
HAL Id: hal-02962262
https://hal.inrae.fr/hal-02962262v1

Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reuse of process-based models: automatic
transformation into many programming languages and

simulation platforms
Cyrille Ahmed Midingoyi, Christophe Pradal, Ioannis N. Athanasiadis,

Marcello Donatelli, Andreas Enders, Davide Fumagalli, Frederick Garcia,
Dean Holzworth, Gerrit Hoogenboom, Cheryl Porter, et al.

To cite this version:
Cyrille Ahmed Midingoyi, Christophe Pradal, Ioannis N. Athanasiadis, Marcello Donatelli, Andreas
Enders, et al.. Reuse of process-based models: automatic transformation into many programming
languages and simulation platforms. in silico Plants, 2020, 2 (1), pp.diaa007. �10.1093/insili-
coplants/diaa007�. �hal-02962262�

https://hal.inrae.fr/hal-02962262v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany
Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

Reuse of process-based models: automatic transformation into

many programming languages and simulation platforms

Cyrille Ahmed Midingoyi
1,2

, Christophe Pradal
2,3

*, Ioannis N. Athanasiadis
4
, Marcello

Donatelli
5
, Andreas Enders

6
, Davide Fumagalli

7
, Frédérick Garcia

13
, Dean Holzworth

9
, Gerrit

Hoogenboom
10,12

, Cheryl Porter
11

, Hélène Raynal
8
, Peter Thorburn

12
, Pierre Martre

1,
*

1
 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

2
 AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France

3
 LIRMM, Univ Montpellier, Inria, CNRS, Montpellier, France

4
Wageningen University, Wageningen, The Netherlands

5
 Research Centre for Agriculture and Environment, CREA, Bologna, Italy

6
 Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn,

Germany

7
 Institute for Environment and Sustainability, Joint Research Centre, European Commission,

Ispra, Italy

8
AGIR, INRAE, Castanet-Tolosan, France

9
 CSIRO Agriculture and Food, Toowoomba, Australia

10
 Institute for Sustainable Food Systems, University of Florida, Gainesville, USA

11
 Agricultural & Biological Engineering, University of Florida, Gainesville, USA

12
 CSIRO Agriculture and Food, Brisbane, Australia

13
MIAT, INRAE, Castanet-Tolosan, France

* Corresponding authors' e-mail christophe.pradal@cirad.fr; pierre.martre@inrae.fr

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

mailto:Christophe.pradal@cirad.fr
mailto:pierre.martre@inrae.fr

Abstract

The diversity of plant and crop process-based modeling platforms in terms of implementation

language, software design, and architectural constraints limits the reusability of the model

components outside the platform in which they were originally developed, making model reuse a

persistent issue. To facilitate the intercomparison and improvement of process-based models and the

exchange of model components, several groups in the field joined to create the Agricultural Model

Exchange Initiative (AMEI). AMEI proposes a centralized framework for exchanging and reusing

model components. It provides a modular and declarative approach to describe the specification of

unit models and their composition. A model algorithm is associated with each model specification,

which implements its mathematical behavior. This paper focuses on the expression of the model

algorithm independently of the platform specificities, and how the model algorithm can be seamlessly

integrated into different platforms. We define CyML, a Cython-derived language with minimum

specifications to implement model component algorithms. We also propose CyMLT, an extensible

source-to-source transformation system that transforms CyML source code into different target

languages such as Fortran, C#, C++, Java and Python, and into different programming paradigms.

CyMLT is also able to generate model components to target modeling platforms such as DSSAT,

BioMA, Record, SIMPLACE and OpenAlea. We demonstrate our reuse approach with a simple unit

model and the capacity to extend CyMLT with other languages and platforms. The approach we

present here will help to improve the reproducibility, exchange and reuse of process-based models.

Keywords: Source transformation, model reuse, transpiler, software reuse, crop model.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

1. Introduction

Process-based crop models (PBM) are increasingly developed for a wide range of applications and

research purposes. Even though there are key biophysical processes in PBM such as phenology, soil

water balance, or biomass production, their modeling differs from one model to another according to

the biological details, influenced by the availability of input data and final use of the model. The

choice of modeling approaches to represent processes and combine them is also one of the main

reasons which led to the development of multiple PBM to simulate the same crops (Jones et al. 2017).

They have often been written repeatedly in several different languages with different software

architectures. For example, the WOFOST model is implemented in Fortran in the WOFOST Control

Centre (WCC) package, in Python in the Python Crop Simulation Environment framework, in Java in

the Wageningen Integrated Systems Simulator framework (WISS), in C# in the Biophysical Models

Application (BioMA) framework, and in C++ in the Crop Growth Monitoring System (CGMS) (de

Wit et al. 2019; van Kraalingen et al. 2020).

The diversity of PBM has motived the development of different initiatives that intend to compare their

performance and improve them by integrating new scientific knowledge to target the next generation

of crop models (Rosenzweig et al. 2013; Bindi et al. 2015). PBM intercomparison studies (Palosuo et

al. 2011; Rötter et al. 2011; Asseng et al. 2013; Aslam et al. 2017) have pointed out the variability in

model outputs but often without quantifying the sources of uncertainty or analyzing the processes

involved. These studies showed the potential and limits of PBM and highlighted the need to evaluate

them at the process level, but also to exchange model parts (components) between models (Donatelli

et al. 2014; Muller and Martre 2019). PBM are increasingly implemented as autonomous components

describing each biophysical process. However, there is currently little exchange and reuse of PBM

components between modeling groups despite theoretical and application interests (Holzworth et al.

2014). The main limitation comes from compatibility issues between PBM platforms (frameworks)

resulting from differences in programming languages that are used and their specificities.

The modeling frameworks used in agricultural modelling depend on the programming language in

which they have been implemented, the software design, and code conventions they use. For example,

the crop modeling frameworks APSIM Next Generation (Holzworth et al. 2018) and BioMA

(Donatelli et al. 2010) are based on component-oriented techniques and require models to be

developed in C#. DSSAT (Jones et al. 2003; Hoogenboom et al. 2019) and STICS (Brisson et al.

1998) provide generic crop modules in Fortran with a procedural approach that can be specialized for

different species. Simplace (Enders et al. 2010) uses the Java language, while Record (Bergez et al.

2016) uses C++; both require that their components share a built-in interface. Therefore, model

components can be reused in a given platform but their reuse in other platforms remains difficult.

Existing solutions that couple models written in different languages are rather technical (generation of

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

wrappers) or low level (reading and writing in files). We propose here an abstraction, a sharing

language, and a transformation system, based on the scientific content of the model, i.e., its

algorithms. Multilanguage and integrated modeling frameworks like OpenAlea (Pradal et al. 2008,

2015) and yggdrasil (Lang 2019) offer a language binding approach to provide third-party developers

with a choice of languages (Villa 2001; Lang 2019). Therefore, they overcome the difficulty of

implementing algorithms efficiently in high-level languages. However, they do not provide a solution

to the reuse or exchange of models between frameworks. In these platforms, models are reused as

black boxes and the integrated models, therefore, lack the required transparency. Moreover, this

approach requires knowledge of the frameworks they integrate and the deployment of the core of each

framework. Domain-specific programming languages that are agnostic to a specific programming

language have also been proposed as a solution to the problem (Athanasiadis and Villa 2013; Villa et

al. 2017) aiming to support interoperability with rich semantics.

To facilitate PBM component exchange, several groups in the field have joined forces to create the

Agricultural Model Exchange Initiative (AMEI; Martre et al. 2018). AMEI brings together some of

the most widely used crop modelling and simulation platforms, including APSIM, BioMA, DSSAT,

OpenAlea, RECORD, Simplace and other crop models such as STICS and SiriusQuality (Martre et al.

2006) The vision of AMEI is to (i) increase capabilities and responsiveness to model developers‘

needs; (ii) use modular modelling to share knowledge and rapidly develop operational tools; (iii)

reuse model parts to leverage the expertise of third parties; (iv) renovate legacy code; and (v) realize

the benefit of sharing and complementing different expertise.

Based on a declarative modeling approach (Athanasiadis et al. 2011), AMEI proposes a centralized

framework (Crop2ML; Midingoyi et al. 2020) to exchange and reuse model components. Crop2ML

provides a meta-language based on shared concepts between crop simulation platforms to describe

specifications of model components and compositions. A model algorithm describes the behavior of

the component in terms of the sequence of inputs, successive rules or actions, conditions or a flow of

instructions from inputs to outputs including mathematical expressions. A model algorithm is

associated with each model specification. After a modeler has represented the specifications of its

model, two relevant questions remain to be answered: (1) How can a model algorithm be described

independently of the platform specificities; and (2) How can it be seamlessly integrated into existing

simulation platforms?

Similar approaches have been used in the Systems Biology community where several domain-specific

modeling standard languages including SBML, CellML, and NeuroML have been designed to

exchange and store models (Autumn Cuellar et al. 2006; Gleeson et al. 2010; Hucka et al. 2015).

These XML-based languages provide specific elements to describe model structure and equations

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

https://en.wikipedia.org/wiki/Algorithm

using Mathematical Markup Language (MathML; Ausbrooks et al. 2003) that describes mathematical

notations and captures both its structure and content. However, these languages are limited to specific

formalisms (e.g. chemical reactions, differential equations) and cannot be easily extended to

represent crop models in their full complexity and diversity. System Biology languages support

model transformation from one standard to another (e.g. form CellML to SBML; Schilstra et al. 2006)

and from XML to executable code. In contrast, Crop2ML provides models as components that can be

integrated into simulation platforms. Therefore, our design choice was to introduce a general

programming language to represent complex control flow such as loops or conditions statements.

In this paper, we present CyML, a Cython-derived language (Behnel et al., 2011) with minimum

meta-specifications to implement algorithms of Crop2ML models. This language allows encoding the

model algorithm independently of any crop modeling platform and implementation language. We also

propose CyMLT, a source-to-source transformation system. This one-to-many transpiler transforms

CyML source code into different target languages such as Fortran, C#, C++, Java and Python.

CyMLT is also able to directly generate components to target modeling platforms such as DSSAT,

BioMA, Record, SIMPLACE and OpenAlea. Differences between platforms are not only due to the

languages used to implement models but also to the software architectural design choices and

modeling conventions. For instance, model components in PMF (APSIM next generation) and

BioMA are written in C# in both platforms but the reuse of PMF components in BioMA (and vice

versa) can only be done at the level of binaries, and, therefore, as black boxes. CyMLT takes into

account platform requirements to generate model components that are compliant with existing

platforms. Source to source transformation is a well-established solution used to address software

reuse issues (Plaisted 2013; Fernique and Pradal 2017). It transforms source code from a high-level

language to another one. However, to the best of our knowledge, no solution exists that targets PBM

component reuse using automated source-to-source transformation. In this paper we present this issue

by focusing on code reuse and reproducibility to enhance collaboration between crop modelers and to

facilitate model coding for non-programmers, while keeping the transparency of model constructs.

Different source-to-source transformation systems are available for different purposes, both

commercial (e.g. Baxter et al. 2004) and open source (Quinlan and Liao 2011). Some lessons can be

learned from these approaches. Many source-to-source transformation systems take as input a subset

of one language and transform it to a single target language with specific transformation purposes

without showing their extensibility (Akeret et al. 2015; Bysiek et al. 2017; Misse-chanabier et al.

2019). Few one-to-many (Plaisted, 2013; Schaub and Malloy, 2016) and many-to-many (Baxter et al.

2004) solutions have been proposed. They usually define a subset of language features and are based

on a common intermediate representation of the languages provided from their similarities. However,

they do not consider transformation between different programming paradigms. For instance, to our

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

knowledge, there is no system that transpiles from a procedural algorithm to both a procedural and an

object-oriented program. To avoid losing assumptions or domain knowledge such as code

documentation or variable units, a PBM source-to source-transformation should also integrate domain

specific knowledge to generate code that is easy to read, following developer guidelines specific to

each language.

First, we present the design and implementation of CyML language and the one-to-many

transformation workflow. Then we demonstrate the use of CyML and for a simple model component,

which simulates wheat shoot number and the extensibility of CyMLT to new languages or simulation

platforms. Finally, we discuss our results and present some perspectives. This paper is not intended to

provide a full description of the language and its transformation but uses them to demonstrate that a

model algorithm can be implemented once and be used to generate reusable and reproducible model

components in different target languages and platforms.

2. Methods

2.1 Brief overview of Crop2ML

Crop2ML has been developed to offer to the crop modeling community a common framework for

crop model component development, exchange, and reuse. It provides a model component

specification language based on XML meta-language. It consists of unified concepts and elements

allowing to describe a biophysical process regardless of the simulation platform. A Crop2ML model

is an abstract model that may be either a unit model with fine granularity or a composite model

represented as a graph of unit models connected by their inputs and outputs to manage model

complexity. Crop2ML separates model specification from model algorithm. A model specification

contains formal descriptions of the model, the inputs, outputs, state variable initializations, auxiliary

functions and a set of parameters and unit tests. Thus, it allows for checking that a model reproduces

the expected outputs values with a given precision. It supports multiple tests associated to one or

multiple set of parameters' values. However, baseline parameter sweeps are not supported due to

limited support in various languages and unit test frameworks. The specification also contains the

algorithm written in CyML and any auxiliary functions called from the model algorithms or in other

functions. They reduce code length and, therefore, improve readability of model algorithm by

promoting reuse and increasing abstraction. Auxiliary functions include mathematical functions such

as interpolation, and lower and upper bound functions.

All model units and composite models are then transformed into different languages or simulation

platforms to be incorporated into modelling platforms.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

 The source code (https://github.com/AgriculturalModelExchangeInitiative/Crop2ML) and full

documentation (https://crop2ml.readthedocs.io/en/latest/) of Crop2ML are available on Github.

2.2 Requirements and CyML design choices

We designed the CyML language to meet the following requirements.

(i) Keep compatibility with programming languages of crop simulation platforms. A model can be

reused if it can be separated from its original platform and expressed using equivalent and explicit

constructs available in all supported programming languages and platforms. Therefore, a sub-

language needs to be identified that is minimal enough to express biophysical processes in all

platforms but expressive enough to capture the complexity of most models. The resulting code must

be removed from the technical subtleties of the platform but it will still depend on the platform

language. In fact, most of these languages are direct descendants of the C language from which they

inherit some constructs. Thus, they provide some similarities such as statements, the sequencing

controlled by loop and conditional constructs, and functions that foster program modularization (Akin

2003). This leads to the ability to define a common language based on their common features. This

language must be chosen in such a way that all its constructs are mapped to the constructs of the target

languages, thus producing a fully automated source to source transformation. It must also provide

some mathematical standard functions that have their equivalents in the language of the modeling

platforms.

 (ii) Link model specification and model algorithm to keep domain knowledge. As the model

specification language is separated from the language of the algorithms in Crop2ML, it is necessary to

provide and link domain knowledge information, including the context or decisions underlying the

algorithm and its implementation in the language. It is also important to reduce the coding role of

modelers in the implementation of model algorithms so that they can focus on the scientific

knowledge (Brown et al. 2018). Our hypothesis is that model reuse can be achieved if its algorithm is

closely associated with its specification. Thereby model specification can be used to generate a

function signature or domain class from the description of inputs and outputs. The specification must

also allow pass through documentation within the translated source code, but also to validate model

algorithms with the unit tests they incorporate.

(iii) Cover the domain of interest. The abstract language must be sufficient to implement a

biophysical process. This means that it must include all relevant and minimal features such as data

types, modularity, and structures to encode any model algorithm. For example, in order to encode a

model algorithm based on a set of mathematical expressions, a simple pseudo-code described as a

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

https://github.com/AgriculturalModelExchangeInitiative/Crop2ML
https://crop2ml.readthedocs.io/en/latest/

sequence of assignment statements are suggested. Like the model specification, this language must be

modular. Model algorithms must be self-contained and reusable within a composite model.

 (iv) Have a gentle learning curve. An important impact of the language is its learning curve, which

must be shallow and allow modelers to focus on the science of the model rather than on its

implementation. Thus, CyML must enable an optimal model developer experience with a learning

curve that does not intimidate new users. The algorithm language must be expressive and enable users

to write efficient source code that is easily understandable with minimal syntax. It must also produce

readable source code within the target simulation platforms. The translated program must be a

standalone program that is independent of the transformation system.

(v) Validate correctness using unit tests. Given that CyML is built to serve as an intermediate

representation of a set of languages, its validity is practically proved if all unit tests written in CyML

succeed in all languages after transformation. This involves testing the generated code either in a

multilanguage runtime environment or in the runtime environment of each language to ensure that the

language features are well defined and that their emulation in other languages is correct.

To satisfy the above requirements, we identify common patterns often used in crop modeling

simulation platforms to implement model components. They result from the intersection of a set of

minimal features of different languages used by the platforms (Figure 1, left part). We used these

features to propose a shared modelling language. An additional design choice is to use a subset of an

existing language that can satisfy our requirements and provide the common selected features. Python

was a good candidate language to fit our design considerations. It is an expressive and high-level

programming language that allows writing short source code and has a gentler learning curve than C,

C#, Java, or C++ (Linge and Langtangen 2016). However, its dynamic typing can make

transformation into programming languages with static typing ambiguous. Therefore, we proposed to

add an explicit type declaration to the Python language, which led us to choose Cython (Behnel et al.

2000). Cython is a high-level programming language that combines the power of Python and C

function calling and types on variables and class attributes. It is compiled directly in efficient C code

that improves runtime speed and allows it to interact with C, C++ and Fortran source code. However,

not all Cython syntax can be directly translated into all target languages. For instance, the yield

statement and anonymous functions are not supported by Fortran. Therefore, we defined CyML as a

sub-set of Cython to address the implementation of the model algorithm (Figure 1, right part). CyML

does not cover some features such as class definition, nested functions, exceptions handling,

anonymous function, reading and writing files. These features are handled by the platforms in their

programing language.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Figure 1. From the intersection of a set of languages features to a definition of an abstract language

CyML, defined as a subset of Cython. Langi corresponds to a minimal language supported by a crop

simulation platform ―i‖. The number of circles (n) in the left corresponds to the number of platforms.

Figure 2. Main concepts supported by the CyML language. Black diamonds indicate composition

(―contains‖) relationships and white diamonds indicate a specialization (―is-a‖).

2.3 CyML language

CyML is designed as a subset of the Cython language based on a language specialization approach.

This involves removing undesirable syntactic or/and semantic features of Cython that may not be

easily transformed into many different languages or are not required to implement PBM algorithms.

The conformance to the subset of Cython features is guaranteed through a semantic analysis. The

main concepts supported by CyML are represented in Figure 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Declaration: Basic types and collection. Unlike CyML, Cython does not require explicit type

declarations. This means that in CyML, all variables have to be declared before they are used and the

declared type is immutable. A variable can be initialized during or after its declaration. In the case of

model algorithm implementation, a variable can be either a model input, output or a local variable

required for the implementation. Explicit static typing is enforced by the semantic analysis step

illustrated in Figure 2. CyML supports basic types (e.g. integer, real, logical and string) and two

sequence types (list and array) with dynamic or fixed length. Each element of a sequence must have

the same type. Moreover, since time is an important variable in the defintion of discrete-time process,

CyML provides datetime types in terms of year, month, day, hour, minute and second. CyML

suppports commonly used binary (numerical and boolean), unary and comparison operators, as well

as casting operators for basic types and sequence operators such as length or sum.

Statements. Statements can be either an assignment, an expression or a control structure. An

assignment assigns a variable to a mathematical expression, another variable or a value using an

assignment operator (e.g. ―=‖). An assignment statement can, therefore, express the relationships

between model inputs-outputs when those are described only by simple equations. An expression is

commonly defined as a construct made up variable, operator, or function call that can be evaluated to

a value. In CyML, expression is distinguished from assignment by the fact that, in the case of

assignment construct, the evaluation result of an expression is assigned to a variable. An expression

can contain standard mathematical functions such as exponential, maximum, minimum, and power

functions. Unlike assignment, expressions have no assignment operator. They are built-in functions

called to perform an operation (e.g. collection operations such as adding or removing an element in a

sequence). CyML supports structured control flow statements that can be nested. Control flow

statements include conditional branching (if, elseif, and else) and loops (for-in-range, for-each,

iterating over several collections, and while) statement.

Function. CyML uses the definition of a Python function to code the model algorithm and to

represent external functions with arguments with explicit data types. A function is composed of a set

of statements in its body grouped under a def statement with a signature consisting of the name of the

function, their inputs arguments and return values. A function may call other functions that can be

provided by an import mechanism to ensure modularity. CyML also supports recursion which means

that a function can call itself in its definition.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Module and package. A module is a file containing a set of functions that can be reused in models

and functions. A package contains a set of modules and models in a set of files. These concepts allow

external dependencies to be managed.

Figure 3. Design architecture of the one-to-many CyML transformer (CyMLT). It takes as input a

model unit algorithm implemented in CyML with associated model specifications and applies a

transformation workflow to produce crop model components or source code in different languages for

different platforms.

2.4 CyMLT design

The CyMLT architecture is composed of two main parts: the front-end and the back-end (Figure 3).

The front-end consists of a Model Parser, a Cython Parser, and a Semantic Analysis component.

The Model Parser checks the model specification based on the Crop2ML grammar and generates a

logical object allowing access and manipulation of the model.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

The Cython parser provides a lexical and syntactic analysis of the source code. It detects syntactic

errors and generates an Abstract Syntax Tree (AST). The AST is a data structure representing the

syntactic structure of the source code as a tree where the nodes represent the syntactic components

(e.g. FunctionDefinition, Assignment, If-Block…) of the grammar. Figure 4 shows an example of

AST generated from a square function. The design choice of CyML relies on the legacy Cython

parser. This parser uses all the syntactic components of Cython instead of a restricted grammar. To

restrict Cython grammar, the generated Cython AST is processed to ensure that it incorporates only

syntactic components defined in CyML.

The AST Transformation transforms the generated AST to a self-contained representation of the

source code called Abstract Semantic Graph (ASG), which is independent of the source language.

The Semantic Analysis operates during the AST transformation to perform semantic checks from the

AST. It consists of various checks such as type consistency, declaration of variables before their use,

or consistency of elements in a list. This analysis checks that the input and output datatypes in model

specifications are well defined in relation to the model algorithm. The semantic analysis generates

error messages if the verification fails. Note that, unlike the AST, each node of the ASG is labeled

with at least its type and its pseudo-type (Figure 4c). The pseudo-type is the expected type of a node

and strengthens code generation reducing the number of ASG traversals. For example, in Figure 4c a

node of type ―Function‖ follows ―Module node‖ and has a pseudo-type [―Function‖, ―int‖, ―int‖]. This

pseudo-type corresponds to the function signature, meaning that this function takes as input one

argument of type ―int‖ and returns one value of type ―int‖. Note also that, unlike the AST, the type of

internal nodes of the ASG may be different from non-terminal symbols of the grammar. Another type

of node is built that preserves the intention in the source code instead of the code structure. For

example, in Figure 4b the binary operator node ―PowNode‖ is transformed in Figure 4c by a ―standard

call‖ node, which takes as arguments the operands of the binary operation.

The back-end of CyMLT is responsible for Code Generation (Figure 3). It is independent of the front-

end. It takes as input the ASG generated by the front-end and works in relation with the Doc and

Interface Generation and Transformation Rules components.

The Code Generation component transforms the annotated ASG into different readable source code or

platform components. It consists of two integrated sub-components: a Language Generation and a

Platform Generation. A Language Generation emits the source code in a specific language with a

specific programming paradigm. This source code does not contain any simulation platform features.

A Platform Generation emits a model component based on the requirements of a platform such as its

implementation language, software design and code conventions.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Figure 4. Example of abstract syntax tree (AST) and abstract semantic graph (ASG). (a) definition of

function "square" in CyML. (b) simplified view of AST of function ―square‖ where the internal nodes

in black represent Cython constructs and the final node in blue a variable or constant. (c) Simplified

view of ASG with of function ―square‖ with the new annotated nodes. The leaf nodes in black are

non-terminal symbols of the Cython grammar whereas the end blue nodes are terminal symbols,

essentially variables and constants. A child node (c) can be accessed from its parent node (p) through

an attribute ().

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

A Transformation Rule is a function that takes as input a node of the ASG and generates a new node

based on a specific structure of the target language. Transformation Rules are applied on the ASG for

Code Generation. The code generation is generally described by straightforward transformations of

the ASG. However, some nodes of the ASG require non-trivial transformations to produce new

nodes. For example, the transformation of the declaration node in Figure 4c consists of replacing the

basic type int by the Java basic type integer without the cdef statement to reproduce Java

integer variable declaration, whereas the generation of the power call function requires applying a

casting function (int) to preserve type compatibility.

The Doc and Interface Generation component generates documentation in the target language from

the model specification. It embeds all the semantics of model inputs and outputs, and then integrates

the model knowledge in the code generated.

Finally, the Notebook Generator transforms generated source code or model components into Jupyter

notebook (Kluyver et al. 2016) to interactively test and validate the transformation.

2.5 CyMLT implementation

CyMLT proposes a unique approach to transform an ASG into many programming languages. It is

implemented around the main classes shown in Figure 5. A set of classes (suffixed by Generator)

generates the code for each language and platform. It means that a sub-class of PlatformGenerator

and of LanguageGenerator class have been implemented for each supported platform and language. A

PlatformGenerator class inherits attributes and properties of the LanguageGenerator class related to

the language used by the platform. For example, as BioMA uses the C# language, the

BioMAGenerator class (i.e. the class that generates BioMA components) inherits the

CsharpGenerator class that generates the source code in C#. Each class contains a visitor method for

each ASG node type. Each visitor method name is composed of ―visit_‖ followed by ―the type of the

node‖. A visitor method emits code fragments. Each LanguageGenerator sub-classes provide the

same visitor method names given that the same ASG is used. A LanguageGenerator class also inherits

two classes: CodeGenerator and LanguageRule. The CodeGenerator class contains the factorized

methods shared by all LanguageGenerator classes including the method used for code emitting and

code formatting. This class inherits the super class of the transformation process called NodeVisitor.

CyMLT implements the Visitor design pattern (Gamma et al. 1995) to avoid a procedural

implementation approach. NodeVisitor contains a dispatch method that enables recursive traversal

through the nodes. During traversal, the appropriate visitor method corresponding to the type of the

current node is called in LanguageGenerator or PlatformGenerator and the associated code fragment is

emitted. Before emitting the code fragment, some nodes undergo a transformation from the

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

LanguageRule class. This class is implemented for each language as a mapping where keys

corresponds to the different methods, datatypes, and operators of CyML, and values are their

emulation in target languages provided from their standard libraries (Supporting Information Table S1

to S5). Given that the CyML language is similar to Python, it is straightforward to yield Python code

through one ASG traversal. This is not the case for all target languages, which require more traversals

to support specific features provided from the analysis of the ASG. For example, a first traversal

could detect that it is necessary to declare other variables in the generated code. These additional

operations have been implemented in the Adapter class containing some methods to traverse the ASG

and, where the conditions have been defined, to retrieve the new features required in

LanguageGenerator. Likewise, the Model object generated by the model parser is used in

LanguageGenerator to generate the model interface with accessor and mutator methods for object-

oriented languages, or to add additional semantics to variables based on platform conventions. This

separation of model specification from model algorithm enhances CyMLT to transform a model

algorithm from a procedural approach to an object-oriented approach with different software designs.

Finally, LanguageGenerator and PlatformGenerator use DocGenerator to integrate model

documentation into generated model components. DocGenerator extracts all information based on

model specification and presents it in different format according to the language and the platform.

Figure 5. Class diagram illustrating the implementation of the one-to-many CyML transformer

(CyMLT).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

2.6 Case study

Phenology, the timing of crop development and the simulation of phase durations and crop stages, is

sometimes thought of as the core for most crop growth PBMs and an essential component of most

crop modeling platforms. In order to illustrate how a model is written in CyML and the functionalities

of the language, we transformed the BioMA phenology component (Manceau and Martre 2018) of the

wheat PBM SiriusQuality (He et al. 2012) into a Crop2ML composite model and wrote the algorithms

of the model in CyML. The shootnumber, a model unit of this component, is presented in Supporting

Information Listing S1.

3. Results

3.1 Model algorithm implemented in CyML

The shootnumber model is implemented in CyML as a function that includes all the meta information

provided by the model specifications (Supporting Information Listing S2). The model documentation

is generated from the model specification and is shown in red. It contains the name of the model, its

version, its time step (in days) and other descriptions such as the authors‘ names and the reference for

the model.

The algorithm shootnumber unit model requires an external function, Fibonacci, which is

implemented outside of the model algorithm (Supporting Information Listing S2, Line 35) to make

the code readable and shorter. This mathematical function allows to compute the shoot production

from the number of emerged leaves on shoots (Supporting Information Listing S2, Line 22). We

implement the code using conditional (if, line 26) and loop (for, line 29) control structures. Table 1

gives the meaning of CyML language built-in functions that are used to implement the shoot number

model.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Table 1. Example of built-in functions within CyML language and their meaning.

Function Description

max Largest item in a sequence

min Smallest item in a sequence

ceil Smallest integer greater than or equal to the parameter

append Add an element at the end of a dynamic array (list)

len Number of elements in a sequence (array or list)

range Generate a list of integers from a start value to a stop value with a step

integer Update the actual state variable from its previous value and the rate

3.2 Transformation of CyML source code to different languages and platforms

Currently, CyMLT supports Python, Java, C#, C++ and Fortran languages. It also has the capability of

generating a model algorithm in conformance with crop simulation platforms requirements.

Therefore, it handles different programming paradigms such as procedural, functional, and object-

oriented programming by associating model specifications to the transformation workflow.

Structure of generated source code. Although CyML provides a procedural mechanism to

implement model algorithm, the programming languages supported by CyMLT can be classified in

procedural and object-oriented programming paradigms. Some languages are designed to support only

the object-oriented paradigm (C# and Java). Fortran and C are procedural languages even though they

can ―mimic‖ some object-oriented features to support object-oriented programming style (Cary et al.

1997). Python and C++ support both object-oriented and procedural paradigms. CyMLT uses

procedural paradigm for Python and object-oriented for C++, as these are the most often used

approaches in these languages. However, CyMLT can also be extended to generate models in Python

with an object-oriented approach and in C++ with a procedural approach.

For the C++, C# and Java languages, a model algorithm implemented in CyML is transformed into a

class (Listing 1) that encapsulates both the algorithm and the scientific knowledge related to the

model through the integrated documentation. A class, in software engineering terms, is a data

structure defining a set of common properties and methods of an object. The generated source code

contains methods to access and mutate model inputs and outputs, a constructor method to create and

initialize an instance of the model (object) and a calculation method encapsulating the procedural

logic of the model algorithm. First, variables are used to access model input (Listing 2) values before

transforming the set of instructions of the model algorithm into the new language. Then, mutator

methods are applied to update the model outputs (Listing 3). Model inputs and outputs are used to

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

build a class of objects passed in argument of the calculation method. External functions are

transformed into static methods of the model class (Listing 1Error! Reference source not found.).

Listing 1. Structure of generated source code in Java, C#, Fortran, and C++.

The current version of CyMLT supports Fortran 90. This Fortran version presents low-level features

(pointers, allocation), which makes some transformations difficult but ensures a higher portability. In

Fortran, model algorithm corresponds to a subroutine, whereas external functions are subroutines,

functions or recursive functions. CyMLT automatically operates this choice. In our case study, the

Fibonacci function is transformed in a recursive function, which keeps the structure of the original

code. In Python, the generated source code has the same structure as the CyML function. However,

CyMLT can also generate Python code with an object-oriented approach.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Listing 2. Access input variables (in Java), s and s1 correspond to two instances of the class of state

variables to manage previous and current state. CyMLT generates variables to access the fields of

these instances and uses them in the procedural logic.

Listing 3. Update output variables in Java. s corresponds to an instance of current state variable.

Data type and variable declaration. In addition to the programming paradigms, languages supported

by CyMLT can be classified by their type system, in particular their type expression (explicit or

implicit). This can affect the quality of the generated code. Although some languages (e.g. C# and

C++) allow both implicit and explicit type expression, we chose to provide explicit typing. Basic

types (integer, logical, character, and real) are built-in data types in all languages. However, other

more complex types like datetime or sequence are supported but require external or standard

libraries. Moreover, various libraries exist to handle the same data structure. CyMLT‘s datatypes map

appropriately to target languages by using their standard library (Supporting Information Table S1).

Some compromises have been made for the transformation of complex types. CyML arrays are

modeled on a standard Python list. However, the size of list datatype variables is not fixed. We

propose to use the Numpy array in the next version of CyMLT. In Fortran, CyMLT generates

allocable arrays to map to CyML list data types and provides some functions to handle it. These

functions are extracted from CyMLT library and integrated into the generated code to make it

independent of the library of transformation. In C++, datetime type handling is not easy. It is

converted into a string, which could be split for processing. CyML arrays without a specified size in

the function parameter are mapped to C++ arrays using templates (Listing 6, line 1). In Java, there are

many standard Time APIs. (e.g., Date, LocalDateTime) depending on the version of Java. We

have chosen to use the Date Library in Java and the DateTime Library in C#.

Type and intent preservation. Most of the target languages provide built-in methods matching with

CyML built-in functions. However, there may be some differences between their name or return

types. This is considered in the generated source code. As an example, consider the statement at

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Error! Reference source not found. on Line 29, where the purpose is to find the smaller integer

value that is larger than or equal to the leaf number. The method ceil in the C++ Math library

corresponds to the CyML ceil function but returns a floating-point value. In this case, CyMLT

preserves the original type (integer) by applying an explicit type conversion (Listing 4, Line 1).

Listing 4. Type preservation in CyML transformation to C++, int casting is applied to the result

returned by ceil function.

The generated code preserves the intent of the original code provided by the information on the ASG.

Listing 5 illustrates this intent preservation in the transformation of CyML For-loop construct

(Listing 4, Line 1) where the consecutive iteration is expressed into an efficient way of representation

in Fortran with the DO sequence (Listing 5, Line 1). However, the sequence indexing is different

between CyML and Fortran. The last parameter of the CyML range function is not contained in the

CyML sequence unlike the Fortran DO sequence. This is managed by subtracting this parameter by 1

in the generated code, thereby providing a same length of sequence. Likewise, arrays in Fortran are

indexed from 1 by default and this is considered during the transformation of all array operations.

Listing 5. From CyML for-loop to Fortran do-loop. The subroutine Add is generated to expand leaf

tiller number array.

Preservation of the scope of variables. CyMLT considers the scope of the variables in the different

target languages. The scope of a variable refers to a region of the code where the variable is visible.

Some languages like Java, C++ and C# manage variable scope differently and this variability is

handled by CyML.

Consider the transformation of a simple CyML function that calculates the sum of elements of an

array x with undefined size (Listing 6). The generated code in Fortran requires the declaration of new

variable i_cyml to map the For-loop construct. However, the generation of a new variable in Java,

C++ and C# preserves the scope of the variable i. The scope of the iteration index on an array

variable in a For-loop construct is limited to the loop scope, whereas it is extended to all the

functions in CyML and Python. Assuming that in the original code this iteration index is reused after

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

the loop, it will generate a compilation error in the target languages if the transformation did not

handle this scoping issue by declaring another variable.

Listing 6. CyML code of a function that computes the sum of the elements of a list transformed using

CyMLT in Python, C++, C#, Java, and Fortran.

Transformation to simulation platforms

The transformation of a CyML code to target languages can generate a model component in different

ways. These transformations have been designed to be close to the philosophy of each target

language. However, from the perspective of crop model component development, high-level

CyML

Python

C++

C#

Java

Fortran

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

programming languages are the lowest level of abstraction with respect to simulation platforms and

frameworks. Additional constraints in crop modeling platforms include a specific programming

paradigm, software design and code conventions. These different features give them capabilities to

provide code introspection and reflection support, which allows them to dynamically extract and

change information or knowledge about the code at run time. Thus, the code generation should extend

language code generation by considering platform coding constraints, which are often implicit. The

design of programming languages is formalized using grammars and is unambiguous. Platforms use

design and architectural patterns without the use of an explicit formalism. This implies adapting the

transformation to each platform taking into account their specificities. The current version of CyMLT

generates model components compatible with BioMA, DSSAT, Record, OpenAlea and Simplace

platforms, which support C#, Fortran, C++, Python and Java, respectively.

Generation of object-oriented components. An object-oriented platform provides features such as

inheritance, polymorphism and software design used to implement models. Polymorphism allows a

model programmer to provide a generic interface to a number of related functions, and, thus, to

propose different strategies to implement a model with different assumptions. For instance, this

provides the possibility to include new physiological processes that are shared among different crop

types. For this, object-oriented platforms define an abstract class that specifies the interface of all

model components, which implements all the abstract methods of the abstract class. Two different

approaches are used for model components to inherit an abstract class. Some platforms offer an

abstract class and all model components implement and extend this class. This is the case for

Simplace and Record, which provide the FWSimComponent (Listing 7: Structure of ShootNumber

component in Simplace. A model unit in Simplace implements and extends an abstract class called

FWSimComponent. Then, a model component overrides its abstract methods including init (model

initialization), clone (deep clone of the model) and process (model algorithm). The structure of the

abstract class is used to define a model skeleton in CyMLT to generate a model conforms to platform

requirement.) and DiscreteTimeDyn interface, respectively. Another approach followed by platforms

is component-based programming. A model developer creates a component that inherits of an

interface provided by the platform. Thus, model components inherit this component interface. For

example, BioMA provides the IStrategy interface. The current version of CyMLT generates a

component interface in addition to the generation of model components. The abstract methods depend

on the platform and include a method that encapsulate the algorithm of the model.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Listing 7: Structure of ShootNumber component in Simplace. A model unit in Simplace implements

and extends an abstract class called FWSimComponent. Then, a model component overrides its

abstract methods including init (model initialization), clone (deep clone of the model) and process

(model algorithm). The structure of the abstract class is used to define a model skeleton in CyMLT to

generate a model conforms to platform requirement.

Generation of stateless and stateful unit models. A model algorithm is implemented in CyML as a

function. However, the CyMLT generates both a stateless and a stateful component. A stateless

component is an immutable object whose values of fields do not change if methods are invoked.

CyMLT allows searching and extracting state variables from a model specification to perform code

generation according to each platform.

In DSSAT and OpenAlea, a model algorithm is implemented as a stateless functional component

(declarative paradigm). The Fortran code generated by CyMLT is compatible with DSSAT. In this

platform, the calculation of rates of change and the integration of state processes are sometimes

separated with the use of a control variable. In CyML, we introduce two variables that define the

previous and current value of a state variable that avoids a misuse of the state variable. Although

OpenAlea offers capabilities to benefit of oriented-object features of Python, OpenAlea components

can be defined as pure Python functions, already generated by CyMLT. However, model

specifications need to be transformed into an OpenAlea component specification for unit and

composite node (Pradal et al. 2008).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

BioMA uses the strategy design pattern to create a library of simple strategies (equivalent to

Crop2ML unit models) and composite strategies for model composition. The simple strategy leads to

the implementation of a model unit as a stateless component. Thus, an instance of model unit class is

a stateless object since it contains only model parameters (if any) as attributes which do not change

during the simulation. The method of computation is comparable to a function that takes an object as

an argument (i.e. higher-order function). Concretely, these objects are instances of domain classes.

Domain class contains the values and the attributes for all variables defined in model specifications.

To handle the change of state variables, the method of computation of each class takes as arguments

two instances of state variables domain class reproduced by CyMLT (Listing 8), one for the current

value and the other one for the previous one. This is made possible by the fact that the previous state

is emulated in the CyML function with variable suffixed with ―_t1‖.

Finally, in Record and Simplace, unlike BioMA, a model unit class contains all state variables. In

Simplace, there is no convention to distinguish previous and current state variables. Thus, CyMLT

considers them as distinct fields in the generated Simplace component. The Record platform handles

variable history (time series) by suffixing state variable with an operator () in the code. Thus, in this

case, CyMLT generates current state variables with the suffix () and previous state variables with (-

1).

Listing 8. Fragments of code in C# with BioMA guidelines generated with CyMLT. S1 is an instance

of state domain class used for previous time, s is an instance of state domain class used for current

time. This shows that leaf number has been calculated by another model at the current time step,

whereas the other variables are those calculated at the previous time step.

Generation of platform specific types and data-structures. Some platforms define their own types

by providing a generic class to handle model variables and parameters. A generic class is either a

class or an interface that can be parameterized over the language data types. It contains a specific

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

number of methods including methods to access or update variables. In this case, CyML data types

map the framework generic types.

Unlike BioMA, where inputs and outputs are C# data types extended with the generation of accessors

and mutators, Simplace and Record provide their own class or interface to declare model inputs and

outputs. To generate a Simplace component, the process of transformation consists of declaring

model variables with the specialized class FWSimVariable. Then, CyMLT generates other variables

declared with Java data types, which are used to access values of the FWSimVariable instances

(Listing 9). This allows expressing the model algorithm with a pure Java but requires the use of a

mutator method of the generic class to update output (Listing 10). Likewise, the generated Record

component implements the DiscreteTimeDyn class provided by the vle package of Record to encode

discrete-time models algorithms.

Listing 9. Generation of other variables to access Simplace component variables. These variables are

prefixed by t.

Listing 10. Update of the variables of the shootnumber unit model generated by CyMLT following

Simplace specifications.

3.3 Extensibility

The number of languages and platforms that CyMLT supports can be extended due to its modular

structure. The explicit separation between the production of the annotated ASG and its transformation

into a readable source code of the target languages and platforms provides a great flexibility to add

new target languages. The addition of a new language requires only a mapping of this intermediate

representation into a set of compatible instructions based on the standard library of the language. The

generated code must be independent of the transformer, clear, and easy to read while preserving the

knowledge expressed in the original code. We present the steps for the extension of CYMLT with R

language (R Core Team 2017) and the Plant Modeling Framework (PMF).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Supporting a new language: R. R is a popular language used for statistical analyses and data

visualization. Many modelers use R to start the development of their model (Zhao et al. 2019). Thus,

with this extension, modelers can in the same environment conduct the first steps for model

development and the implementation in a simulation platform, and analyze model outputs. The

extension of CyMLT for R relies on the implementation of RGenerator and RRules classes that emit

fragments of code in R and define transformation rules between CyML and the desired R constructs,

respectively.

Implementation of transformation rules for R. Transformation rules define the mapping of CyML

operators, built-in functions and methods to their equivalent in R. R is a dynamic typed language and,

as with Python, the type of variables is ignored.

Operators mapping. Listing 11 declares the mapping between CyML and R operators. Only the

difference operators are shown between CyML and R. During the ASG traversal, the visit method

considers these mappings to emit code fragments.

Listing 11. Operators mapping.

Adapting Standard Functions. CyML defines three standard libraries (i.e. math, system, and io) to

provide mathematical, system, and file management functions in the different languages. A mapping

is needed to link these functions to native R ones for each library. Some functions are identical

between CyML and R, like min or max. Others require a transformation to another type of node. It is

useful for model developers to observe the generated ASG of each CyML construct in order to define

the equivalent of the construct. For example, the construct of a modulo binary operation in CyML is

a standard_call node in the ASG whose namespace is system, the function is modulo and the

arguments are the two operands. This node is transformed into a binary_op node (binary operation)

with the function ―translateModulo‖ (Listing 12). The new node is visited to produce R fragment

code.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Listing 12. Standard functions mapping.

Standard methods mapping. Standard methods are functions applied to a particular data type of CyML

language (Listing 13). Thus, a set of methods is provided for each CyML datatype. Their equivalents

in R language are defined using the same mapping mechanism used for standard functions. In Listing

13 at Line 9 the append method applied to a list is transformed to an assignment node whose value

is a function c that takes as arguments the name of the variable of type list (receiver) and the

argument of the append method (args). The definition of these rules limits the use of conditional

statements in the implementation of the visit methods and facilitates the extension of CyMLT.

Listing 13. Standard methods mapping.

Implementation of a R code generator. The RGenerator class inherits the RRules class. It

implements a family of visit methods like visit_assignment, visit_bool related to all

types of nodes provided by the ASG. These methods emit fragments of code, which will be joined to

produce a formatted source code in R. The properties that enable write and format functions for these

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

fragments are implemented in a class named CodeGenerator inherited by RGenerator. Additionally,

CodeGenerator abstracts the common behavior of these languages by providing other properties and

visit methods common to all the target languages. Some methods are redefined in the language

generator when it has particular features. The developer of the R code generator implemented the

different visit methods without bothering with the dispatching mechanism provided by the

NodeVisitor class. A visit() method is called for all composite child nodes while a write() method

is invoked for the terminal or single node to emit the code fragment. For example, a boolean value is a

terminal node. Thus, the visit_bool method allowing generation of the corresponding boolean

value in R will only consist in uppercase CyML logical value (Listing 14).

Listing 14. Implementation of logical value transformation.

The assignment node is a composite node that contains a target node and a value node. These two

nodes could be a composite node. So, they will all be visited by the visit_assignment()

method (Listing 15).

Listing 15. Implementation of assignment transformation.

All target language generators share the principle of implementing a visitor method for standard

functions or standard methods call nodes, and, it is, therefore, implemented in the CodeGenerator

class. The properties of the node are used to access to the function equivalent in the dictionary of

functions in the transformation rules class.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Listing 16 shows the implementation of the standard function call node where its properties such as

namespace and function are used to access the equivalent function.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Listing 16. Implementation of standard function call.

This implementation approach is followed for all types of nodes and could be gradually done

according to the expected R constructs. Given that it has several possibilities to implement an

algorithm, it is the responsibility of the extension developer to provide the corresponding semantic for

each particular node of the ASG and to validate the transformation with unit tests.

Supporting a new simulation platform: APSIM-PMF. APSIM (Holzworth et al. 2014) is one of

the most widely used PBM platforms for simulating the performance of a wide range of cropping

systems. It has undergone a major evolution by providing the Plant Modelling Framework (PMF;

Brown et al. 2014). PMF is used to build models that represent plant components of a crop composed

by identical plants. It is based on the structure of a generic plant and a wide range of processes

involved in plant growth and development. However, the composition and parametrization to build a

particular crop model is not specified and is left to model developers. PMF, therefore, allows great

flexibility in its approach for implementing biophysical processes by separating model set up and

assembly. The PMF concepts and processes are implemented as generic classes at different

organizational levels (Brown et al. 2014).

 The extension of CyMLT to PMF consists in adding the capacity to generate a model component in

C# that fulfills PMF requirements. The developer implements a PMF generator class that extends the

C# generator class. This class contains some PMF requirements: (1) the generated model component

is a C# class that inherits the Model class, and (2) it contains the getter and setter methods of all model

variables and parameters with the algorithm implemented in C#.

4. Discussion

The CyML language provides a relatively simple structure with few specifications that can express

the algorithm of a biophysical process involved in crop growth and development. The real interest of

this language is to provide a common method to describe a process with the capacity to be

integrated automatically in various platforms. CyMLT provides export capabilities in many languages

and platforms, enabling users to focus on the scientific aspect of their model rather than on the

internal knowledge of platforms’ specificities. A model component can be reused, improved,

integrated and simulated in various platforms. This improves the diffusion of models, sharing them

as a software and scientific artifacts, and thus, enhancing transparency and reproducibility of crop

models. Moreover, with CyML, the model development may become a collaborative task of different

groups of model builders with the possibility to compose different model units provided by different

platforms.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

For crop modelers, learning a new language with its own learning curve adds a level of complexity to

an existing complex landscape of languages and tools. We designed CyML to minimize this added

complexity by choosing a language that is very close to existing languages. The main source of

complexity is in the model specification. The modeler has to specify the type of inputs and outputs,

the documentation and unit tests. While this increases the complexity of the design of a new model,

it provides an explicit and rigorous specification and enhances the transparency of the model and its

reproducibility and reusability in different contexts. A transformation system embeds platform

specificities to automatically generate model components conform to specific platforms. This makes

the complexity of component integration in different platforms identical with a wide availability.

Several approaches and solutions exist to transform source code from one language to many higher-

level programming languages (Baxter et al. 2004; Plaisted 2013; Schaub and Malloy 2016). They

demonstrate the usefulness of source-to-source transformation systems in the development of reusable

software libraries. For instance, De Paolis and Bourdot (2018) allow for the implementation of motion

controllers of virtual humans, which are re-used in multiple game engines. Their system is based on

Haxe, a language that offers the capability to transform Haxe code into many programming

languages. However, like most available code transformation systems, the generated code depends on

the transformation system. Likewise, Cython generates code into the C and C++ languages that have a

high performance but the generated code has a low readability, therefore, making it difficult to

understand and to maintain. To our knowledge, no solution exists to transform PBM algorithms in

different languages considering the specificities of different modeling platforms. This transformation

is useful in the sense that model components are not just code but embed scientific knowledge that

should be preserved. In this work, we also propose a system that includes algorithm error checking

with explicit error messages to guide developers. CyML addresses several issues encountered in

current PBM frameworks, namely:

- reproducibility: a crop model or algorithm can be written once and automatically made available

in different languages and platforms;

- reusability: a model can be reused and composed with other models of a specific platform;

- transparency: model algorithms are implemented using a common approach regardless of the crop

simulation platform, and maintain the biophysical process knowledge.

Our approach and strategy should greatly reduce the implementation errors and improve model

reproducibility. However, neither the definition of a language nor its transformation is approached

without certain constraints, essentially due to the tradeoffs between generality and abstraction.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

4.1 CyML transformation challenges

We provide a new language with a transformation system to produce code correctness. However,

some inconsistencies or complexities could appear depending on the target language. First, the current

version of CyML does not handle the type overflow. It means that errors related to overflow could not

be detected at the CyML system level. For example, the generation of the Fibonacci recursive

function in Python by just removing declaration types could lead to the crash of the system due to the

Python recursion limit, whereas the generated code will not produce any error in Java but the result

will rapidly overflow. A method to detect overflow can be implemented to avoid this type of error at

run-time level. Moreover, CyML can be extended to support 64-bit C double type. Second, CyML

provides primitive types whose equivalence in some platforms are objects with some properties. This

means that coding an existing model algorithm in CyML could require an additional CyML external

function to emulate the properties of these objects. Third, CyML has some limitations with data type

conversion. For example, Datetime type is not supported in Fortran or C++. In this case, CyML

converts it into strings. However, the translator could be extended to depend on specific libraries used

by simulation platforms to perform the transformation. Finally, some platforms are close to the

philosophy of their underlying language (e.g. DSSAT, BioMA, OpenAlea) whereas others extend

their language with a high-level specificity (Record, Simplace) that requires a complex

transformation.

4.2 Lower the barrier of crop simulation platforms

The main barrier to exchange and reuse of model components between simulation platforms is the

specificities embedded in the algorithm implementation. CyML intends to lower the barrier of

platform specificities. Our analysis of several platforms showed that each platform adopts a standard

to implement model algorithms that does not vary from one implementation to another. The

knowledge of platform requirements offers the possibility to integrate them into CyMLT in order to

make their components available to many modeling platforms. We did not conduct a performance

analysis but the cost of implementation is reduced by an order of magnitude compared to the time

used to manually re-encode the same model into each platform without considering the inherent errors

added during the process. CyML supports not only the transformation of the algorithm of unit models,

but it also provides the evaluation of composite models by calling in sequential order models that are

encapsulated into it. It also proposes a way to produce unit tests for each unit model algorithm in

different languages based on the specifications of the inputs, outputs and parameter values. It checks

the validity of the generated source code ensuring that all transformation results give the same results.

It should be noted that CyML adds unit test functionality to platforms that do not use test-driven

development.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

4.3 CyML for model reuse and reproducibility

CyML implements PBM components with a functional and procedural approach. A component

describing a biophysical process (e.g. phenology, soil water balance, photosynthesis) can be

decomposed into independent components, which can be implemented and composed in CyML.

Components implemented at a high granularity embed more scientific knowledge, but the component

becomes less reusable. The implementation of a component into small functions (unit models)

enhances its readability, reduces the distance between its expression as equations or mathematical

expressions and its implementation, and reduces its maintenance cost. CyML is designed to tackle the

reproducibility of PBM components. Although PBM are described in scientific publications and their

code are increasingly publicly accessible, the reproducibility of the results remains a fundamental

issue. Their implementation requires a procedural or functional language that is shared between

simulation platforms to ensure their reproducibility. It is, therefore, useful to propose code in the

language and that follow the specifications of the target platforms. The automatic transformation of

model algorithms into different languages and simulation platforms is essential for interoperability

and code reuse. CyML users can implement a model in CyML and transform the algorithms into

various targets by using CyMLT. Hence, CyML aims at promoting PBM re-usability and

interoperability through a transformation system that parses model specifications and knowledge

needed to transform algorithms.

4.4 Scope of CyML language

CyML is a subset of the Cython language. Thus, it does not include many features found in general-

purpose programming languages. This choice of language limitation has its strengths and weaknesses.

The method presented herein differs from existing model interchange platforms in that it generates

source code with different programming paradigms and it associates model specifications to

algorithms to enhance code analysis. It allows a common implementation of the dynamics of

biophysical processes by removing the specificities of the languages and platforms. It improves the

readability of the code since the structure of the code and the characteristics of languages are shared

by modeling platforms. It ensures the mapping of the abstract representation to other languages or

platforms. Indeed, this language limitation reduces ambiguity in the language transformation since the

base language (Cython) has some features that cannot be transformed into some target languages.

With CyML, different processes provided by different platforms can be represented and composed

regardless of the platforms, which enables to define a new white-box component reusable by other

platforms. CyMLT provides a reuse approach that is opposite to a black-box approach where the

composition of model components is bound to the execution platform targeted by its modules (Van

Evert et al. 2005).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

CyML does not interact with the simulation paradigms of the platforms. Its sole concern is to

represent and transform the process models. Its evaluation capabilities are only used to check the

correctness of the transformation. Moreover, CyML does not provide a formalism to link model

components with data to build a modeling solution. Thus, the processes to read inputs, parameters

values and write output values in a file is separated from the algorithm implementation given that it

reduces reusability.

Although CyML focuses on the implementation and reuse of biophysical models, it could be used in

general purpose. Thus, any code that can be implemented with CyML features can be transformed

into different languages without associating specifications files.

4.5 Toward a standard language

The development of CyML and its transformation system addresses the need of the plant and crop

modeling community to enhance research collaboration by improving the capacity to exchange and

reuse PBM components. The theoretical interest to provide a common approach to implement model

response has been demonstrated (Holzworth et al. 2014). However, despite the success of simulation

platforms around which different communities are built, and some proposal of declarative language

implementation, the lack of a shared standard limits model reusability. This issue limits the

performance of the activity of PBM intercomparison and improvement. The availability of CyMLT

through AMEI will allow building a large community around this system and can make CyML a

standard language providing a means to seamlessly compare independent biophysical processes or

promote alternatives approaches.

4.6 Future developments

Several modelers have expressed their interest to extend CyMLT with other languages used by the

plant and crop modeling community. The use of a well-annotated ASG with model specifications

provides an intuitive representation of the model algorithms. This abstraction set up various analysis

of the source code by generating different source code based on the target language features, software

design and code conventions. With this flexibility offered by the ASG, future work can explore the

extension of CyMLT with other imperative programming languages such as Matlab, Julia, JavaScript

or other modeling platforms that use imperative languages.

Reuse of legacy PBM model components without the need to encode them into CyML could reduce

the investment in model exchange and could increase the interest of the platforms. Therefore, the next

step would be to provide a transpiler that transforms legacy model components from various

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

languages and simulation platforms into CyML code automatically. Such a many-to-many

transformer would provide a complete system of interoperability of languages and simulation

platforms.

CyMLT aims to enable the exchange and reuse of components between modeling platforms, notably

between PBM and functional-structural plant modelling (FSPM) platforms. While crop growth

models simulate plant growth and development at the scale of the canopy (m
2
) or average plant level,

FSPMs are individual-based models at the scale of the organ. The exchange (sharing) of model

components between PBM and FSPMs would allow an efficient coupling of these two modeling

approaches to model crop species or variety mixtures by capturing spatial heterogeneities and

quantifying plant traits involved in crop mixture performance (Gaudio et al. 2019). Another

application is the use of FSPMs in a model-driven phenotyping approach, where plant structural traits

are estimated by reverse engineering a FSPM (Liu et al. 2019) and are then used as crop model input

parameters to simulate the behavior of genotypes in target agro-climatic scenarios. Currently, CyML

only allows for the representation of processes as functions and does not consider the plant‘s

structure. To extend CyML to the FSPM community will require to extend CyML language and

CyMLT to support complex data structures such as 3-dimensional geometry and topology.

The convergence of our approach of model reuse and reproducibility approach with other

collaborations, like the Crops in Silico collaboration (Marshall-Colon et al. 2017), would greatly

accelerate the development of the next generation of PBMs. The Crops in Silico collaboration aims at

integrating model frameworks to build a complete crop in silico from the level of the genes to the

level of the field or ecosystem using a software package, Yggdrasil (Lang 2019). Yggdrasil connects

PBMs across programming languages by running asynchronously models in parallel. It requires to

write wrappers in the different languages to process the asynchronous messages to manage model

inputs and outputs. CyMLT may interact with Yggdrasil (i) to make available model components into

the languages supported by Yggdrasil with their wrappers, (ii) to produce efficient components source

code in various languages in order to improve the performance of the simulation in Yggdrasil; and

(iii) by validating each component with unit tests before their integration. The interaction between

CyML and Yggdrasil could enhance the integration of PBMs across different languages and scales. A

complementary approach to the one presented here was demonstrated for the automated

transformation of input files of four agricultural models (Samourkasidis and Athanasiadis 2020)

enabling the discovery and reuse of data across modelling solutions. Together with AMEI they could

ensure that a complete model implementation and accompanied data can be transformed between

modelling solutions.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

5. Conclusions

In this study, we defined a minimal language based on the Cython language to implement biophysical

processes involved in plant and crop growth and development. We designed a system that transforms

CyML source code to many target languages and simulation platforms. The association of model

specifications in XML-based format with the description of model algorithm based on CyML

specifications allows to annotate each variable used in the algorithm. With this approach we can

produce code with different programming paradigms including object-oriented approach and with

different software designs. We showed that this language is sufficient to express biophysical

processes and to transform them in different target languages and simulation platforms. We argue that

the abstract language offers some trade-off between generality due to the convergence of the

platforms and the complexity hidden in each platform. Crop modelers should have some

programming skill to implement a model in CyML but no other skills are needed to produce

automatically a model component source code in various languages and platforms. This reuse

approach will help modelers to improve the reproducibility of their models and their reuse and should

enhance research collaborations and model improvement and use.

Code

The CyMLT source code are available publicly on Github at

https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML. Full documentation for CyML

and CYMLT can be found at https://pycrop2ml.readthedocs.io.

Source of Funding

CM was supported through a PhD scholarship from the French National Research Agency under the

Investments for the Future Program, referred as ANR-16-CONV-0004. CP was partially supported by

the H2020 IPM Decision #817617. IA was partially supported by the European Union Horizon 2020

Research and Innovation program (Grant #810775, DRAGON). The work of CREA was carried out

in the frame of the project AGRIDIGIT – Digital Agriculture, funded by the Italian Ministry of

Agriculture

Conflict of interest

The authors declare no conflict of interest.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML
https://pycrop2ml.readthedocs.io/

Acknowledgements

CM acknowledges the support of INRAE Divisions AgroEcoSystem and NUM. PM acknowledges

the support of INRAE Division AgroEcoSystem.

Supporting Information

The Following additional information are available on the online version of this article.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Literature Cited

Akeret, J. et al. (2015) ‗HOPE: A Python just-in-time compiler for astrophysical computations‘,

Astronomy and Computing. Elsevier B.V., 10, pp. 1–8. doi: 10.1016/j.ascom.2014.12.001.

Akin, E. (2003) ‗Object-Oriented Programming via Fortran 90/95‘, Object-Oriented Programming via

Fortran 90/95. doi: 10.1017/cbo9780511530111.

Aslam, M. A. et al. (2017) ‗Can growing degree days and photoperiod predict spring wheat

phenology?‘, Frontiers in Environmental Science, 5(SEP), pp. 1–10. doi: 10.3389/fenvs.2017.00057.

Asseng, S. et al. (2013) ‗Uncertainty in simulating wheat yields under climate change‘, Nature

Climate Change, 3(9), pp. 827–832. doi: 10.1038/nclimate1916.

Athanasiadis, I. N. et al. (2011) ‗Enriching environmental software model interfaces through

ontology-based tools‘, International Journal of Applied Systemic Studies, 4(1–2), pp. 94–105. doi:

10.1504/IJASS.2011.042205.

Athanasiadis, I. N. and Villa, F. (2013) ‗A roadmap to domain specific programming languages for

environmental modeling: Key requirements and concepts‘, DSM 2013 - Proceedings of the 2013 ACM

Workshop on Domain-Specific Modeling, pp. 27–32. doi: 10.1145/2541928.2541934.

Ausbrooks, R. et al. (2003) ‗Mathematical Markup Language (MathML) Version 2 . 0 (Second

Edition)‘, Mathematical Markup Language Specification TA - Ausbrooks, Ron, 0(October), pp. 0–

385. Available at: http://www.w3.org/TR/MathML2/.

Autumn Cuellar et al. (2006) CellML 1.1 Specification. Available at:

https://www.cellml.org/specifications/cellml_1.1/index_html (Accessed: 20 February 2018).

Baxter, I. D., Pidgeon, C. and Mehlich, M. (2004) ‗DMS®: Program transformations for practical

scalable software evolution‘, Proceedings - International Conference on Software Engineering,

26(May), pp. 625–634. doi: 10.1109/icse.2004.1317484.

Behnel, S. et al. (2011) ‗Cython: The Best of Both Worlds‘, Computing in Science & Engineering,

13(2), pp. 31–39. doi: 10.1109/MCSE.2010.118.

Behnel, S., Bradshaw, R. and Seljebotn, S. (2000) ‗Cython: The best of both worlds Stefan‘, Rehab

Management: The Interdisciplinary Journal of Rehabilitation, 13(6), pp. 32–36.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Bergez, J. E. et al. (2016) ‗A new plug-in under RECORD to link biophysical and decision models for

crop management‘, Agronomy for Sustainable Development. Agronomy for Sustainable Development,

36(1), pp. 1–8. doi: 10.1007/s13593-016-0357-y.

Bindi, M. et al. (2015) ‗Modelling climate change impacts on crop production for food security‘,

Climate Research, 65(February 2014), pp. 3–5. doi: 10.3354/cr01342.

Brisson, N. et al. (1998) ‗STICS: a generic model for the simulation of crops and their water and

nitrogen balances. I. Theory and parameterization applied to wheat and corn‘, Agronomie, 18(5–6),

pp. 311–346. doi: 10.1051/agro:19980501.

Brown, H. E. et al. (2014) ‗Plant Modelling Framework: Software for building and running crop

models on the APSIM platform‘, Environmental Modelling and Software. Elsevier Ltd, 62, pp. 385–

398. doi: 10.1016/j.envsoft.2014.09.005.

Brown, H., Huth, N. and Holzworth, D. (2018) ‗Crop model improvement in APSIM: Using wheat as

a case study‘, European Journal of Agronomy. Elsevier, 100(February), pp. 141–150. doi:

10.1016/j.eja.2018.02.002.

Bysiek, M., Drozd, A. and Matsuoka, S. (2017) ‗Migrating legacy fortran to python while retaining

fortran-level performance through transpilation and type hints‘, Proceedings of PyHPC 2016: 6th

Workshop on Python for High-Performance and Scientific Computing - Held in conjunction with

SC16: The International Conference for High Performance Computing, Networking, Storage and

Analysis, (November), pp. 9–18. doi: 10.1109/PyHPC.2016.006.

Cary, J. R. et al. (1997) ‗Comparison of C++ and Fortran 90 for object-oriented scientific

programming‘, Computer Physics Communications, 105(1), pp. 20–36. doi: 10.1016/S0010-

4655(97)00043-X.

Donatelli, M. et al. (2010) ‗A Component-Based Framework for Simulating Agricultural Production

and Externalities‘, in Environmental and Agricultural Modeling: Dordrecht: Springer Netherlands, pp.

63–108. doi: 10.1007/978-90-481-3619-3_4.

Donatelli, M. et al. (2014) ‗A generic framework for evaluating hybrid models by reuse and

composition - A case study on soil temperature simulation‘, Environmental Modelling and Software.

Elsevier Ltd, 62, pp. 478–486. doi: 10.1016/j.envsoft.2014.04.011.

Enders, A. et al. (2010) ‗The IMPETUS Spatial Decision Support Systems‘, in Impacts of Global

Change on the Hydrological Cycle in West and Northwest Africa. Berlin, Heidelberg: Springer Berlin

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Heidelberg, pp. 360–393. doi: 10.1007/978-3-642-12957-5_11.

Van Evert, F. et al. (2005) ‗Convergence in integrated modeling frameworks‘, MODSIM05 -

International Congress on Modelling and Simulation: Advances and Applications for Management

and Decision Making, Proceedings, pp. 745–750.

Fernique, P. and Pradal, C. (2017) ‗AutoWIG: Automatic Generation of Python Bindings for C++

Libraries‘. Available at: http://arxiv.org/abs/1705.11000.

Gamma, E. et al. (1995) ‗Design Patterns: Elements of Reusable Object-Oriented Software‘, Addison-

Wesley. doi: 10.1016/b978-012663315-3/50005-8.

Gaudio, N. et al. (2019) ‗Current knowledge and future research opportunities for modeling annual

crop mixtures. A review‘, Agronomy for Sustainable Development, 39(2), p. 20. doi: 10.1007/s13593-

019-0562-6.

Gleeson, P. et al. (2010) ‗NeuroML: A language for describing data driven models of neurons and

networks with a high degree of biological detail‘, PLoS Computational Biology, 6(6), pp. 1–19. doi:

10.1371/journal.pcbi.1000815.

He, J. et al. (2012) ‗Simulation of environmental and genotypic variations of final leaf number and

anthesis date for wheat‘, European Journal of Agronomy. Elsevier B.V., 42, pp. 22–33. doi:

10.1016/j.eja.2011.11.002.

Holzworth, D. et al. (2018) ‗APSIM Next Generation: Overcoming challenges in modernising a

farming systems model‘, Environmental Modelling & Software. Elsevier Ltd, 103, pp. 43–51. doi:

10.1016/j.envsoft.2018.02.002.

Holzworth, D. P., Snow, V., et al. (2014) ‗Agricultural production systems modelling and software:

Current status and future prospects‘, Environmental Modelling and Software. Elsevier Ltd, 72, pp.

276–286. doi: 10.1016/j.envsoft.2014.12.013.

Holzworth, D. P., Huth, N. I., et al. (2014) ‗APSIM - Evolution towards a new generation of

agricultural systems simulation‘, Environmental Modelling and Software. Elsevier Ltd, 62, pp. 327–

350. doi: 10.1016/j.envsoft.2014.07.009.

Hoogenboom, G. et al. (2019) ‗The DSSAT crop modeling ecosystem‘, in, pp. 173–216. doi:

10.19103/AS.2019.0061.10.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Hucka, M. et al. (2015) ‗Promoting Coordinated Development of Community-Based Information

Standards for Modeling in Biology: The COMBINE Initiative‘, Frontiers in Bioengineering and

Biotechnology, 3(February), pp. 1–6. doi: 10.3389/fbioe.2015.00019.

Jones, J. W. et al. (2003) The DSSAT cropping system model, European Journal of Agronomy. doi:

10.1016/S1161-0301(02)00107-7.

Jones, J. W. et al. (2017) ‗Brief history of agricultural systems modeling‘, Agricultural Systems.

Elsevier B.V., 155(June), pp. 240–254. doi: 10.1016/j.agsy.2016.05.014.

Kluyver, T. et al. (2016) ‗Jupyter Notebooks—a publishing format for reproducible computational

workflows‘, Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–

90. doi: 10.3233/978-1-61499-649-1-87.

van Kraalingen, D. W. G. et al. (2020) ‗WISS a Java Continuous Simulation Framework for Agro-

Ecological Modelling‘, in, pp. 242–248. doi: 10.1007/978-3-030-39815-6_23.

Lang, M. (2019) ‗yggdrasil: a Python package for integrating computational models across languages

and scales‘, in silico Plants, 1(1). doi: 10.1093/insilicoplants/diz001.

Linge, S. and Langtangen, H. P. (2016) Programming for Computations - Python. Cham: Springer

International Publishing (Texts in Computational Science and Engineering). doi: 10.1007/978-3-319-

32428-9.

Liu, S. et al. (2019) ‗Estimation of plant and canopy architectural traits using the digital plant

phenotyping platform1[OPEN]‘, Plant Physiology, 181(3). doi: 10.1104/pp.19.00554.

Manceau, L. and Martre, P. (2018) ‗SiriusQuality-BioMa-Phenology-Component‘. doi:

10.5281/ZENODO.2478791.

Marshall-Colon, A. et al. (2017) ‗Crops in silico: Generating virtual crops using an integrative and

multi-scale modeling platform‘, Frontiers in Plant Science, 8(May), pp. 1–7. doi:

10.3389/fpls.2017.00786.

Martre, P. et al. (2006) ‗Modelling protein content and composition in relation to crop nitrogen

dynamics for wheat‘, European Journal of Agronomy, 25(2), pp. 138–154. doi:

10.1016/j.eja.2006.04.007.

Martre, P. et al. (2018) ‗The agricultural model exchange initiative‘, in IICA (ed.) 7th AgMIP Global

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Workshop. San José, Costa Rica.

Midingoyi, C. A. et al. (2020) ‗Crop2ML: The centralized framework for crop model component

exchange and reuse‘. doi: 10.5281/ZENODO.3911713.

Misse-chanabier, P., Aranega, V. and Polito, G. (2019) ‗Illicium A modular transpilation toolchain

from Pharo to C‘, (Vm).

Muller, B. and Martre, P. (2019) ‗Plant and crop simulation models: powerful tools to link

physiology, genetics, and phenomics‘, Journal of Experimental Botany, 70(9), pp. 2339–2344. doi:

10.1093/jxb/erz175.

Palosuo, T. et al. (2011) ‗Simulation of winter wheat yield and its variability in different climates of

Europe: A comparison of eight crop growth models‘, European Journal of Agronomy, 35(3), pp. 103–

114. doi: 10.1016/j.eja.2011.05.001.

De Paolis, L. T. and Bourdot, P. (2018) ‗Write-once, transpile-everywhere: re-using motion

controllers of virtual humans across multiple game engines‘, (July), pp. E1–E1. doi: 10.1007/978-3-

319-95282-6_51.

Plaisted, D. A. (2013) ‗Source-to-Source Translation and Software Engineering‘, Journal of Software

Engineering and Applications, 06(04), pp. 30–40. doi: 10.4236/jsea.2013.64A005.

Pradal, C. et al. (2008) ‗OpenAlea: A visual programming and component-based software platform

for plant modelling‘, Functional Plant Biology, 35(10), pp. 751–760. doi: 10.1071/FP08084.

Pradal, C. et al. (2015) ‗OpenAlea : Scientific Workflows Combining Data Analysis and Simulation

To cite this version : HAL Id : hal-01166298 OpenAlea : Scientific Workflows Combining Data

Analysis and Simulation‘.

Quinlan, D. and Liao, C. (2011) ‗The ROSE Source-to-Source Compiler Infrastructure‘, International

Journal, pp. 1–3.

R Core Team (2017) ‗R: A Language and Environment for Statistical Computing‘. Vienna, Austria.

Available at: https://www.r-project.org/.

Rosenzweig, C. et al. (2013) ‗The Agricultural Model Intercomparison and Improvement Project

(AgMIP): Protocols and pilot studies‘, Agricultural and Forest Meteorology. Elsevier B.V., 170, pp.

166–182. doi: 10.1016/j.agrformet.2012.09.011.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

Rötter, R. P. et al. (2011) ‗Crop-climate models need an overhaul‘, Nature Climate Change. Nature

Publishing Group, 1(4), pp. 175–177. doi: 10.1038/nclimate1152.

Samourkasidis, A. and Athanasiadis, I. N. (2020) ‗A semantic approach for timeseries data fusion‘,

Computers and Electronics in Agriculture. Elsevier, 169(December 2019), p. 105171. doi:

10.1016/j.compag.2019.105171.

Schaub, S. and Malloy, B. A. (2016) ‗The design and evaluation of an interoperable translation

system for object-oriented software reuse‘, Journal of Object Technology, 15(4), pp. 1–33. doi:

10.5381/jot.2016.15.4.a1.

Schilstra, M. J. et al. (2006) ‗CellML2SBML: Conversion of CellML into SBML‘, Bioinformatics,

22(8), pp. 1018–1020. doi: 10.1093/bioinformatics/btl047.

Villa, F. (2001) ‗Integrating modelling architecture: A declarative framework for multi-paradigm,

multi-scale ecological modelling‘, Ecological Modelling, 137(1), pp. 23–42. doi: 10.1016/S0304-

3800(00)00422-1.

Villa, F. et al. (2017) ‗Semantics for interoperability of distributed data and models: Foundations for

better-connected information‘, F1000Research, 6(2), p. 686. doi: 10.12688/f1000research.11638.1.

de Wit, A. et al. (2019) ‗25 years of the WOFOST cropping systems model‘, Agricultural Systems.

Elsevier, 168(October 2017), pp. 154–167. doi: 10.1016/j.agsy.2018.06.018.

Zhao, C. et al. (2019) ‗A SIMPLE crop model‘, European Journal of Agronomy. Elsevier, 104, pp.

97–106. doi: 10.1016/J.EJA.2019.01.009.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diaa007/5918454 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 09 O

ctober 2020

