selected autochthonous microbial resources, Front. Microbiol, vol.6, p.1007, 2015.

W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol, vol.173, pp.697-703, 1991.

T. J. White, T. Bruns, S. Lee, J. M. Taylor, D. H. Innis et al., 38 -AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS, PCR Protocols: A Guide to Methods and Applications, pp.315-322, 1990.

H. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2016.