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Abstract 13 

Modeling the mechanisms underlying trophic interactions between individuals allows the food web 14 

structure to emerge from local interactions, which constitutes a prerequisite for assessing how marine 15 

ecosystems respond to various anthropogenic pressures. Using a multispecies spatially explicit 16 

individual-based model, the emergence of trophic patterns was explored in the eastern English Channel 17 

ecosystem, where pelagic-benthic trophic coupling was recently studied empirically. The OSMOSE model 18 

was applied to this ecosystem by explicitly representing the life cycle of 13 fish species and one squid 19 

group, forced by pelagic and benthic prey fields that are variable over time and space. A matrix defining 20 
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possible accessibilities between life stages was added to the model to link benthic and pelagic 21 

communities through overlap of vertical distribution. After optimizing some parameters of the model to 22 

represent the average state of the fish community during the 2000-2009 period, the simulated trophic 23 

structure was explored and compared to empirical data. The simulated and stable-isotope-derived 24 

trophic levels of fish were in relatively good agreement. Intraspecific variability of the trophic level is 25 

high in the five stable-isotope datasets but is well encompassed by the model. Despite the hypothesis of 26 

opportunistic size-based predation, the simulation showed a decreasing trend of trophic level with size 27 

for four benthic species, a pattern observed empirically for a different set of species in the ecosystem. 28 

Model exploration showed that this emerging pattern varies spatially and is both explained by the spatial 29 

variability of prey availability and by the independence of trophic and size structures of benthic 30 

invertebrates. The combination of individual-based models of stomach contents and intrinsic tracers, 31 

such as stable isotopes, appears to be a promising tool to better understand the causes of observed 32 

trophic patterns. 33 

 34 

Highlights (3 to 5 bullet points with maximum 85 characters, including spaces, per bullet point) 35 

 An individual-based model successfully simulates the eastern English Channel food web 36 

 Trophic spectrum of 14 species generally match 2000-2009 stable isotope data  37 

 Intraspecies trophic variability is high, both in the model and the stable isotope data 38 

 The emerging relationship of trophic level with size is negative for four species  39 

 40 
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 43 

1. Introduction 44 

 45 

Trophic ecology has been investigated empirically for decades in marine ecosystems to better 46 

understand key properties of ecosystems, including energy flows in ecosystems, the resilience and 47 

adaptation of ecosystems to large-scale pressures and the relationship between biodiversity and 48 

ecosystem functioning (Belgrano et al., 2005). The current need to establish an integrated management 49 

framework fosters the development of a multitrophic approach, where all interspecific interactions are 50 

addressed (Seibold et al. 2018). Initially addressed through stomach content analysis, trophic ecology is 51 

now based on various tools, including intrinsic tracers, such as stable isotope ratios and fatty acids 52 

(Ramos and González-Solís, 2012). Combining “old” and “modern” techniques is now viewed as the most 53 

powerful approach (Cresson et al., 2014) providing both a detailed vision of prey actually consumed and 54 

a general picture of trophic fluxes and food web topology. In parallel with these field studies based on 55 

biological sampling and chemical analysis, theoretical work has focused either on predator-prey 56 

interactions (e.g., Lotka-Volterra) or on network complexity and stability (Belgrano et al., 2005). The 57 

development of holistic models allowed the coupling of theoretical and empirical approaches by 58 

conceptualizing the food web structure of a particular ecosystem based on data and simulating its 59 

dynamics. Typically, Ecopath models (Christensen and Pauly, 1992) aim at balancing the food web 60 

structure of an ecosystem of interest based on observed diets and produce network indicators such as 61 

the recycling index, average path length and total system throughput (Heymans et al., 2014) but also 62 

information about species trophic positions and functions and their impacts on other functional groups.  63 

Partly to increase their realism and partly to answer a wider range of scientific questions, the complexity 64 

of ecosystem models has been increasing by integrating temporal (e.g., Ecopath with Ecosim) and spatial 65 
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heterogeneity (e.g., Ecospace (Pauly et al., 2000), Atlantis (Fulton et al., 2011)) and by considering age or 66 

size structure within a trophic node defined to represent a species or functional group. Such models are 67 

currently mostly used to explore ecosystem responses to anthropogenic or environmental pressure, and 68 

their potential for theoretical trophic ecology is most likely underused. Trophic information from field 69 

studies is required to parameterize links between compartments, at least to identify them and 70 

sometimes to set their intensity (i.e., percentage of a prey in the diet of the predator) (Pethybridge et al., 71 

2018). However, this information is at best used at the species level and is often averaged over several 72 

species to inform functional group trophic habits. Trophic variability exists among individuals and can be 73 

linked to ontogenetic changes, individual variability and composition of the local trophic environment 74 

(spatiotemporal heterogeneity) (e.g., Stehlik and Meise, 2000). Instead of reducing this variability to 75 

parameterize ecosystem models, in this study, we aim to use a complex modeling approach to explore 76 

the individual trophic variability of marine fish. To do so, we used the multispecies individual-based 77 

model OSMOSE (Shin and Cury, 2004, 2001; Travers et al., 2009), where fish individuals constitute the 78 

structural unit of the model. Individual-based models (IBMs) allow for representing individuals that adapt 79 

to their local environment (leading to variability among individuals) and that interact mechanistically 80 

with each other and with their environment (both abiotic and biotic, i.e., composed of other individuals). 81 

Interactions between these adaptive individuals lead to the emergence of population-level properties 82 

(e.g., resilience, spatiotemporal variations of abundance), which are more than the sum of individual 83 

properties (Grimm and Railsback, 2013). Applied to trophic ecology, this means that the trophic structure 84 

of an ecosystem emerges from local predation interactions between fish individuals (being both prey and 85 

predator). 86 

We applied the OSMOSE modeling framework to the eastern English Channel (EEC), where several 87 

empirical trophic studies have been recently conducted. The English Channel is an epicontinental sea 88 

located between the United Kingdom and France and is subject to environmental forcing (mega tidal 89 
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regime and strong influence of rivers) and various human pressures, such as fisheries, aggregate 90 

extraction, maritime traffic, and wind farms (Carpentier et al., 2009). The structure and spatiotemporal 91 

variation of the fish community has been studied (Vaz et al., 2007), and the trophic links structuring this 92 

ecosystem have been recently investigated as well. Cachera (2013) studied the trophic organization of 93 

the fish communities through digestive tract contents and geomorphometric measurements to link it to 94 

morphological and functional trait variation across and within species. Kopp et al. (2015) investigated the 95 

strength of the pelagic-benthic coupling along an inshore-offshore gradient via stable isotope ratios. 96 

Giraldo et al. (2017) coupled both approaches to make conclusions regarding the resource use of fish 97 

along the depth gradient. These studies showed that bentho-pelagic coupling is strong in the EEC, with 98 

benthic sources being important for both benthic and pelagic fish and with a decreasing intensity of the 99 

bentho-pelagic coupling as depth increases. In addition to these empirical studies, a holistic model has 100 

been applied to the EEC to explore the effects of fisheries management options on the flatfish and 101 

demersal fish species (Girardin, 2015). The calibration process of this Atlantis model allowed us to gain 102 

better insight into ecosystem functioning and to identify the main drivers of the system, including the 103 

importance of nutrient input through rivers and the competition interactions between demersal species 104 

(Girardin et al., 2018). While the EEC trophic structure has been investigated through several methods, 105 

some of its variability remains unexplained and is assumed to be related to intraspecies and seasonal 106 

variations. To address the finer dynamics of the predation process and how it can shape observed 107 

patterns at different levels of organization, OSMOSE was applied to the EEC ecosystem to explore the 108 

trophic variability of fish individuals. 109 

 110 

2. Materials and methods 111 

 112 



6 
 

The individual-based OSMOSE (Object-oriented Simulator of Marine eCOsystems Exploitation, Shin and 113 

Cury, 2004, 2001; Travers et al., 2009, www.osmose-model.org) is a spatial model representing the 114 

whole life cycle of several fish species from eggs and larvae up to juveniles and adults. This multispecies 115 

model is size-structured and based on opportunistic predation that depends only on spatiotemporal 116 

cooccurrence and body size ratios between a predator and its prey. Because of this opportunism, neither 117 

the a priori food web structure nor the diet matrix are set, but they emerge from local trophic 118 

interactions. This model has been applied to a variety of ecosystems, such as upwellings (e.g., Marzloff et 119 

al., 2009; Travers-Trolet et al., 2014; Oliveros-Ramos et al., 2017), estuaries (e.g., Brochier et al., 2013), 120 

semi-enclosed seas (Fu et al., 2012) and shelf seas (e.g., Grüss et al., 2015; Halouani et al., 2016). The 121 

main structure and equations of the model are presented below, before focusing on its application to 122 

the EEC. An extended description of the OSMOSE model following the ODD protocol (Overview, Design 123 

concepts, and Details) proposed by Grimm et al. (2010) and a description of the R packages dedicated to 124 

the model calibration are also available at https://documentation.osmose-model.org/osmose.html. 125 

 126 

2.1.  Model structure and processes represented in OSMOSE 127 

The individual element of the OSMOSE model is a super-individual of identical fish (Scheffer et al. 1995), 128 

i.e., of the same size, same trophic level (TL), same location and belonging to the same species. During 129 

each two week time step, the abundance (also called worth) and biomass of each super-individual 130 

changes according to the different modeled processes, described below (Figure 1). Only the main 131 

features and equations are recalled in this paragraph, and more complete details can be found in Shin 132 

and Cury (2004, 2001), Travers et al. (2009), and Travers-Trolet et al. (2014). 133 

At the beginning of the time step, super-individuals are distributed over a 2-dimensional grid. The spatial 134 

distribution of fish is driven at the larger scale by presence/absence maps provided as input for each 135 
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species and possibly for different ages and/or seasons according to available knowledge. When the input 136 

distribution map remains the same between two consecutive time steps, super-individuals can move to 137 

adjacent cells following a random walk pattern (foraging), while always remaining within the limits of 138 

their presence map.  139 

After movement, all processes involving local interactions occur: explicit predation on other super-140 

individuals and on plankton and/or benthic invertebrate groups, mortality from this explicit predation, 141 

starvation mortality, fishing mortality and mortality from other sources such as top predators. In the real 142 

world, such processes are concurrent and concomitant. To approximate real continuous time, the 143 

mortality algorithm introduces (i) a subdivision of the time step (here set to 10), (ii) random shuffling of 144 

super-individuals and mortality processes within every time step and (iii) asynchronous updating of the 145 

state variables (i.e., super-individual biomass is updated as the model goes through the processes) 146 

(Caron-Lormier et al., 2008). The predation process first assesses the food requirement for each super-147 

individual, based on the maximum ingestion rate r of the predator i. This value is then compared to the 148 

amount of suitable food available locally, i.e., in the cell of the predator, defined by the suitability of prey 149 

size compared to predator size, the biomass Bj of each prey available and an accessibility coefficient ai,j 150 

representing vertical overlap and/or morphological constraints between the prey j and the predator i. 151 

Depending on the available biomass of prey, a predator can thus eat an amount of food varying between 152 

0 (no prey of suitable size available) and its maximum ingestion rate. The predated biomass PBi,j of a prey 153 

j by a predator i is expressed as follows: 154 

         (   
       

∑         

          )  (Equation 1) 155 

The predation pressure is applied to all prey, proportional to their relative contribution to the total 156 

amount of edible food (i.e., no preference). Predation mortality is then applied to the preyed super-157 

individual by reducing its abundance and biomass according to the realized predation pressure, possibly 158 
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leading the super-individual to disappear if abundance falls below 1. According to the amount of food 159 

eaten compared to its maximum ingestion, the predation efficiency ξ is computed for each super-160 

individual i. If ξi falls below the threshold corresponding to maintenance requirement ξcrit, the starvation 161 

mortality rate Mξ is positive and increases linearly with predation efficiency reduction (Equation 2). 162 

   
      

     
             (Equation 2)  163 

The different mortality rates (starvation Mξ, fishing F and other sources Moth) are applied similarly to 164 

decrease the abundance of a super-individual i following the survival formula (Equation 3).  165 

             
      with    {         }   (Equation 3) 166 

The fishing mortality rate is species-specific, but can vary temporally and/or spatially according to 167 

available knowledge. For the fishing process, knife-edge selectivity was used, affecting only recruited fish 168 

i.e., fish older than the species age at recruitment. Finally, mortality from other sources is also 169 

considered by taking into account predation by organisms nonexplicitly represented in the model (e.g., 170 

other fish, birds, mammals) as well as diseases and senescence. A particularly high mortality term is 171 

applied to the first stages (eggs) to represent the bottleneck of survival due to nonfertilization of eggs, 172 

starvation of first-feeding larvae, advection, sinking and predation by nonexplicitly modeled organisms. 173 

Because very little quantification exists on these processes, the larval mortality rates are calibrated (see 174 

section 2.4). 175 

 176 

After this loop of interaction processes, growth can occur if the predation was successful enough, i.e., if 177 

the biomass eaten is higher than maintenance requirements. The length increment depends on the 178 

predation efficiency and averaged length increment (∆L) at the super-individual’s age derived from the 179 
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von Bertalanffy growth curve (Equation 4). The weight W of an individual increases simultaneously with 180 

its length through an allometric relationship.  181 

{
                 

      
   

       
(        )           

  (Equation 4) 182 

Finally, the time step ends with the reproduction process, where new super-individuals of eggs are 183 

produced, depending on the spawning stock biomass (computed from a sex ratio of 1:1 and from the 184 

biomass B of all fish older than age at maturity Amat), the species relative fecundity φ and the seasonality 185 

of spawning st (Equation 5). 186 

        
 

 
∑           

    (Equation 5) 187 

 188 

2.2  Application to the eastern English Channel 189 

The EEC ecosystem is modeled with OSMOSE through the explicit consideration of 14 species, which 190 

constitute 80% of the international landings from this area (ICES area 7d, excluding invertebrates) and 191 

more than two-thirds of the fish biomass sampled during the scientific bottom trawl Channel Ground 192 

Fish Survey (CGFS, Coppin and Travers-Trolet 1989). This set of species is composed of mackerel 193 

(Scomber scombrus), horse mackerel (Trachurus trachurus), sardine (Sardina pilchardus), herring (Clupea 194 

harengus), poor cod (Trisopterus minutus), cod (Gadus morhua), whiting (Merlangius merlangus), 195 

pouting (Trisopterus luscus), red mullet (Mullus surmuletus), dragonet (mostly Callionymus lyra), lesser 196 

spotted dogfish (Scyliorhinus canicula), sole (Solea solea), plaice (Pleuronectes platessa) and squids 197 

(Loligo forbesi and Loligo vulgaris). Species parameters are reported in Table 1 and are mostly derived 198 

from Carpentier et al. (2009) but also from other literature or online databases (Appendix A). The 199 

modeled area extends from 49°N - 2°W to 51.2°N - 2.5°E and is composed of 445 cells of 0.6° x 0.6° 200 
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(Figure 2). Presence/absence maps per species, and per season and/or age class when available, have 201 

been computed from survey data and available literature (Appendix B). Two species migrate out of the 202 

English Channel towards the North Sea: adult horse mackerel from July to September and herring from 203 

April to September. When these species are out of the modeled area, they grow following the von 204 

Bertalanffy curve (Table 1) and undergo an additional mortality of 1.05 year-1 and 0.55 year-1, 205 

respectively (values derived from an Ecopath model applied to North Sea, Mackinson and Daskalov, 206 

2007). Reproductive seasonality of each species is reported in Appendix C, while the fishing mortality 207 

rate is considered constant over the seasons for all species except for squids (fishing closure from May to 208 

mid-July) and horse mackerel (increased fishing mortality rate from October to December).  209 

 210 

2.3 Forcing prey fields: planktonic and benthic groups 211 

During the predation process, super-individuals can feed both on other explicitly modeled fish and on 212 

low trophic level (LTL) sources. LTL groups are integrated in OSMOSE through the forcing of biomass prey 213 

fields. Plankton prey fields come from the ECO-MARS3D biogeochemical model applied to the English 214 

Channel (Le Goff et al., 2017; Vanhoutte-Brunier et al., 2008) with a grid of 2 km horizontal resolution 215 

and 10 vertical layers. The nutrients and plankton dynamics simulated with this model have been 216 

validated with data from monitoring stations and correctly reproduce the interannual variability 217 

observed in the English Channel (Le Goff et al., 2017). The biomasses of two phytoplankton groups 218 

(grossly representing dinoflagellates and diatoms) as well as microzooplankton and mesozooplankton 219 

groups have been integrated vertically and over the 2-week time step of OSMOSE to be used as forcing 220 

prey fields. Furthermore, as the current application aims at simulating the EEC ecosystem at a stable 221 

state, plankton climatology was created by averaging data bimonthly from the 2000-2006 period 222 

(Appendix D). Six additional LTL groups were added to complement the LTL food source available to fish: 223 
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a macrozooplankton group (representing both holoplankton and meroplankton mostly composed of 224 

benthic invertebrate larvae) and five benthic groups of different sizes (Table 2). As available information 225 

on the spatial distribution of these groups was not sufficient, they were considered to be 226 

homogeneously distributed. 227 

The grid used in OSMOSE has no vertical dimension; therefore, accessibility coefficients were used to 228 

represent vertical overlap both among super-individuals and between super-individuals and LTL groups 229 

in the computation of prey biomass available for predators. According to their ecology, each stage of 230 

each species and each LTL group was associated with a vertical layer: “pelagic” for plankton, buoyant 231 

eggs, larvae and small pelagic fish, “benthic” for benthic groups and species living on the seabed such as 232 

flatfish, and “demersal” for individuals living near the sea bed and having access to both pelagic and 233 

benthic prey (such as gadoids). The accessibility parameters are presented in Table 3. 234 

 235 

2.4 Calibration  236 

The model was calibrated using the calibrar R package with the AHR-ES algorithm (Oliveros-Ramos and 237 

Shin, 2016), an automatic evolutionary algorithm developed for calibrating stochastic models such as 238 

OSMOSE. This algorithm explores a range of values for unknown parameters and uses likelihood 239 

objective functions to select the optimal values for the catches and biomass to be comprised within 240 

ranges of observed values when available. Landings per species have been extracted from the ICES 241 

Fisheries Statistics official database (ICES, 2011a) for the ICES area 7d (corresponding to the EEC) over 242 

the period 2000-2009. Total stock biomass estimates are directly available from stock assessment 243 

reports for sole and plaice (ICES, 2011b), while for whiting, cod, mackerel and herring, total stock 244 

biomass estimates were derived from stock assessments covering a wider area (ICES, 2012, 2011b) and 245 

were therefore scaled to the EEC proportional to the relative landings in this area. In OSMOSE, species 246 
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biomass is computed as the sum over the entire area of the biomass of all super-individuals older than 6 247 

months, averaged annually. Simulated landings come from the fished individuals (equation 3) over the 248 

entire area, integrated at the annual time-scale. The calibration was performed in 3 phases, following 249 

recommendations by Oliveros-Ramos et al. (2017) based on model dependency of the parameters and 250 

availability of initial estimates. First, the 10 LTL accessibility coefficients were adjusted for 200 251 

generations; then, the 14 larval mortality rates were added to the set of parameters to adjust for 200 252 

other generations. Finally, 12 additional mortalities (including fishing mortalities) were added to the 253 

third phase, where 300 generations were run with a total of 36 parameters to estimate. The first two 254 

phases allow optimization of the calibration convergence, while the third phase includes all the 255 

parameters and lasts longer to ensure that an optimal solution is reached. 256 

 257 

2.5 Scenarios and exploration of simulated trophic patterns 258 

Once the model is calibrated, it is run for 120 years, with the first 100 years corresponding to the spin-up 259 

time during which the system stabilizes and is no longer driven by the model initialization. The results 260 

presented thereafter, corresponding to the average state of the EEC ecosystem in the period 2000-2009, 261 

are computed from averaging the last 20 simulated years to smooth any interannual variability. 262 

Furthermore, OSMOSE is a stochastic model, and 50 replicates were run using the same input 263 

parameters.  264 

Following the pattern-oriented modeling approach (POM, Grimm et al., 2005), the model’s ability to 265 

reproduce independent patterns is explored by comparing simulated output with data neither used 266 

during the parameterization nor during the calibration. As the OSMOSE model is based on opportunistic 267 

predation, validation patterns could include emerging features linked to the predation process, such as 268 

realized diets and associated TLs or food web structures. Here, we used independent data of TLs 269 
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calculated from nitrogen stable isotope ratios (SI) measured on the same species in the same ecosystem 270 

(Cresson et al., 2017, 2018; Jennings and van der Molen, 2015; Kopp et al., 2015, Mialet et al., 2017). TL 271 

calculations are based on the premise that the nitrogen isotopic ratio (δ15N hereafter) is gradually 272 

enriched at each TL, a phenomenon called trophic enrichment. TL is thus considered as the isotopic 273 

difference between the species of interest and a trophic baseline, i.e., a proxy of the ultimate organic 274 

matter source at the base of the food web, divided by the trophic enrichment factor (TEF). The queen 275 

scallop Aequipecten opercularis was used as a trophic baseline due to the trophic importance of benthic 276 

production and because the use of a primary consumer (i.e., at TL = 2) allows smoothing of the small 277 

scale isotopic fluctuations of primary production that are not integrated in fish isotopic ratios. Two 278 

methods are used, where TEF is either considered the same at all levels of the food web (e.g., in Kopp et 279 

al., 2015; Cresson 2017; 2018; Mialet et al., 2017) or decreases with increasing δ15N of the diet (Jennings 280 

and van der Molen, 2015). Details about the method can be found in dedicated literature (Hussey et al., 281 

2014), but sensitivity analyses demonstrated that for intermediate-TL species such as the ones 282 

considered in the present study, calculated TLs are rather similar regardless of the method (Jennings and 283 

van der Molen, 2015; P. Cresson unpubl. results). 284 

In OSMOSE, each super-individual has a proper TL, which depends on its feeding history. The TL 285 

computation of a super-individual i is based on the classical formula in which the TL of a predator equals 286 

1 plus the average TL of the prey weighted by their relative ingested biomass (Equation 6): 287 

           ∑                (Equation 6) 288 

where TLi,t is the trophic level of i at time t and DCj,i,t is the proportion of prey j in the diet of predator i at 289 

time t. While the TL of explicitly modeled individuals is dynamic, the TL of the LTL groups is fixed and has 290 

been set to 1 for phytoplankton and derived from TL estimates based on stable isotope studies in the 291 

same area (Kopp et al., 2015) for the other groups (Table 2). The TL of very small benthos is set to 3 to 292 
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represent the omnivory of this group (partly composed of meiofauna). The TL of newly spawned eggs 293 

within OSMOSE is arbitrarily set to 3 to be close to the TL of the first-feeding larvae. Finally, we assume 294 

that an individual that has not fed keeps its previous TL. 295 

After comparison of simulated TLs with data, model exploration is performed by analyzing the variation 296 

of diet composition and TL with size for all species. Diet composition is computed using the following 297 

predefined size classes for predators: [0;5[, [5;10[, [10;15[, [15;20[, [20;25[, [25;30[, [30;40[, [40;50[, 298 

[50;60[, [60;70[, [70;90[, [90;110[ and [110;130[. From all super-individuals pertaining to a size-class, the 299 

biomasses of the different prey eaten (including other super-individuals and LTL groups) are grouped by 300 

species over the entire area. To explore the relationship between TL and size, super-individuals are 301 

grouped by centimeters and the TL distribution within each size group is computed (min, first quartile, 302 

median, third quartile, max). The TL-size relationship is then explored spatially by fitting a linear model in 303 

each cell with more than 10 super-individuals. The resulting slope values are then mapped for each 304 

species, with indication of the quality of the fit using R² values.  305 

 306 

3. Results 307 

The evolutionary algorithm used for calibrating the model converged to an acceptable configuration 308 

where all median values of simulated biomass distribution are within the range of observed values 309 

(Figure 3). Median values of simulated catches are within the range of observations for half of the 310 

species (lesser spotted dogfish, whiting, cod, mackerel, sardine and squids), while for red mullet, horse 311 

mackerel and herring, catches are underestimated as only 42%, 42% and 18% of the 50 simulated 312 

replicates are within the range of the observations, respectively. Simulated catches of pouting, sole and 313 

plaice are smaller than the observations (median values corresponding to 73%, 57% and 80% of the 314 

minimal observed values, respectively), even if the biomass of the flatfish species corresponds to the 315 
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total stock biomass estimates through the stock assessment (ICES 2011). For the other assessed species 316 

(whiting, cod, mackerel and herring), simulated biomass also displays a good fit to biomass estimated 317 

over the period of 2000-2009. The optimized values of accessibility parameters show high variability 318 

across the LTL groups, from approximately 10-4 for dinoflagellates to approximately 0.4 for meso-319 

zooplankton and very large benthos (Table 2), two important prey groups for the fish community.  320 

A comparison of simulation outputs with published TLs from empirical SI analysis is performed as a 321 

validation process. Figure 4 displays the trophic spectra of the modelled species, i.e., for each species, 322 

the distribution of the individual TL weighted by the individual biomass. In the simulations, the width of 323 

the trophic spectrum (i.e., the difference between the maximal and minimal individual TLs) varies 324 

according to species from 1.6 levels for red mullet up to 3.9 levels for herring. More importantly, the way 325 

biomass is distributed along TLs also varies: for some species, biomass distribution is concentrated 326 

around a particular TL (e.g., approximately 3.9 for red mullet, pouting, poor cod, dragonet, sole), while 327 

for other species, biomass is spread over a wide range of TLs (e.g., whiting, cod, sardine, squids). The 328 

biomass concentration of approximately 3.9 for benthic fish species is linked to the dominant proportion 329 

of very small benthos and small benthos (TL=3 and TL=2.9, respectively, Table 2) in the diet of these 330 

species (Figure 5). Plaice individuals of intermediate length (15-50 cm) also largely rely on these prey 331 

groups, explaining the concentration of biomass around TL=3.8 in the trophic spectrum (Figure 4). The 332 

biomass around TL=4.5 is explained by the presence of very large benthos (TL=3.6) in the diet of larger 333 

plaice individuals. The wide trophic spectra of lesser spotted dogfish, whiting and cod are explained by 334 

the diversity of prey composing their diets (Figure 5).  335 

Simulated trophic spectra were in good agreement with the range of TLs estimated from stable isotope 336 

measurements for most species. For red mullet, poor cod, and plaice, simulated TLs were similar to SI-337 

derived TLs, which were, moreover, coherent between empirical studies. For lesser spotted dogfish, 338 
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pouting, whiting, sole, horse mackerel and mackerel, empirical data display high variability across 339 

studies, but this variability is generally well encompassed by the model. However, empirical TL estimates 340 

show that the maximal TL observed for sole can be higher than that simulated, while mackerel can have 341 

a minimal SI-derived TL smaller than that simulated. It is worth noting that for mackerel, the model 342 

simulates two TL modes, approximately 3.6 and 4.3, corresponding respectively to young individuals 343 

feeding only on mesozooplankton (TL=2.6, Table 2) and larger individuals feeding on small squids and 344 

small fish, mostly young sardine and horse mackerel (Figure 5). Similarly, empirical estimates of mackerel 345 

TL show low values of approximately 3.5 in Cresson et al. (2017) and Jennings and van der Molen (2015), 346 

with fish being between 16.9 and 41 cm long (Table 4), while TL values are higher than 4 in the three 347 

other studies but for similar fish lengths (18 to 34 cm, Table 4). If we assume that TL estimated from 348 

stable isotopes are representative of the trophic position of the bulk of a species, then the EEC-OSMOSE 349 

model tends to slightly overestimate the TL of cod, dragonet and squids and to underestimate the TL for 350 

herring. The SI-derived TL of sardine corresponds to the bulk of the simulated biomass, but the model 351 

also simulates sardine individuals at a TL between 2 and 3 (feeding on diatoms and mesozooplankton, 352 

Figure 5). 353 

To further explore the drivers of individual variability among species TL distribution, the evolution of the 354 

mean TL with size is presented in Figure 6. While mean TL generally increases with size for most species, 355 

this is not the case for red mullet, poor cod, dragonet, and sole and for pouting and plaice to a lesser 356 

extent (respectively, from 10 to 35 cm and from 20 to 50 cm), for which the mean TL decreases with size. 357 

These species are characterized by a benthic diet, with the proportion of very small benthos (TL=3) 358 

decreasing with size and the proportion of medium benthos (TL=2.2) increasing as fish grow larger, 359 

which explains the decreasing TL with size for these species. The evolution of mean TL with size is not 360 

linear, and most species display a strong change of TL at smaller size, while mean TL varies less with size 361 

for larger individuals.  Tipping points can be identified and linked to ontogenetic changes in the diets of 362 
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species. For instance, sardine and herring fish longer than 20 cm no longer feed on diatoms (Figure 5), 363 

explaining the abrupt TL increase at this size. Other ecological features can be observed, such as the 364 

marked shift from a plankton-feeding larval stage (roughly for fish smaller than 5 to 10 cm on Figure 6) to 365 

a benthic feeding juvenile stage for all benthic and demersal species. Finally, other TL breakpoints linked 366 

to diet shifts exist for larger fish: the occurrence of very large benthos for lesser spotted dogfish larger 367 

than 30 cm, pouting larger than 35 cm, whiting larger than 15 cm, cod larger than 20 cm and plaice larger 368 

than 50 cm, and the disappearance of mesozooplankton for horse mackerel and mackerel larger than 20 369 

cm.  To supplement the patterns observed over the entire area between TL and size, the spatial 370 

distribution of the TL-size relationship is mapped (Figure 7). The negative relationship between TL and 371 

size is confirmed in every grid cell for red mullet, dragonet and sole. This pattern appears robust (R² > 372 

0.3) in the Dover Strait (Northeast), in the north of the Central English Channel (Northwest) and in the 373 

Bay of Seine (South). For poor cod, another species showing a decreasing TL-size relationship at the 374 

global scale, the spatial distribution of the slope is less informative (R²<0.3) but shows both positive and 375 

negative relationships (the latter occurring also in the Dover Strait and north of the Central English 376 

Channel). For plaice and pouting, the relationship is positive in most cell grids and is probably driven by 377 

the strong difference of TL between fish of intermediate size and larger fish. Robust positive 378 

relationships between TL and size also occur for pouting, herring, sardine and squids.  379 

 380 

4. Discussion 381 

 382 

4.1 Ability of the model to capture EEC ecosystem dynamics 383 

 384 
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In this study, we were able to adapt the 2D OSMOSE model using a vertical overlap matrix and apply it to 385 

the EEC shallow ecosystem characterized by strong bentho-pelagic coupling. After parameterizing the 386 

model, the semiautomatic calibration method produced an overall good fit of the model to the 2000-387 

2009 average state of the EEC ecosystem, with biomass of all species and catch values of half of the 388 

species being within the range of the observed values. The discrepancies observed for some species 389 

between modeled and observed catches and biomasses can be explained by several factors. First, a 390 

constant fishing mortality is applied in OSMOSE to individuals older than the age at recruitment (i.e., 391 

similar to broken-stick selectivity with age), while in reality due to the different fleet selectivity and 392 

variable catchability-at-age, the fishing pressure endured by fish varies with age/length (Quinn and 393 

Deriso, 1999). Nonetheless, it is worth noting that the total mortality varies with age within OSMOSE, 394 

notably due to explicit predation mortality, which tends to decrease with size. Second, the biomass 395 

target values come from single-stock assessments, i.e., correspond to model outputs with specific 396 

hypotheses and thus should be taken as estimates with associated uncertainty rather than exact values 397 

(Brooks and Deroba, 2015). Similarly, target catch values come from declared landings completed by 398 

estimates of discards when available. Even if the EEC is considered a data-rich ecosystem, some 399 

uncertainties persist when estimating discards and total catches (Enever et al., 2007; Pauly and Zeller, 400 

2016). Furthermore, the hypothesis made to allocate the biomass of widely distributed stock to the ICES 401 

7.d area based on the landings ratio does not take into account the spatial variability of fishing effort and 402 

assumes a homogeneous distribution of fish, again contributing to the uncertainty around biomass 403 

target values. Third, the calibration process was limited to the optimization of 36 unknown parameters, 404 

therefore constraining the space of simulated output reachable during the calibration.  405 

Despite these limits, the model was able to reproduce species biomasses and most species catches, but 406 

also other features independent of the data used for parameterization and calibration. For most species, 407 

the simulated TLs are in good accordance with TL estimates derived from SI data, both in terms of 408 
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average values and variability within species. However, EEC-OSMOSE underestimates sardine and herring 409 

mean TLs compared to SI estimates. The exploration of simulated TL and diet composition versus size 410 

shows that the smaller size classes have a diet mostly composed of diatoms and mesozooplankton 411 

(resulting in small TL values), while the larger individuals rely on mesozooplankton, explaining their 412 

higher TL. One hypothesis for the difference observed between the data and the model is that empirical 413 

data underestimate the importance of phytoplankton food source. This could be explained by the 414 

absence of very small individuals (smaller than 5 cm for herring, smaller than 7.7 cm for sardine, Table 4) 415 

in the sample, and/or by the sampling season (autumn) corresponding to higher zooplankton food 416 

available compared to phytoplankton. Another hypothesis is the biased simulation of diet shift from 417 

phytoplankton to zooplankton prey at larger size than observed for herring and sardine. Both species are 418 

known to consume these two types of prey, with seasonally variable intensity (Costalago et al., 2012), 419 

but the ontogenetic shift in their diet has been reported at an earlier larval stage (e.g., Denis et al., 420 

2016). These results suggest that the minimum and maximum predation size ratios set for herring and 421 

sardine may be revised, possibly by setting different ratios according to individual ontogenetic 422 

development (e.g., Travers-Trolet et al., 2014). Moreover, due to the model structure and lack of suitable 423 

stable isotope data, the mesozooplankton group has a fixed TL that prevents simulation of the 424 

spatiotemporal variability of the TL of the zooplankton community available to fish. It should 425 

nevertheless be remembered that fish stable isotope ratios (and the derived TL values) can be seen as 426 

emergent properties, resulting from their diet but also from a large set of environmental or physiological 427 

parameters (e.g., Boecklen et al., 2011). Among these, large spatial and temporal variations of 428 

phytoplankton isotopic ratios (Magozzi et al., 2017) at the basis of the food web and/or fish migrations 429 

between zones where primary production exhibits different isotopic ratios may drive changes in fish 430 

isotopic ratios that are hard to capture and that may blur TL calculation.  431 
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The overestimation of the trophic position of cod in the model comes with an overestimation of the 432 

proportion of fish in the diet. The model simulates the proportion of fish biomass in cod diets as 433 

between 50% and 80% according to size classes, while fish represent nearly one quarter or less of the 434 

prey found in stomach content analysis (crustaceans being the main prey for juveniles and adults, 435 

Cachera, 2013; Pinnegar 2014; Mialet et al., 2017). This bias is due to the relatively simple accessibility 436 

matrix set for representing the proportion of prey biomass available to a predator according to their 437 

vertical distributions. For this matrix, cod is considered to be demersal, i.e., to have full access to other 438 

demersal individuals and to have access to half of the pelagic biomass and half of the benthos biomass. 439 

To better represent the feeding behavior of cod, accessibility coefficients should be revised, for instance 440 

by increasing accessibility to benthic prey and reducing accessibility to pelagic and demersal individuals. 441 

For this study, the accessibility matrix was introduced to mimic vertical overlap between predators and 442 

prey as required to model both benthic and pelagic communities with an opportunistic size-based 443 

predation, but its parameterization was kept as simple as possible. For their coupled size-spectrum 444 

model, Blanchard et al. (2009) considered that all predators spent half of their time feeding on benthic 445 

invertebrates and the other half feeding on pelagic organisms. Future developments on how to better 446 

set these accessibility parameters could involve consideration of the spatial variability of trophic 447 

interactions (e.g., depth-driven variability in bentho-pelagic coupling; Giraldo et al., 2017) or use 448 

morphological attributes (trait-based approach) of the different species (e.g., orientation of the mouth).  449 

 450 

4.2 Relationship between size and TL 451 

 452 

When considering TL with regard to size for the different species modeled, two main patterns emerge 453 

from the simulations. The most frequent pattern is an increase of TL as size increases, which is often 454 
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more pronounced for the smaller size classes. This positive relationship can display some breakpoints 455 

linked to diet composition shifts, as illustrated by planktivorous fish species at 20 cm. The second pattern 456 

is observed for only four benthic species (red mullet, poor cod, dragonet and sole) and corresponds to a 457 

decrease of TL with increasing size. For the small individuals of these four benthic species (smaller than 458 

5-10 cm), the initial increase in TL is explained by the pelagic and planktivorous mode of the larvae 459 

before settlement on the sea bottom, modeled through change of the accessibility predation coefficient 460 

(Table 3).  461 

In aquatic ecology, the assumption that larger individuals have a higher TL is often admitted, as 462 

predation is constrained by body size through gape limitation. Such a relationship has been explored and 463 

confirmed across species in various ecosystems by confronting the mean or maximum size of species 464 

with their mean δ15N (e.g., France et al., 1998; Romanuk et al., 2011). However, other studies have 465 

reported an absence of correlation between species mean length and their trophic position (e.g., Layman 466 

et al., 2005). Jennings et al. (2001) also documented a weak cross-species relationship between the 467 

maximum size of fish species and their mean δ15N value but a strong relationship at the community level, 468 

i.e., using the individual length of fish and pooling the data together within size classes. The ontogenetic 469 

increase of TL with increasing size has also been confirmed for benthic fish species by Badalamenti et al. 470 

(2002). Investigating the North Sea trophic structure, Jennings et al. (2002a) found a significant positive 471 

relationship between fish length and δ15N for 16 species over 31. More interestingly, this relationship 472 

was found to be negative for herring and plaice whose TL decreases as their length increases. In addition, 473 

the pattern observed may be positive in one environment but negative in another (Jennings and van der 474 

Molen 2015). The results obtained in the present study thus demonstrate that the variability may appear 475 

at even a lower spatial scale, confirming the call for a better understanding of the effect of 476 

environmental gradients on trophic functioning (Ings et al., 2009). Based on stable isotope data in the 477 

EEC, Kopp et al. (2011) confirmed this decreasing trend of TL with size for plaice but also for skates and 478 
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even for whiting in some particular habitats (located in the central Bay of Seine and part of the Dover 479 

Strait). In half of the region × species combinations they studied, Jennings and van der Molen (2015) 480 

observed no relationship between mass and TL, and the positive relationships mostly occurred for 481 

piscivore species. As they have to capture mobile prey, gape size is a key factor driving feeding abilities in 482 

these species. In benthic systems, feeding mechanisms could be more based on opportunistic predation 483 

of carrion and living organisms. In this context, prey size may not be as important in driving the feeding 484 

mechanism as for pelagic systems.  485 

While based on opportunistic size-based predation, OSMOSE was unexpectedly able to reproduce 486 

decreasing trends of TL with size for some benthic species. In EEC-OSMOSE, the benthic species 487 

demonstrating a clear declining TL trend with size are not the same as the benthic species found to 488 

display this pattern empirically. However, it is worth noting that the empirical negative relationship 489 

found for plaice between 9 and 48 cm (Jennings et al. 2002a) is partly present in the model if we focus on 490 

intermediate-sized individuals, i.e., before the introduction of very large benthos in the diet (at about 50 491 

cm).  492 

Being able to reproduce the negative TL-size relationship using such a model allows for drawing two 493 

nonexclusive hypotheses of its origin. First, the spatial distribution of fish individuals changes with age 494 

(Appendix B), which may result in different prey compositions being available locally, including the case 495 

where only prey with lower TLs are available in the area inhabited by larger fish individuals. The spatial 496 

distribution of the TL-size relationship confirms this spatial heterogeneity for some species. Thus, the 497 

absence of squid eggs in the Dover Strait and the North Central Channel is linked to the strong TL-size 498 

negative relationship observed in these areas, where the benthic fish diet is only composed of benthic 499 

invertebrates. For mackerel, the absence of juveniles in the Bay of Seine explains the spatial 500 

heterogeneity of the signal and suggests that a negative TL-size relationship could be observed 501 
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empirically if focus was placed on the adults of this region. In the current model, spatially homogeneous 502 

benthic prey fields were used because insufficient knowledge of benthos dynamics was available at this 503 

scale. The simulated trophic spatial variability would probably be higher if a more realistic benthic 504 

community was included in the model.  505 

The second hypothesis underlying the simulated pattern is that, conversely to what is largely admitted 506 

for the pelagic prey, the trophic structure of the benthic prey is not linked to the size structure of the 507 

benthic invertebrate community. In the diet of the simulated benthic fish, the increasing proportion of 508 

medium benthos with a small TL compared to the proportion of small benthos with a higher TL leads 509 

mathematically to a TL decreasing with size at the predator level. This pattern is linked to the predation 510 

hypothesis underlying the model and reflects the actual opportunistic pattern of the benthic fish species 511 

that consume the most available resources (van Denderen et al., 2018). The selection of species used to 512 

set the TL of the benthic groups could have an impact on the overall TL-size relationships of fish. 513 

However, they were selected because of their abundance in the area, therefore they were considered 514 

suitable to represent the main prey available for fish. Only a few studies have investigated the 515 

relationship between size and trophic position for marine benthic invertebrates. Jennings et al. (2002b) 516 

demonstrated that for benthic invertebrates, the relationship between size and TL reflected intraspecific 517 

patterns (i.e., individual growth) and not interspecific patterns (i.e., no evidence for a relationship 518 

between maximum body size and TL across species). Similarly, Dinmore and Jennings (2004) observed a 519 

negative relationship between TL and body mass, demonstrating that body dimension may not be a 520 

major driver of predation in benthic systems. In their coupled size-based model, Blanchard et al. (2009) 521 

confirmed that benthic invertebrates share a common size-unstructured resource and therefore are not 522 

strongly trophically size-structured. In other words, two benthic invertebrates of different sizes can 523 

exhibit the same TL as their diet would be the same. An ontogenetic diet change in the predator could 524 

thus result in an inconclusive or decreasing length-TL pattern.  525 
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 526 

4.3 Variability of TL across sources  527 

The current study benefited from the existence of several stable-isotope analyses performed in the EEC. 528 

Here, we used the available TL estimates at the individual level and explored the intraspecies variability 529 

of SI-derived TLs, which increased both with the number of fish individuals sampled and with the width 530 

of body sizes sampled (Table 4). The high variability of TLs within a species was confirmed by the model, 531 

where individuals can have different TLs depending on their size (involving different size ranges of 532 

available prey), their spatial location (local encounters with different prey) and the feeding history of 533 

their prey (leading to different TLs of the prey). While the intraspecific TL variability from stable isotopes 534 

was required to validate the emergent patterns of the model, the comparison of TL values between 535 

different SI studies was also informative. Indeed, the agreement observed between the five studies (e.g., 536 

plaice) increases the reliability of these estimates, both in terms of value and width of distribution. For 537 

sardine, the very similar TL distribution observed between two studies counterbalances the low number 538 

of individuals sampled (10 in each study) and therefore improves the reliability of these data. While the 539 

five empirical studies provided similar estimates of species mean TLs and variability for some species, 540 

they can lead to different estimates of the TL for other species (e.g., the lesser spotted dogfish mean TL 541 

goes from 3.5 to 4.8; the whiting mean TL ranges from 4 to 5.1). Discrepancies between the empirical 542 

studies (and with the model) can be due to differences in sampling dates and therefore temporal 543 

variation of diet and integration dynamics (seasonal and/or interannual, e.g., Schafer et al., 2002), the 544 

spatial location of sampling and its effect on diet (Kopp et al., 2015; Giraldo et al., 2017), the variability of 545 

the trophic baseline used (Magozzi et al., 2017) or hypothesis regarding TEF (Hussey et al., 2014). These 546 

intraspecific variations are nonetheless classically observed (e.g., Jennings and van der Molen, 2015). 547 

 548 
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Isotopic data allowed validation of the model, but other trophic data sources could have been used to 549 

provide a complementary vision. Comparison with stomach content data allowed for a better 550 

understanding of the discrepancies regarding the cod TL; the TL overestimation is linked to the 551 

overestimation of fish in the cod diet composition. Both isotopic and stomach content data sources are 552 

now considered complementary (e.g., Cresson et al., 2014; Giraldo et al., 2017), the latter one informing 553 

a snapshot diet with identified prey, while the former integrates trophic fluxes over months and allows 554 

us to quantify the fluxes between predators and a pool of prey of similar isotopic signatures. The 555 

ecosystem model can now be added to the list of available tools to explore trophic function and 556 

individual variability of TLs and could be used in a similar way to explore individual variability across 557 

seasons and/or space (i.e., at different depths).  558 

 559 

5. Conclusion 560 

Using a multispecies IBM constrained by size-based opportunistic predation, we were able to reproduce 561 

the average trophic structure of the EEC over 2000-2009, including benthic and pelagic communities. 562 

Due to the individual variability in terms of size, spatial location and feeding history, the model 563 

simulations displayed patterns that were observed in empirical studies but were unexpected from a size-564 

based predation approach. Here, the IBM framework has been shown to be effective in investigating 565 

among-individual trophic variability and for understanding the plausible drivers of the negative TL-size 566 

relationship observed empirically for some species. The uncoupling of the trophic structure and size 567 

structure of benthic invertebrates appeared to be the key to this pattern, but future studies should 568 

further explore this potential link and identify morphological aspects to better represent the predation 569 

of fish on benthic invertebrates. The availability of TL estimates from stable isotopes has been a key to 570 

validating the model and encouraging strong collaborations between modelers and field/laboratory 571 
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scientists. Indeed, while trophic data are often used to parameterize or validate ecosystem models 572 

(Pethybridge et al., 2018), complex models - and particularly IBMs - appear useful to inform on the 573 

trophic functioning of an ecosystem and to explore different hypotheses regarding the causes of 574 

observed patterns. As the trophic patterns simulated with OSMOSE have been validated for the EEC, the 575 

model will now be available to explore the ecosystem impacts of different scenarios, including 576 

management measures and climate change. The flexibility of the food web structure emerging from local 577 

interactions in OSMOSE appears promising when aimed at exploring the cumulative impacts of different 578 

pressures. 579 

 580 

 581 

 582 
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Figure 1: Processes undertaken by a superindividual during a 2-week time step : 1) Movement of 

individual in a 2D grid either driven by input maps or due to random walk; 2) local interactions and 

resulting mortalities (explicit predation mortality upon other superindividuals and upon plankton and 

benthos groups present in the same cell, starvation mortality, fishing mortality and mortality from 

other sources) looping over 10 subdivisions of the time step in order to approximate real continuous 

time; 3) growth proportionally to predation efficiency and 4) reproduction which creates new 

superindividuals of eggs for the next time step. 

 

 

 

 



 

 

 

Figure 2: Grid corresponding to the modeled EEC (0.6° x 0.6° cells) with indication of depth (from 

GEBCO website) 

 

 

 

 

 

 

 

 

 

 



 

Figure 3: Distribution of the simulated catches (top) and biomass (bottom) over the 50 replicates 

(dark boxplots representing median and quartiles), and comparison with observations: minimal and 

maximum values of catches over 2000-2009 are indicated in the top panels by the grey bars. 

Minimum and maximum estimated biomass values are only presented for assessed species in the 

bottom panels. 

 



 

Figure 4: Modelled distribution of species biomass across TLs (trophic spectra, in grey), and comparison with published TLs for these species in the same 

area based on stable isotopes analysis (in green: Cresson et al. (2017), in orange: Jennings and van der Molen (2015), in black: Mialet et al. (2017), in red: 

Cresson et al. (2018), in blue: Kopp et al., (2015)). For SI-derived TL, the dotted line represents the range of TL measured (from minimal value to maximal 

value), the bold line represent values between the 1st and the 3rd quartiles and the filled dot represent the median values. Number of samples used in each 

study is reported in Table 4.



 

Figure 5: Emerging diet composition across size classes for the 14 modelled species over the entire 

area. Size classes are not regular in order to emphasize the rapid diet change of smaller individuals. 

Prey are grouped by species but include individuals of various length within a species group. 



 

Figure 6: Modelled distribution of superindividuals’ TL across 1-cm size classes for the simulated 

species. The light grey areas indicate minimal and maximal individual TL per centimeter, the dark 

grey areas indicate the 1st and 3rd quantiles of the TL distribution per centimeter and the black lines 

indicate the median TL per centimeter.



 

Figure 7: Spatial distribution of the direction of the TL-size relationship. In each cell with more than 10 superindividuals, a linear model has been applied 

between TL and size. Dark blue: positive slope with R² > 0.3; light blue: positive slope with R² < 0.3; orange: negative slope with R² < 0.3; red: negative slope 

with R² > 0.3. 



Table 1: Input parameters of OSMOSE for the 14 fish species modelled explicitly. L∞, K, and t0 are the parameters of the von Bertalanffy growth model, with a linear growth before the 
threshold age ath and a growth following the von Bertalanffy model after ath; c is Fulton’s condition factor and b the exponent of the L-W allometric relationship; Lmat is length at maturity 
and φ is relative fecundity; amax is longevity; F is the annual fishing mortality rate and arec is age of recruitment; Moth is an additional mortality rate (resulting from predation by other 
species of the ecosystem that are not explicitly modelled); Mξ max is the maximum starvation mortality rate, ML is the larval mortality rate applied to the first life stage; min and max size 
ratios define suitable prey size for a predator, ξcrit is the critical predation efficiency corresponding to maintenance requirements, max ingestion rate corresponds to the maximum 
amount of food edible per year relatively to the predator mass. Values reported in the table come from literature (references in Appendix 1) except from Moth, F and ML which come from 
calibration. 
 

 
 GROWTH AND CONDITION REPRODUCTION SURVIVAL PREDATION 

Species L∞ K t0 ath c b Lmat φ amax F arec Moth Mξ max ML 
Min 
size 
ratio 

Max 
size 
ratio 

ξcrit  

max 
ingesti

on 
rate 

 cm y
-1

 y y g.cm
-3
  cm  eggs.g

-1
 y y

-1
 y y

-1
 y

-1
 month

-1
    g.g

-1
 

Lesser spotted 
dogfish 

87.4 0.118 -1.09 0.5 0.00308 3.029 57 0.14 10 0.09 4 0.087 0.3 4.29 50 3 0.57 3.5 

Red mullet 53.3 0.18 -1.23 1 0.00716 3.178 16.7 500 11 0.194 0.4 0 0.3 13.01 125 10 0.57 3.5 

Pouting 37.6 0.46 -0.77 0.5 0.00657 3.202 23 620 4 0.106 1 0.12 0.3 6.69 50 3.5 0.57 3.5 

Whiting 40.2 0.63 -0.37 1 0.00621 3.103 20 797 20 0.122 1 0.405 0.3 17.03 30 1.5 0.57 3.5 

Poor cod 22.2 0.462 -0.679 0.5 0.0092 3.026 13 100 3 0 1 0.085 0.3 4.73 50 3.5 0.57 3.5 

Cod 103.9 0.19 -0.1 0.5 0.00835 3.053 56 800 25 0.219 1 0 0.3 21.95 
50 / 
20* 

2.3 / 
1.8* 

0.57 3.5 

Dragonet 28.3 0.471 -0.443 0.5 0.0262 2.442 17.4 255 6 0 1 0.148 0.3 2.58 125 10 0.57 3.5 

Sole 37.3 0.35 -1.61 0.5 0.00391 3.264 29 482 20 0.187 1.5 0 0.3 7.4 125 10 0.57 3.5 

Plaice 71.7 0.23 -0.83 0.5 0.0103 3.017 27 255 15 0.44 1 0 0.3 13.52 125 5 0.57 3.5 

Horse mackerel 39.2 0.18 -1.515 1 0.0054 3.114 22 1655 15 0.052 0.5 0 0.3 3.52 100 2.5 0.57 3.5 

Mackerel 42 0.24 -2.07 1 0.00338 3.241 29 1070 17 0.142 0.5 0 0.3 7.94 100 2.5 0.57 3.5 

Herring 29.2 0.37 -0.67 0.5 0.00503 3.1 25 458 11 0.156 1.5 0.008 0.3 1.24 1000 5 0.57 2 

Sardine 24.6 0.79 -0.22 0.5 0.00594 3.077 15 2228 15 0.03 0.5 0.216 0.3 14.07 1000 5 0.57 3.5 

Squids 50 2 0.5 0.7 0.25 2.27 30 50 2 0.036 0.5 0.298 0.3 7.97 20 1.5 0.57 3.5 

*below and above 12cm respectively 

 

 



 
Table 2: Parameters of the low trophic level (LTL) groups used in OSMOSE as forcing prey field. Size range of plankton groups 
correspond to size class used in biogeochemical models, and size class of benthic invertebrates are arbitrarily set to represent a 
discretized size spectrum. Trophic levels are either set arbitrarily (identified by *) or derived from SI-derived estimates from (Kopp et 
al., 2015) with the corresponding species indicated. Accessibility coefficients are calibrated.  
 

 
 

LTL groups Size range (cm) Trophic level 
Accessibility 
coefficient 

P
E

L
A

G
IC

 P
R

E
Y

 Dinoflagellates 0.0002 – 0.002 1* 10
-3.98

 

Diatoms 0.002 – 0.02 1* 10
-2.79

 

Micro-zooplankton 0.002 – 0.02 2* 10
-0.97

 

Meso-zooplankton 0.02 – 0.2 2.6 (copepods) 10
-0.37

 

Macro-zooplankton 0.2 – 2 3.8 (Crangon crangon) 10
-1.56

 

B
E

N
T

H
IC

 P
R

E
Y

 Very small benthos 0.02 – 0.5 3* 10
-1.20

 

Small benthos  0.5 – 1 2.9 (Nereis sp.) 10
-1.30

 

Medium benthos  1 – 5 2.2 (bivalves) 10
-1.87

 

Large benthos  5 – 10 2.3 (Psammechinus miliaris) 10
-2.96

 

Very large benthos  10 – 15 3.6 (Maja brachydactyla) 10
-0.38

 

 

  



 

Table 3: Accessibility coefficients between individuals depending on their vertical position, representing the 

proportion of prey biomass available to a predator. The vertical position of individuals depends on their stage and is 

indicated in the last column. 

 
  Predator  

  Pelagic Demersal Benthic  

P
re

y
 

Pelagic 1 0.5 0 

Red mullet, Pouting, Whiting, Dragonet, Plaice younger than 3 
months 
Cod younger than 0.4 year 
Sole younger than 0.15 year 
Horse mackerel, Mackerel, Herring, Sardine 
Dinoflagellates, Diatoms, Microzooplankton, Mesozooplankton, 
Macrozooplankton 

Demersal 0.5 1 0 

Lesser spotted dogfish older than 0.45 year,  
Pouting, Whiting older than 3 months 
Cod older than 0.4 year 
Squids older than 1.5 month 

Benthic 0 0.5 1 

Lesser spotted dogfish younger than 0.45 year,  
Red mullet, Dragonet, Plaice older than 3 months 
Sole older than 0.15 year 
Squids younger than 1.5 month 
Very small benthos, Small benthos, Medium-size benthos, Large 
benthos, Very large benthos 

 
  



Table 4: Size range and number of fish individuals (N) used to estimate species TL based on SI measurement in four 
empirical studies realized in the EEC. For Jennings and Cogan (2015), body size are estimated from body mass using 
allometric relationship (Robinson et al. 2010; Mahé et al. 2018). Squid length was estimated based on an 
unpublished relationship (ln(Length)=  2.86 + 0.44 ln(mass) calculated on individual length-mass measurement 
performed during CAMANOC survey in the English Channel (K. Mahé, Ifremer Halieutic Information System, pers. 
comm.) 
 

 
Kopp et al., 
2015 

Jennings and 
Cogan, 2015 

Mialet et al. 
2017 

Cresson et al., 
2017 

Cresson et al., 
2018 

Lesser spotted 
dogfish 

11-64 cm 
N=36 

17-63.7 cm 
N=53 

40-63 cm 
N = 18 

42-67.9 cm 
N=25 

50.5-65 cm 
N=10 

Red mullet 
7-32 cm 
N=63 

N=0 
20-25 cm 
n=5 

N=0 
15-19.6 cm 
N=10 

Pouting 
9-27.5 cm 
N=24 

7.9-33.9 cm 
N=37 

n=0 
12.9-32.9 cm 
N=50 

11.9-22.7 cm 
N=19 

Whiting 
7-41 cm 
N=39 

12.5-32.7 cm 
N=28 

21-38 cm 
N=30 

14.6-35 cm 
N=80 

6.8-36.4 cm 
N=16 

Poor cod 
10.6-21.5 cm 
N=12 

7.2-19.3 cm 
N=27 

9-12 cm 
n=9 

8.4-17.5 cm 
N=77 

9.3-15.6 cm 
N=10 

Cod 
35-73 cm 
N=33 

36cm  
N=1 

29-93 cm 
N=18 

N=0 
33.2-68.7 cm 
N=8 

Dragonet 
9-23 cm 
N=18 

5.8-24.5 cm 
N=83 

N=0 N=0 
12-18.7 cm 
N=15 

Sole 
9-38 cm 
N=51 

12.7-36.7 cm 
N=78 

N=0 N=0 
7.5-29.5 cm 
N=1 

Plaice 
9-43 cm 
N=37 

8.5-55.3 cm 
N=134 

20-38 cm 
n=40 

22.5-42.6 cm 
N=28 

13.4-25 cm 
N=15 

Horse mackerel 
8-39 cm 
N=54 

19.6-21.4 cm 
N=7 

10-13 cm 
N=7 

11.4-31.5 cm 
N=148 

4.3-20.4 cm 
N=23 

Mackerel 
18-37 cm 
N=39 

32cm  
N=1 

30-34 cm 
N=6 

16.9-41 cm 
N=158 

24.3-28.9 cm 
N=10 

Herring 
6.2-29 cm 
N=10 

N=0 
5-27 cm 
N=6 

N=0 
7-25.1 cm 
N=15 

Sardine 
7.7-29 cm 
N=10 

N=0 N=0 N=0 
9.8-20.2 cm 
N=10 

Squids N=0 
11.5-16.8 cm 
N=4 

N=0 N=0 
9-31 cm 
N=17 

 
 




