J. Akeret, ?HOPE: A Python just-in-time compiler for astrophysical computations, Astronomy and Computing. Elsevier B.V, vol.10, pp.1-8, 2015.

E. Akin, ?Object-Oriented Programming via Fortran 90/95', Object-Oriented Programming via Fortran 90/95, 2003.

M. A. Aslam, ?Can growing degree days and photoperiod predict spring wheat phenology?, pp.1-10, 2017.

S. Asseng, ?Uncertainty in simulating wheat yields under climate change, Nature Climate Change, vol.3, issue.9, pp.827-832, 2013.

I. N. Athanasiadis, ?Enriching environmental software model interfaces through ontology-based tools, International Journal of Applied Systemic Studies, vol.4, issue.1-2, pp.94-105, 2011.

I. N. Athanasiadis and F. Villa, ?A roadmap to domain specific programming languages for environmental modeling: Key requirements and concepts, DSM 2013 -Proceedings of the 2013 ACM Workshop on Domain-Specific Modeling, pp.27-32, 2013.

R. Ausbrooks, Mathematical Markup Language Specification TA -Ausbrooks, Ron, 0(October), vol.2, pp.0-385, 2003.

A. Cuellar, CellML 1.1 Specification, p.20, 2006.

I. D. Baxter, C. Pidgeon, and M. Mehlich, ?DMS®: Program transformations for practical scalable software evolution, Proceedings -International Conference on Software Engineering, vol.26, pp.625-634, 2004.

S. Behnel, The Best of Both Worlds, vol.13, pp.31-39, 2011.

S. Behnel, R. Bradshaw, and S. Seljebotn, The best of both worlds Stefan, vol.13, pp.32-36, 2000.

, by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 09, 2020.

J. E. Bergez, ?A new plug-in under RECORD to link biophysical and decision models for crop management', Agronomy for Sustainable Development. Agronomy for Sustainable Development, vol.36, pp.1-8, 2016.

M. Bindi, ?Modelling climate change impacts on crop production for food security, Climate Research, vol.65, pp.3-5, 2014.

N. Brisson, ?STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn, Agronomie, vol.18, pp.311-346, 1998.

H. E. Brown, ?Plant Modelling Framework: Software for building and running crop models on the APSIM platform', Environmental Modelling and Software, vol.62, pp.385-398, 2014.

H. Brown, N. Huth, and D. Holzworth, ?Crop model improvement in APSIM: Using wheat as a case study, European Journal of Agronomy, vol.100, pp.141-150, 2018.

M. Bysiek, A. Drozd, and S. Matsuoka, ?Migrating legacy fortran to python while retaining fortran-level performance through transpilation and type hints, Proceedings of PyHPC 2016: 6th Workshop on Python for High-Performance and Scientific Computing -Held in conjunction with SC16: The International Conference for High Performance Computing, Networking, Storage and Analysis, pp.9-18, 2017.

J. R. Cary, ?Comparison of C++ and Fortran 90 for object-oriented scientific programming, Computer Physics Communications, vol.105, issue.1, pp.20-36, 1997.

M. Donatelli, ?A Component-Based Framework for Simulating Agricultural Production and Externalities, Environmental and Agricultural Modeling, pp.63-108, 2010.

M. Donatelli, ?A generic framework for evaluating hybrid models by reuse and composition -A case study on soil temperature simulation, 2014.

, , vol.62, pp.478-486

A. Enders, ?The IMPETUS Spatial Decision Support Systems', in Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa, 2010.

. Heidelberg, , pp.360-393

F. Van-evert, ?Convergence in integrated modeling frameworks, MODSIM05 -International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Proceedings, pp.745-750, 2005.

P. Fernique and C. Pradal, ?AutoWIG: Automatic Generation of Python Bindings for C++ Libraries, 2017.

E. Gamma, ?Design Patterns: Elements of Reusable Object-Oriented Software, 1995.

N. Gaudio, 2019) ?Current knowledge and future research opportunities for modeling annual crop mixtures. A review', Agronomy for Sustainable Development, vol.39, p.20

P. Gleeson, PLoS Computational Biology, vol.6, issue.6, pp.1-19, 2010.

J. He, 2012) ?Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat, European Journal of Agronomy. Elsevier B.V, vol.42, pp.22-33

D. Holzworth, ?APSIM Next Generation: Overcoming challenges in modernising a farming systems model, Environmental Modelling & Software, vol.103, pp.43-51, 2018.

D. P. Holzworth and V. Snow, ?Agricultural production systems modelling and software: Current status and future prospects', Environmental Modelling and Software, vol.72, pp.276-286, 2014.

D. P. Holzworth and N. I. Huth, ?APSIM -Evolution towards a new generation of agricultural systems simulation', Environmental Modelling and Software, vol.62, pp.327-350, 2014.

G. Hoogenboom, ?The DSSAT crop modeling ecosystem, pp.173-216, 2019.

M. Hucka, ?Promoting Coordinated Development of Community-Based Information Standards for Modeling in Biology: The COMBINE Initiative, Frontiers in Bioengineering and Biotechnology, vol.3, pp.1-6, 2015.

J. W. Jones, The DSSAT cropping system model, European Journal of Agronomy. doi, 2003.

J. W. Jones, ?Brief history of agricultural systems modeling, Agricultural Systems, 2017.

B. V. Elsevier, , vol.155, pp.240-254

T. Kluyver, ?Jupyter Notebooks-a publishing format for reproducible computational workflows', Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp.87-90, 2016.

D. W. Kraalingen, ?WISS a Java Continuous Simulation Framework for Agro-Ecological Modelling, pp.242-248, 2020.

M. Lang, ?yggdrasil: a Python package for integrating computational models across languages and scales', in silico Plants, p.1, 2019.

S. Linge and H. P. Langtangen, Programming for Computations -Python, Texts in Computational Science and Engineering, 2016.

S. Liu, 2019) ?Estimation of plant and canopy architectural traits using the digital plant phenotyping platform1, Plant Physiology, issue.3, p.181

L. Manceau and P. Martre, , 2018.

A. Marshall-colon, ?Crops in silico: Generating virtual crops using an integrative and multi-scale modeling platform, Frontiers in Plant Science, vol.8, pp.1-7, 2017.

P. Martre, ?Modelling protein content and composition in relation to crop nitrogen dynamics for wheat, European Journal of Agronomy, vol.25, issue.2, pp.138-154, 2006.

P. Martre, ?The agricultural model exchange initiative, by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on, 2018.

. Workshop,

C. A. Midingoyi, 2020) ?Crop2ML: The centralized framework for crop model component exchange and reuse

P. Misse-chanabier, V. Aranega, and G. Polito, 2019) ?Illicium A modular transpilation toolchain from Pharo to C

B. Muller and P. Martre, ?Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics, Journal of Experimental Botany, vol.70, issue.9, pp.2339-2344, 2019.

T. Palosuo, ?Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models, European Journal of Agronomy, vol.35, issue.3, pp.103-114, 2011.

L. T. De-paolis and P. Bourdot, ?Write-once, transpile-everywhere: re-using motion controllers of virtual humans across multiple game engines, pp.1-1, 2018.

D. A. Plaisted, ?Source-to-Source Translation and Software Engineering, Journal of Software Engineering and Applications, issue.04, pp.30-40, 2013.

C. Pradal, ?OpenAlea: A visual programming and component-based software platform for plant modelling, Functional Plant Biology, vol.35, issue.10, pp.751-760, 2008.

C. Pradal, ?OpenAlea : Scientific Workflows Combining Data Analysis and Simulation To cite this version : HAL Id : hal-01166298 OpenAlea : Scientific Workflows Combining Data Analysis and Simulation, 2015.

D. Quinlan and C. Liao, ?The ROSE Source-to-Source Compiler Infrastructure, International Journal, pp.1-3, 2011.

. R-core-team, ?R: A Language and Environment for Statistical Computing, 2017.

C. Rosenzweig, Agricultural and Forest Meteorology, ?The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies, vol.170, pp.166-182, 2013.

R. P. Rötter, ?Crop-climate models need an overhaul', Nature Climate Change, Nature Publishing Group, vol.1, issue.4, pp.175-177, 2011.

A. Samourkasidis and I. N. Athanasiadis, ?A semantic approach for timeseries data fusion', Computers and Electronics in Agriculture, p.105171, 2019.

S. Schaub and B. A. Malloy, ) ?The design and evaluation of an interoperable translation system for object-oriented software reuse, Journal of Object Technology, vol.15, issue.4, pp.1-33, 2016.

M. J. Schilstra, Conversion of CellML into SBML', Bioinformatics, vol.2, pp.1018-1020, 2006.

F. Villa, ?Integrating modelling architecture: A declarative framework for multi-paradigm, multi-scale ecological modelling, Ecological Modelling, vol.137, issue.1, pp.23-42, 2001.

F. Villa, ?Semantics for interoperability of distributed data and models: Foundations for better-connected information, F1000Research, vol.6, issue.2, p.686, 2017.

A. De-wit, ?25 years of the WOFOST cropping systems model, Agricultural Systems, 2019.

, , vol.168, pp.154-167, 2017.

C. Zhao, ?A SIMPLE crop model, European Journal of Agronomy, vol.104, pp.97-106, 2019.