S. M. Benyamina, F. Baldacci-cresp, J. Couturier, K. Chibani, J. Hopkins et al., Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation, Environ. Microbiol, vol.15, pp.795-810, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01577790

A. Berger, A. Boscari, P. Frendo, and R. Brouquisse, Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis, J. Exp. Bot, vol.70, pp.4505-4520, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02566712

A. Berger, R. Brouquisse, P. K. Pathak, I. Hichri, S. Bhatia et al., Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: missing links and future directions, Plant Cell Environ, vol.41, pp.2057-2068, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623277

F. Berrabah, P. Ratet, and B. Gourion, Legume nodules: massive infection in the absence of defense induction, Mol. Plant-Microbe Interact, vol.32, pp.35-44, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02402842

A. Besson-bard, A. Pugin, and D. Wendehenne, New insights into nitric oxide signaling in plants, Annu. Rev. Plant Biol, vol.59, pp.21-39, 2008.

P. Blanquet, L. Silva, O. Catrice, C. Bruand, H. Carvalho et al., Sinorhizobium meliloti controls nitric oxide-mediated post-translational modification of a medicago truncatula nodule protein, Mol. Plant-Microbe Interact, vol.28, pp.1353-1363, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02632366

A. Boscari, E. Meilhoc, C. Castella, C. Bruand, A. Puppo et al., Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate?, Front. Plant Sci, vol.4, pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02647574

Y. Cam, O. Pierre, E. Boncompagni, D. Hérouart, E. Meilhoc et al., Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules, Annu. Rev. Plant Biol, vol.196, pp.535-561, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650936

C. Castella, I. Mirtziou, A. Seassau, A. Boscari, F. Montrichard et al., Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide, Nitric. Oxide-Biol. Chem, vol.68, pp.125-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573246

S. Castro-sowinski, O. Matan, P. Bonafede, and Y. Okon, A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation, Mol. Plant-Microbe Interact, vol.20, pp.986-993, 2007.

J. C. Crespo-rivas, I. Guefrachi, K. C. Mok, J. A. Villaécija-aguilar, S. Acosta-jurado et al., Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the inverted repeat-lacking clade legume glycyrrhiza uralensis, Environ. Microbiol, vol.18, pp.2392-2404, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01429983

I. Dusha, A. Bakos, A. Kondorosi, F. J. De-bruijn, and J. Schell, The Rhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium, Mol. Gen. Genet, vol.219, pp.89-96, 1989.

A. Farkas, G. Maróti, A. Kereszt, and É. Kondorosi, Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides, Front. Microbiol, vol.8, p.51, 2017.

B. J. Ferguson, A. Indrasumunar, S. Hayashi, M. Lin, Y. Lin et al., Molecular analysis of legume nodule development and autoregulation, J. Integr. Plant Biol, vol.52, pp.61-76, 2010.

M. Fukudome, E. Watanabe, K. Osuki, R. Imaizumi, T. Aoki et al., Stably-transformed lotus japonicus plants overexpressing phytoglobin LjGlb1-1 show decreased nitric oxide levels in roots and nodules as well as delayed nodule senescence stably-transformed lotus japonicus plants overexpressing phytoglobin LjGlb1-1 show D, vol.60, pp.1-21, 2018.

K. Georgiades and D. Raoult, Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules, PloS One, vol.6, pp.17962-17962, 2011.

K. Gerdes, S. K. Christensen, and A. Løbner-olesen, Prokaryotic toxinantitoxin stress response loci, Nat. Rev. Microbiol, vol.3, pp.371-382, 2005.

I. Guefrachi, M. Nagymihaly, C. I. Pislariu, W. Van-de-velde, P. Ratet et al., Extreme specificity of NCR gene expression in Medicago truncatula, BMC Genomics, vol.15, p.712, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02410355

I. Guefrachi, O. Pierre, T. Timchenko, B. Alunni, Q. Barrière et al., Bradyrhizobium BclA is a peptide transporter required for bacterial differentiation in symbiosis with Aeschynomene legumes, Mol. Plant-Microbe Interact, vol.28, pp.1155-1166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01433036

K. J. Gupta and A. U. Igamberdiev, The anoxic plant mitochondrion as a nitrite: NO reductase, Mitochondrion, vol.11, pp.537-543, 2011.

A. F. Haag, M. Baloban, M. Sani, B. Kerscher, O. Pierre et al., Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis, PloS Biol, vol.9, p.1001169, 2011.

J. Harrison, A. Jamet, C. I. Muglia, G. Van-de-sype, O. M. Aguilar et al., Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti, J. Bacteriol, vol.187, pp.168-174, 2005.

F. Hayes and B. K?dzierska, Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs, Toxins (Basel), vol.6, pp.337-358, 2014.

I. Hichri, A. Boscari, C. Castella, M. Rovere, A. Puppo et al., Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis, J. Exp. Bot, vol.66, pp.2877-2887, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02634162

F. Horchani, M. Prévot, A. Boscari, E. Evangelisti, E. Meilhoc et al., Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules, Plant Physiol, vol.155, pp.1023-1036, 2011.

B. Horváth, Á. Domonkos, A. Kereszt, A. Sz?cs, E. Ábrahám et al., Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant, Proc. Natl. Acad. Sci, vol.112, pp.15232-15237, 2015.

A. U. Igamberdiev and R. D. Hill, Plant mitochondrial function during anaerobiosis, Ann. Bot, vol.103, pp.259-268, 2009.

A. Jamet, S. Sigaud, G. Van-de-sype, A. Puppo, and D. Hérouart, Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process, 2003.

, Mol. Plant-Microbe Interact, vol.16, pp.217-225

K. M. Jones, H. Kobayashi, B. W. Davies, M. E. Taga, and G. C. Walker, How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model, Nat. Rev. Microbiol, vol.5, pp.619-633, 2007.

Y. Kadota, K. Shirasu, and C. Zipfel, Regulation of the NADPH oxidase rbohd during plant immunity, Plant Cell Physiol, vol.56, pp.1472-1480, 2015.

K. Kato, K. Kanahama, and Y. Kanayama, Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules, J. Plant Physiol, vol.167, pp.238-241, 2010.

M. Kim, Y. Chen, J. Xi, C. Waters, R. Chen et al., An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.15238-15243, 2015.

J. Lipuma, G. Cinege, M. Bodogai, B. Oláh, A. Kiers et al., A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa, Environ. Microbiol, vol.16, pp.3714-3729, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640430

Y. Liu and C. He, Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD, Plant Cell Rep, vol.35, pp.995-1007, 2016.

D. Lobato-márquez, R. Díaz-orejas, G. Portillo, and F. , Toxinantitoxins and bacterial virulence, FEMS Microbiol. Rev, vol.40, pp.592-609, 2016.

L. Luo, S. Yao, A. Becker, S. Rüberg, G. Yu et al., Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation, J. Bacteriol, vol.187, pp.4562-4572, 2005.

D. Marino, E. Andrio, E. G. Danchin, E. Oger, S. Gucciardo et al., A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning, New Phytol, vol.189, pp.580-592, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02665315

G. Maróti and E. Kondorosi, Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?, Front. Microbiol, vol.5, p.326, 2014.

P. M. Martins, M. V. Merfa, M. A. Takita, D. Souza, and A. A. , Persistence in Phytopathogenic bacteria: do we know enough?, Front. Microbiol, vol.9, p.1099, 2018.

H. Marx, C. E. Minogue, D. Jayaraman, A. L. Richards, N. W. Kwiecien et al., A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti, Nat. Biotechnol, vol.34, p.1198, 2016.

C. Masson-boivin, E. Giraud, X. Perret, and J. Batut, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes, Trends Microbiol, vol.17, pp.458-466, 2009.

E. Meilhoc, P. Blanquet, Y. Cam, and C. Bruand, Control of NO level in rhizobium-legume root nodules: not only a plant globin story, Plant Signal. Behav, vol.8, p.25923, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02642317

P. M. Melo, L. S. Silva, I. Ribeiro, A. R. Seabra, and H. G. Carvalho, Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration, Plant Physiol, vol.157, pp.1505-1517, 2011.

P. Mergaert, K. Nikovics, Z. Kelemen, N. Maunoury, A. Kondorosi et al., A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs, Plant Physiol, vol.132, pp.161-173, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134878

P. Mergaert, T. Uchiumi, B. Alunni, G. Evanno, A. Cheron et al., Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.5230-5235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118557

P. S. Miclea, M. Péter, G. Végh, G. Cinege, E. Kiss et al., , 2010.

, Atypical transcriptional regulation and role of a new toxin-antitoxin-like module and its effect on the lipid composition of bradyrhizobium japonicum, Mol. Plant-Microbe Interact, vol.23, pp.638-650

B. Milunovic, C. George, R. A. Morton, and T. M. Finan, Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of sinorhizobium meliloti, J. Bacteriol, vol.196, pp.811-824, 2014.

R. Mittler, ROS Are Good, Trends Plant Sci, vol.22, pp.11-19, 2017.

J. Montiel, M. K. Arthikala, L. Cárdenas, and C. Quinto, Legume NADPH oxidases have crucial roles at different stages of nodulation, Int. J. Mol. Sci, vol.17, pp.1-12, 2016.

J. Montiel, J. A. Downie, A. Farkas, P. Bihari, R. Herczeg et al., Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides, Proc. Natl. Acad. Sci, vol.114, pp.5041-505046, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02390036

J. Montiel, C. Fonseca-garcía, and C. Quinto, Phylogeny and Expression of NADPH Oxidases during Symbiotic Nodule Formation, Agric, vol.8, p.179, 2018.

J. Montiel, N. Nava, L. Cárdenas, R. Sánchez-lópez, M. Arthikala et al., A Phaseolus vulgaris NADPH Oxidase Gene is Required for Root Infection by Rhizobia, Plant Cell Physiol, vol.53, pp.1751-1767, 2012.

B. Oláh, E. Kiss, Z. Györgypál, J. Borzi, G. Cinege et al., Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti, Mol. Plant-Microbe Interact, vol.14, pp.887-894, 2001.

G. E. Oldroyd, Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nat. Rev. Microbiol, vol.11, 2013.

G. E. Oldroyd and A. Downie, Bias and precision of cholesterol analysis by physician's office analyzers, Annu. Rev. Plant Biol, vol.59, pp.519-546, 2008.

G. E. Oldroyd, J. D. Murray, P. S. Poole, and J. A. Downie, The Rules of Engagement in the Legume-Rhizobial Symbiosis, Annu. Rev. Genet, vol.45, pp.119-144, 2011.

T. Ott, J. T. Van-dongen, C. Günther, L. Krusell, G. Desbrosses et al., Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development, Curr. Biol, vol.15, pp.531-535, 2005.

P. A. Price, H. R. Tanner, B. A. Dillon, M. Shabab, G. C. Walker et al., Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility, Proc. Natl. Acad. Sci, vol.112, pp.15244-15249, 2015.

A. Puppo, K. Groten, F. Bastian, R. Carzaniga, M. Soussi et al., Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytol, vol.165, pp.683-701, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01943161

A. Puppo, N. Pauly, A. Boscari, K. Mandon, and R. Brouquisse, Hydrogen peroxide and nitric oxide: key regulators of the legume -Rhizobium and mycorrhizal symbioses, Antioxid. Redox Signal, vol.18, pp.2202-2219, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02651412

H. R. Ramage, L. E. Connolly, and J. S. Cox, Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution, PloS Genet, vol.5, p.1000767, 2009.

C. W. Ribeiro, F. Baldacci-cresp, O. Pierre, M. Larousse, S. Benyamina et al., Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant Thioredoxin s1, Curr. Biol, vol.27, pp.250-256, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01439293

C. Sánchez, A. J. Gates, G. E. Meakin, T. Uchiumi, L. Girard et al., Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding, Mol. Plant Microbe Interact, vol.23, pp.702-711, 2010.

R. Santos, D. Hérouart, A. Puppo, and D. Touati, Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis, Mol. Microbiol, vol.38, pp.750-759, 2000.

F. Sasakura, T. Uchiumi, Y. Shimoda, A. Suzuki, K. Takenouchi et al., A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide, Mol. Plant Microbe Interact, vol.19, pp.441-450, 2006.

T. Shidore and L. R. Triplett, Toxin-Antitoxin systems : implications for plant disease, Annu. Rev. Phytopathol, vol.55, 2017.

Y. Shimoda, F. Shimoda-sasakura, K. Kucho, N. Kanamori, M. Nagata et al., Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus, Plant J, vol.57, pp.254-263, 2009.

M. J. Soto, A. Domínguez-ferreras, D. Pérez-mendoza, J. Sanjuán, and J. Olivares, Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions, Cell. Microbiol, vol.11, pp.381-388, 2009.

J. S. Stamler, S. Lamas, and F. C. Fang, Nitrosylation: the prototypic redox-based signaling mechanism, Cell, vol.106, pp.675-683, 2001.

G. Tang, D. Lu, D. Wang, and L. Luo, Sinorhizobium meliloti lsrB is involved in alfalfa root nodule development and nitrogen-fixing bacteroid differentiation, Chin. Sci. Bull, vol.58, pp.4077-4083, 2013.

G. Tang, Y. Wang, and L. Luo, Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis, Appl. Environ. Microbiol, vol.80, pp.5265-5273, 2014.

G. Tang, S. Xing, S. Wang, L. Yu, X. Li et al., Regulation of cysteine residues in LsrB proteins from Sinorhizobium meliloti under free-living and symbiotic oxidative stress, Environ. Microbiol, vol.19, pp.5130-5145, 2017.

J. C. Trinchant and J. Rigaud, Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids, Appl. Environ. Microbiol, vol.44, pp.1385-1388, 1982.

W. Van-de-velde, G. Zehirov, A. Szatmari, M. Debreczeny, H. Ishihara et al., Plant peptides govern terminal differentiation of bacteria in symbiosis, pp.1122-1126, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856104

P. M. Vitousek, D. N. Menge, S. C. Reed, C. , and C. C. , Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems, Philos. Trans. R. Soc Lond. B. Biol. Sci, vol.368, 2013.

, Frontiers in Plant Science | www.frontiersin.org November, vol.10, p.1496, 2019.

C. Wang, H. Yu, L. Luo, L. Duan, L. Cai et al., Nodules with activated defense 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula, New Phytol, vol.212, pp.176-191, 2016.

D. Wang, J. Griffitts, C. Starker, E. Fedorova, E. Limpens et al., A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis, Science, vol.80, pp.1126-1129, 2010.

C. Waszczak, M. Carmody, and J. Kangasjärvi, Reactive Oxygen Species in Plant Signaling, Annu. Rev. Plant Biol, vol.69, pp.209-236, 2018.

S. Yang, Q. Wang, E. Fedorova, J. Liu, Q. Qin et al., Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula, Proc. Natl. Acad. Sci, vol.114, pp.6848-6853, 2017.

H. Yu, H. Bao, Z. Zhang, and Y. Cao, Immune signaling pathway during terminal bacteroid differentiation in nodules, Trends Plant Sci, vol.24, pp.299-302, 2019.

H. Yu, A. Xiao, R. Dong, Y. Fan, X. Zhang et al., Rapid report suppression of innate immunity mediated by the CDPK-Rboh complex is required for rhizobial colonization in Medicago truncatula nodules, New Phytol, vol.220, pp.425-434, 2018.

B. Yun, A. Feechan, M. Yin, N. B. Saidi, T. Le-bihan et al., , 2011.

, S-nitrosylation of NADPH oxidase regulates cell death in plant immunity, Nature, vol.478, p.264

C. Zipfel and G. E. Oldroyd, Plant signalling in symbiosis and immunity, Nature, vol.543, pp.328-336, 2017.